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m 1. Introduction

All groups are finite under consideration. Let G be a group and let Irr(G) be

the set of complex irreducible characters of G. Some authors studied the influ-
ence of character degrees on group structure, for instance, see [1]-[4]. Qian [5]
gave the definition of the codegree of a finite group as follows: for an irreducible
character y e Irr(G) , the codegree of a character y of G is defined as

cod = |G : ker 4|

z(1)

of G.Let cd.,(G) denote the set of irreducible character codegrees of G, i.e.
cd. (G) = {cod X x€ Irr(G)}. Some good results are gotten between codegree

.Nowwehave cod y =1 when y =15, the principal character

(degree) and group structure; see [6]-[12] for instance.
Wang, Qian, Lv and Chen studied the relation between average codegree and
group structure [12]. Define T(G)= > cody and f (G):|i > cody.
zelrr(G) 2€lrr(G)

Let k(G) be the number of conjugacy classes of G.Then k(G)= |Irr(G)| .

Inspired by [12]-[14], we change the condition from “the codegree sum of a
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finite group” to “the codegree sums of all proper subgroups of a finite group”. In
order to talk in short, the following notion is defined.

Definition 1.1. Then call G aCS-group if 1.3> f(G)>1.1.

Let PSL,(q) be the projective special linear group of degree 2 over a finite
field of order g and A, be the alternating groupon n symbols. Now we give
the following result.

Theorem 1.2. If G is a nonabelian simple group with f (G) >1.1, then G
is isomorphicto A or PSL,(7).

Now by Theorem 1.2, we have the following corollary.

Corollary 1.3. If all subgroups of G are CS-groups, then G is solvable.

If we only consider the proper subgroups of a group G, then we introduce the
definition as follows.

Definition 1.4. Let prop(G) be the set of proper nonabelian subgroups of
G. Then call G anSCS-group if for every H eprop(G), H isaCS-group.

Note that a non-trivial abelian group G has f(G)>15 as

f(Cy)= 1+ i+ 3 ~2.33 where C, isacyclic group of order n.Thus in the hy-

pothesis of the Definition, we only consider the non-abelian subgroups of a group.
As an application of Theorem 1.2, we also can prove the following result.
Theorem 1.5. Let G be an SCS-group. Then G Iis solvable.
Remark 1.6. We know from ([15], p.2) that A,, Dy, and S, arethe maximal

subgroupsof A, andby|[16], f(AA):E, f (D, ):% and f(S3):g.Tbus

12
the condition of Theorem 1.5 “for all H e prop(G) , H isaCS-group” is the
best possible.

Remark 1.7. We do not know whether in Theorem 1.5, the condition“ f (G)>1.1”
can be changed into“ f (G)>1".

Here we introduce the structure of this paper. In Section 2, we compute the
T(PSLz(q)). In Section 3, some results about CS-groups are given and then
prove the solvability of an SCS-group. All other symbols are standard, see [15] and
[17] for instance.

2. Results for Section 3

Lemma 2.1. Zet H<G.

(1) Let H be subnormal in G and let y be an irreducible constituent of
Zw - Then cod(y)|cod(y).

(2) For yelm(G)\{1;}, C0d121(1)+ﬁ>;((1).

Proof. (1) It follows from Lemma 5.11 of [17].
_[Gikery] 1420 (1)

(2) cod(x > =7(1).
T T R R
Lemma 2.2. Let q be a prime power and let G =PSL, (q) Then
1 2
G|= g(q° —1). Furthermore,
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Q(q2+1), q=0(mod2),
*+79°+8q+2

T(G): %, QE—l(m0d4),
3 2
LA._GW, qzl(m0d4)

Proof. We know that for a nonabelian simple group G, G has faithful irre-
ducible characters except for 1, the principal character. By ([18], pp. 402-403),
we have that, if q= O(mod 2) , then

