
Applied Mathematics, 2025, 16(4), 338-346 
https://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2025.164017  Apr. 15, 2025 338 Applied Mathematics 
 

 
 
 

The Laplacian Permanents and Laplacian 
Ratios of Trees 

Xiangshuai Dong 

School of Mathematics and Statistics, Qinghai Nationalities University, Xining, China 

  
 
 

Abstract 
Brualdi and Goldwasser characterized the Laplacian permanents of trees. In 
this paper, we study the Laplacian permanents of trees. We characterize some 
Laplacian permanents of trees. The Laplacian ratio of G  is the Laplacian per-
manent of G  divided by the product of degrees of all vertices. In this paper, 
we obtain that for any n -vertex caterpillar tree T , there exists an n -vertex 
caterpillar tree nC  such that ( ) ( )nC Tπ π≤ .  
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1. Introduction 

Let ( ), 1, 2,3, ,ijM a i j n = ∈  
 be an n n×  matrix. The permanent of M  is 

defined as  

 ( )
Λ 1

per ,
n

n

i i
i

M a φ
σ∈ =

= ∑ ∏   

where Λn  is the symmetric group of degree n . Valiant [1] proved that even for 
(0,1)-matrices, computing the permanent is # P -complete. 

Let ( ) ( )( ),G V G E G=  be a simple connected graph with n  vertices, and let 

ivd  denote the degree of vertex ( )1,2, ,iv i n=   in ( )V G . The adjacency ma-
trix and degree matrix of graph G  are denoted by ( )A G  and ( )D G , respec-
tively. The Laplacian matrix of graph G   is defined as ( ) ( ) ( )L G D G A G= −  . 
Based on the Laplacian matrix of graphs, researchers began to study the Laplacian 
permanents of graphs. For more research on the permanent, refer to [2]-[7]. Bru-
aldi and Goldwasser [8] obtained some results on the Laplacian permanents of 
bipartite graphs: the minimum and maximum values of the Laplacian permanents 
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of bipartite graphs with n  vertices. They also gave bounds for ( )perL G .  
Theorem 1. ([8]) Let T  be an n -vertex tree. Then  

 ( ) ( ) ( )2 2 2 22 1 per 1 2 1 2 .
2 2

n n
n T − +
− ≤ ≤ + + −   

The lower bound is achieved if and only if T  is a star, and the upper bound is 
achieved if and only if T  is a path.  

When G  is a tree, the minimum value of the Laplacian permanent can be ob-
tained directly from the degrees of the vertices and the size of the matching. For 
the maximum value of the Laplacian permanent, it is related to the degrees of the 
vertices and the size of the matching. The following problems are proposed:  

Problem 1. ([8]) For an n -vertex tree with maximum degree k , what is the 
maximum value of the Laplacian permanent?  

Problem 2. ([8]) For an n -vertex tree with matching number k , what is the 
maximum value of the Laplacian permanent?  

Problem 3. ([8]) For an n -vertex tree that is a ( ),p q -bipartition, what is the 
maximum value of the Laplacian permanent?  

Brualdi and Goldwasser [8] defined the Laplacian permanent ( )Gπ   of a 
graph.  

 ( ) ( )
1 2

per
.

nv v v

L G
G

d d d
π =



  

Brualdi and Goldwasser [8] first studied the Laplacian ratios of graphs and sys-
tematically studied the properties of the Laplacian ratios of graphs. They charac-
terized the lower bounds of the Laplacian ratios of some graphs. Goldwasser [9] 
studied the maximum and minimum values of the Laplacian ratios of graphs with 
matching number k . The Laplacian ratio of graph plays an important role in 
statistics, chemistry, and communication. The Laplacian ratio can also be used to 
count the number of spanning trees of a graph. Brualdi and Goldwasser [8] first 
studied the Laplacian ratios of graphs and obtained some results on the Laplacian 
ratios of trees. They further proposed the following problems in 1983:  

Problem 4. ([8]) What is the minimum value of the Laplacian ratios of n -
vertex trees with maximum degree k ?  

Problem 5. ([8]) What is the minimum value of the Laplacian ratios of n -
vertex trees with k -matching?  

Problem 6. ([8]) What is the maximum value of the Laplacian ratios of n -
vertex trees?  

In the past few decades, Goldwasser [9] solved Problem 5. Currently, the study 
of the Laplacian ratios of graphs has attracted widespread attention. The Laplacian 
ratio theory is well elaborated in [10]-[16].  

We further study the Laplacian ratios of trees. Through graph transformations, 
we determine the graph that minimizes the Laplacian ratios among all caterpillar 
trees. 

In this paper, in Section 2, we provide some preliminary knowledge. In 
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Section 3, we study some Laplacian permanents of trees. We also characterize a 
graph transformation related to the Laplacian ratio. We obtain that for any n -
vertex caterpillar tree T , there exists an n -vertex caterpillar tree nC  such that 
( ) ( )nC Tπ π≤ . In Section 4, we provide a conclusion related to the Laplacian per-

manent and the Laplacian ratio.  

2. Preliminaries 

To facilitate the proofs in the following sections, we introduce some basic concepts 
in this section. 