STPTENL e WL NEP KL

=q’+q
= q(q2 +1).
6]=a(a*-1);
if g=-1(mod4), then

a(a-1)/2 a(a’-1)/2 q-3 a(e’-1)/2
T(G)=1+1- +2. e +q4 i

,a-3 9(a°-1)/2

4 q-1
2
~1+ 821 2(q +a)+ £(a-3)(a* -a) +5(a-3)(a" +a)
_ 0 +7q°+8q+2
SR AL
6|=a(a*-2);

if g=1(mod4), then

_a@-12 a(e-1)/2 g5 a(e®-1)/2
T(G)=1+1. +2. )2 +q4 o

La-19(a°-1)/2
4 g-1
_q°+79°-6q+2

1
] :Eq(q2 -1).
This completes the proof.

3. Results

In this section, we first show the solvability of a CS-group, and then give that an
SCS-group is solvable, and finally some other common-use results for character

degree sums are given.
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3.1. CS-Groups

In this subsection, we will prove Theorem 1.2 and Corollary 1.3. By Lemma 2.2,
68 17 186 31 . .
f(A)=—=>=— and f(PSL,(7))="—===". We will first determine the
60 15 168 28
structures of CS-groups.
Theorem 3.1. Let G be a nonabelian simple group with f(G)>1.1. Then
G isisomorphicto A, or PSL,(7).
Proof. As G isanonabelian simple group, we have thatforall y e Irr(G)\{1;},
ker y =1. By the definition of f(G) and Lemma 2.1, we have that
1 |G : ker |
MO, 2, 2@
| 2€ln(G) l( )
-y -y L
zel(G) |ker /1/| /1/(1) el (G) /’{(1)
1 (k-1)vk-1

=1+ Z )21+ \/|G|—l

2el(G)\ig} l(l
where k=k(G) and the last inequality is gotten by using the well-known ine-

2L

i: L Note that k(A)=5,s0

. n
quality — <
Zi:l;i
(5-1) 5—1:1+ 8 .
N
8
G|-1

f(G)=>1+

By hypothesis, we can assume that 1+

>1.1. It follows that

.

60 < |G| <6401 asanonabelian simple group G isoforder >60.Nowby ([15],
p. 239), the possibilities for G are A; =PSL,(5), PSL,(7), A =PSL,(9),
PSL, (11) , PSL, (13) , PSL, (17) , A, PSL, (19), PSL, (16), PSL, (3) ,
PSU, (3) and PSL, (23).

First we consider PSL,(q) with ¢>5.By Lemma 2.2, we have that

q’+1 oo
>1.1, f q=0(mod?2),
o1 if g=0(mod2)
q3+7q2+8q+2> )
_A T 511, if g=-1(mod4),
f (PSL, (a))= 20 -1) q=—1(mod4)
3 2
le.l, if g=1(mod4),
2q(q*-1)
Le.
0.19> -2.1<0, if g=0(mod2),
1.2¢°-7¢*-10.2q-2<0, if g=-1(mod4),
1.2¢°-7¢* +1.5q-2<0,if g=1(mod4).
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It follows from =5 that q is equal to 5 or 7. Now by ([15], pp. 2-3), we
obtain that f(A) =% ~1.13>1.1 and f(PSL,(7)) =% ~1.107>1.1.

Now we consider these groups A,, PSL,(3) and PSU,(3). By ([15], p. 10,
13-14), we obtain that
_ 1645
2520

3305

f(A) ~0.65221.1,

~0.58821.1,

f (PSU,(3))= Zgj; ~09821.1.

Therefore G=PSL,(q) with q=5 or7.
Here we rewrite Corollary 1.3 here.
Corollary 3.2. If all subgroups of G are CS-groups, then G is solvable.

Proof. Assume the result is not true with minimal order |G ,then G is non-

solvable but its proper subgroups are solvable. Thus, we can assume that G isa
nonabelian simple group. Now hypothesis shows that G is a CS-group and by
Lemma 3.1, G is isomorphic to A, or PSL,(7). Thus, two cases are done
within the following.

Case1: A.

Weknow from ([15], p. 2) that A, isamaximal subgroup of A,.Now by [16],

f (AA) = % 21.1, a contradiction.

Case 2: PSL,(7).
Then by ([15], p. 3), PSL, (7) has S, asa maximal subgroup. Now

f(S,)= 22 #21.1 arrives at a contradiction.
Y4

The two contradictions show that G is solvable.

We also can get the following results.

Theorem 3.3. A finite group with f(G)> % is solvable.

Proof. If the result is wrong, then G is nonsolvable with minimal order |G|
Thus we can assume that G is a nonabelian simple group. By Theorem 3.1, we

see that for a nonabelian simple group G, G has order at most 6401 with

v

f(G) >%>1.1. We can check these groups by [15] and get that f(G)< T a

contradiction. Thus G is solvable.
17

Corollary 3.4. Let G be a nonabelian simple group. Then f(G)< "

Proof. If the theorem is not true, then f (G) > % , a contradiction to Theorem

3.3.

3.2. SCS-Groups

In this subsection, we give the proof of Theorem 1.5. We first need the following
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result which is due to Thompson [19].

Lemma 3.5 (Corollary 1 of [19]). Every minimal simple group is isomorphic
to one of the following minimal simple groups:

(1) PSL, (2p) for p aprime

(2) PSL, (3p) for p an odd prime,

(3) PSL,(p),for p any prime exceeding3 such that p?+1= 0(mod5);

(4) SZ(Zp) for p an odd prime,

(5) PSL;(3).

In order to argue in brief, we introduce the notation [x] which denotes the
maximal integer part of a rational number X, for example [—Tc] =—4 and
[n]=3. Let

ker, (G) = {[1s (2).[G].1].[ 2 (1) [ker za|.m ][z (1), Jker z|.m. ]}

where M, denotes the number of y; € lrr(G) with the same |ker ;(i| .
To control the structure of a group, we also need the following result.
Lemma 3.6. Let D,, be a dihedral group of order 2n.

(1) Let N be odd. Then

ker, (D,,) = {[1,2n,1],[1, n,1],{z,1,”7‘1}} .
(2) Let n be even. Then
kerm(DZH):{[1,2n,1],[1,n,l],[2,(3+(—1)j)/2,%—1}}.

B]fl 2n

(3) T(D,,)=1+2+2-2+ Y ———.
(Ben) = 3+(-1)’

Table 1. Character table of D,, with n odd ([20], p. 182).

o] 1 a'(1<sr<(n-1)/2) b
|CD2n (gi)| 2n n 2
b4 1 1 1
b2 1 1 -1
Vi 2 el el 0

(1<j<(n-1)/2)

InTable 1, ¢=e2"",

Proof. (1) By Table 1, we have that y,(9)= (1) for geG,so ker z, =G;

;(Z(ar)zgz(l),so |ker;52|:1+%-n7_1:n;if t//j(g)zt//i(l),then g=1,s0

kery; =1. Thus, we have

(Zn/n)+ (2n/1)23+n_n_1‘

(1) ey (D) 2

T(D,,)=1+
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(2) Obviously ker 7, =G,so cody, =1.
@) _

We see |ker;(2|:l+1+%'(m—1)=2m:n and cod y, =
Now |kerwj| equalsto 1 + 1 when | isevenor1when j isodd,so
_ 2n j
|kery/j|_1+%-(1+(—1) )/2.
2n

3+(-1)"

To compute the kernels of the remaining irreducible characters of a group, by

Thus cody; =

Table 2, we need to consider when (—1)k =1. As the computation methods of
ker y, and Ker y, aresimilar, we only consider to compute ker y,. We divide

the computation into two cases in light of m.