Let G  be a graph. If G  has a ,u v -path, then the distance between u  and 
v  (denoted by ( ),Gd u v , or simply ( ),d u v ) is the length of the shortest ,u v -
path. The diameter is defined as ( ) ( ),max ,u v V G d u v∈ . kP  is a path with diameter 

1k − . A caterpillar is a tree that consists of a central path with leaves attached to 
it. A broom graph ( ),B n k  is obtained by attaching n k−  pendant vertices to 
one end of a path kP  with k  vertices. nS  is the star graph with n  vertices. 

( )SL G  denotes the Laplacian matrix of graph G  after removing the rows and 
columns corresponding to the vertices in ( )( )S S V G⊆ . In particular, if { }S v=  
and ( )v V G∈  , then { } ( )vL G   can be abbreviated as ( )vL G  . Let A   be an 
n n×  matrix. ( ),A i j  denotes the ( ) ( )2 2n n− × −  submatrix obtained by de-
leting the i -th and j -th rows and columns of A . ijA  denotes the  
( ) ( )1 1n n− × −  submatrix obtained by deleting the i -th row and column of A . 
Let nQ  be the n n×  submatrix obtained by deleting the first row and column 
of ( )nL P . 

Lemma 2. Let A  be an n n×  matrix and { }, 1, 2, ,i j n∈  . Then  

 per per and per per .ij ij ij ij
i j

A a A A a A= =∑ ∑   

Lemma 3. ([8]) Let T  be a tree. Then  

 ( ) ( )
2

0

n

k
k

T Tπ π

 
  

=

= ∑   

Lemma 4. ([8]) Let 2k ≥  and 1r ≥  be integers. Then  

 ( )( ) ( ) 1 2per , 2 2 1 per per ,k kL B n k n k Q Q− −= − + +   

 ( ) ( )1 1per 1 2 1 2 ,
2 2

k k

kQ = + + −   

and  

 ( ) ( )2 2 2 2per 1 2 1 2 .
2 2

k k

kP − +
= + + −   

Lemma 5. ([16]) Let 1 1 2 1k i kP u u u u+ +=    be a path. Let , ,n k iT  be the tree 
obtained by attaching 1n k− −   pendant vertices to vertex iu   of path 1kP +  . 
Then  

 ( ) ( ) ( ), , 1 1 1per per 2 1 per per .n k i k i k iL T L P n k Q Q+ − − += + − −   
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Lemma 6. ([11]) A tree is a caterpillar if and only if it contains no Y -structure 
(see Figure 1).  
 

 
Figure 1. Y -structure. 

3. Main Results  

Lemma 7. Let 2
nR  and 1i

nR −  be the graphs shown in Figure 2. Then 

(i) ( ) ( ) ( )5 52 216 127 2 216 127 2per 1 2 1 2
2 2

n n

nL R
− −− +

= + + − , 

(ii) ( ) ( ) ( ) ( )2 2 4 11 4 2 4 2per 1 2 1 2 1 2
2 2

n n n ii
nL R

− − − +
− − −

= + + − + + +  

( ) 4 1
1 2

n i− +
− .  

 

 
Figure 2. 2

nR  and 1i
nR − . 

 
Proof. By expanding the first row and column of 2per nR , we obtain the perma-

nent of the Laplacian matrix of 2
nR .  

 ( )2

3 1 0 1 0 0 0 1 0 0 0
1 2 1

0 1 1
1 2 1

0 1 2 1
0 1 2 1

.
0 1 1
1 2 1

0 1 2

0 2 1
0 1 1

nL R

− − − 
 − − 
 −
 − − 
 − −
 

− − =  −
 
− − 
 − 
 
 − 
 − 
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By Lemma 2, the permanent of ( )2
nL R  can be expanded as  

( )2
4 7 4 7 3 7 4 8per 3 3 per per per per 3 per per 3 per pern n n n nL R Q Q Q Q Q Q Q Q− − − −= × × + + × + × .  

By Lemma 4,  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

4 4 7 71

4 4 7 7

4 4 7 7

4 4 8 8

1 1 1 1per 3 3 1 2 1 2 1 2 1 2
2 2 2 2

1 1 1 11 2 1 2 1 2 1 2
2 2 2 2

1 1 1 13 1 2 1 2 1 2 1 2
2 2 2 2
1 1 1 13 1 2 1 2 1 2 1 2
2 2 2 2

216 127 2 1 2
2

n n

n

n n

n n

n n

L R
− −

− −

− −

− −

 = × × + + − + + − 
 

   + + + − + + −  
   

   + × + + − + + −  
   
   + × + + − + + −  
   

−
=

 

 

+



( )5 5216 127 2 1 2
2

n n− −+
+ −

. 

By expanding the first row and column of 1per i
nR − , we obtain the permanent 

of the Laplacian matrix of 1i
nR − .  

 ( )2

3 1 0 1 0 0 0 0 0
1 2 1

0 1 1
1 2 1

0 1 2
.