Table 2. Character table of D,,, n=2m ([20], p. 183).

g 1 am a'(l1<r<m-1) b ab
|CD2" (gi )| 2n 2n n 4 4
2 1 1 1 1 1
b2 1 1 1 -1 -1
b2 1 (-1)" (-1) 1 -1
Xa 1 (-1)" (-1) -1 1
v 2 2(-1)’ s 0 0
(I<j<m-1)

In Table 2, &=e2"",

Case 1: m iseven.

Then in the interval [1, m —1] , there are [mTJ even numbers I such that

(-1)" =1. Thus
L]
ker | =1+ 204 20 2|, 20 5 o040,y
2 n 2 4 2
so cod y; =2=cod y,.
L}
g 2n
Therefore T(DZ”):]‘+2+2'2+Z—;'
i13+(-1)

Case 2: m isodd.

Then there are [mTJ even integers I in the interval [1, m—l] such that

(—l)r =1, s0
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|ker x| —1+% {m_l}+@

2 4
=1+2- (m 1j+ﬂzn.
2 2
It follows that cod y, =2=cod y,.
n
21
Now we have T(D,,)=1+2+2- 2+Z—
—13+( )

The lemma is complete.

Let maxG or max (G) denote the set of maximal proper subgroups with re-
gard to subgroup-order divisibility. Let F:Q or |F| : |Q| be the Frobenius group
with kernel F and complement Q respectively. In order to read easily, we
write Theorem 1.5 here.

Theorem 3.7. Let G be an SCS-group. Then G is solvable.

Proof. Assume the theorem is wrong with minimal order |G| .Let H eprop(G)
be a nontrivial minimal normal subgroupin G.Then H isa CS-group, and by
Theorem 1.3, H issolvable. Thus H is abelian. If there is a normal subgroup

K with H<K <G suchthat K/H isnon-abelian simple, then K is solva-
ble, a contradiction. It meansthat K=G.If H >1,then G/H isanSCS-group.
It follows from the minimal choice of G that G/H solvable and so is G, a
contradiction. It follows that H =1 andthat G isa minimal simple group such
that its proper subgroups are solvable. Thus G is a minimal nonabelian simple
group. So in the following, three cases are considered.

Case 1: PSL,(q) for certain (.

If qe{5,7,9,11}, then by ([15], p. 2-3, 5-7) and [16], we respectively have

f(Dy)= ig_l3st13 D,, & maxPSL, (5),
f(7:3)=121.1, 7:3emaxPSL,(7),
f(3:4)= 22211 3 :4emaxPsL, (9),

f(11:5):§9§11 11:5e maxPSL, (11).

Thus q=#5,7,9,11 and we can assume that q>13 when ¢ is odd and
gtl

g>8 when (q is even, so let n=T, N>6 when ¢ is oddand n>7

when q iseven. By Lemma 3.6 and Table 3, we have that
D emaxPSL,(q) and either

2(q£1) /k
2 —
11<0=N+6 13 )
4n
or
7+
e
1.1< <1.3. 2)
2n
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For the inequality (1), we have n=42*6, a contradiction. But the inquality (2)
has no solution in N since n>6.

Table 3. PSL, (q) , @25 ([21], Chap II, Theorem 8.27).

max PSL, (q) Condition
G B Cloni k=gcd(q-1,2)
G Dyq-yi qe{5,7,9.11}
G, Dyasaik q¢e{7,9}
G PSL, (a,)-(k.b) q=0qp, b aprime, g, #2
G S, q=p==1(mod8)

A, q=p=351327,37(mod 40)

S A q=:+1(mod10),F, =F, [\/EJ

Case 2: SZ(Z’)) for p an odd prime.
Let q=2P.Then by ([22], p. 385), Dy(qq) € Max Sz(q), and so by Lemma 3.6,

(9-1)°-(q-1)+6
4(q-1)

Case 3: PSL,(3).

By ([15], p. 13), 13:3emaxPSL,(3) and by [16], f(13:3)=%z1.5;<_1.3,

we have 1.1<

<1.3,s0 g=5 isnon-even, a contradiction.

a contradiction.

From the above three cases, G is solvable, the wanted result.
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