0 2 1
0 1 1

0 2 1
0 1 1

nL R

− − 
 − − 
 −
 − − 
 −
 

=  
 −
 

− 
 
 

− 
 − 

 

 

 

  

By Lemma 2, the permanent of ( )1i
nL R −  can be expanded as  

( )2
2 2 2 1 2 2 2 1 2 3 2 1 2 2 2 2per 3 3 per per per per 3 per per 3 per pern i n i i n i i n i i n iL R Q Q Q Q Q Q Q Q− − − − − − − − − − − −= × × + + × + × .  

By Lemma 4,  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 2 1 2 11

2 2 2 2 2 1 2 1

2 3 2 3 2 1 2 1

2 2 2 2

1 1 1 1per 3 3 1 2 1 2 1 2 1 2
2 2 2 2

1 1 1 11 2 1 2 1 2 1 2
2 2 2 2

1 1 1 13 1 2 1 2 1 2 1 2
2 2 2 2
1 13 1 2 1 2
2 2

i i n i n i

n

i i n i n i

i i n i n i

i i

L R
− − − − − −

− − − − − −

− − − − − −

− −

   = × × + + − + + −  
   

   + + + − + + −  
   

   + × + + − + + −  
   

+ × + + − ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2 2 4 1 4 1

1 11 2 1 2
2 2

4 2 4 21 2 1 2 1 2 1 2
2 2

n i n i

n n n i n i

− − − −

− − − + − +

   + + −  
   

− −
= + + − + + + −

.  

□ 
Lemma 8. Let , ,6n kT  and , ,2n k iT  be two trees. Then 
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(i)  

( ) ( ) ( )5 5

, ,6
41 2 41 2per 41 41 12 1 2 41 41 12 1 2

2 2
k k

n kL T n k n k
− −   

= − − + + + − − − −   
   

, 

(ii) 

( )
( ) ( ) ( )

( ) ( ) ( )

2 1

, ,2

2 1

1 2 2 3 2 1
per 1 2

2

1 2 2 3 2 1
1 2

2

i
k

n k i

i
k

n k n k
L T

n k n k

−

−

 − − − + − + − = +  
 
 − − + + − − − + − −  
 

.  

Proof. By Lemma 5, 

 ( ) ( ) ( ), ,6 1 5 5per per 2 1 per pern k k kL T L P n k Q Q+ −= + − − ,  

 ( ) ( ) ( ), ,2 1 2 1 2 1per per 2 1 per pern k i k i k iL T L P n k Q Q+ − − += + − − .  

By Lemma 4, 

 

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( )

( )

, ,6 1 5 5

1 1

5 5

5

5

5

per per 2 1 per per

2 2 2 21 2 1 2
2 2

1 12 1 per 1 2 1 2
2 2

41 241 41 12 1 2
2

41 241 41 12 1 2
2

,

n k k k

k k

k k

k

k

L T L P n k Q Q

n k Q

n k

n k

+ −

+ +

− −

−

−

= + − −

− +
= + + −

 + − − × + + − 
 

 
= − − + + 
 
 

+ − − − − 
 

  

 

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

, ,2 1 2 2 1

1 1

2 1 2 1

2 1 2 1

2 1

2 1

per per 2 1 per per

2 2 2 21 2 1 2
2 2

1 12 1 1 2 1 2
2 2

1 11 2 1 2
2 2

1 2 2 3 2 1
1 2

2

1 2 2 3 2 1
1

2

n k i k i k i

k k

i i

n i n i

i
k

i

L T L P n k Q Q

n k

n k n k

n k n k

+ − +

+ +

− −

− + − +

−

−

= + − −

− +
= + + −

 + − − × + + − 
 

 × + + − 
 
 − − − + − + − = +  
 
 − − + + − − − + −  
 

( ) .2
k

−

  

□ 
Definition 1. Let T  be a tree containing a Y -structure, where u  is the cen-

tral vertex of the Y -structure, and ( )1 2 1 2, , , , , , ,t sv v v w w w N v∈  , where  

1 2, , , sw w w  are pendant vertices in T , and 1 2, , , tv v v  are non-pendant ver-
tices in T . [ ];4iT v u→  is obtained by contracting the edges ( )1iuv i t≤ ≤  and 

https://doi.org/10.4236/am.2025.164017


X. S. Dong 
 

 

DOI: 10.4236/am.2025.164017 344 Applied Mathematics 
 

then attaching all vertices 1 2, , , tv v v   to u  . We call [ ];4iT v u→   the graph 
obtained from T  by Graph Transformation 1.  

Theorem 9. Let T  and [ ];1iT v u→  be the graphs shown in Figure 3. Then 
( ) [ ]( );1iT T v uπ π> → .  

 

 
Figure 3. Graph Transformation 1. 

 
Proof. Let ( )k T  be the set of all k -matchings of T , and let  

[ ]( );4k iT v u→  be the set of all k -matchings of [ ];4iT v u→ . We can parti-
tion the k -matchings of [ ];4iT v u→  into two types: those that do not contain 
vertex u , denoted by [ ]( ), ; 4k u iT v u− → , and those that contain vertex u , de-
noted by [ ]( ), ; 4k u iT v u+ → . Clearly,  

[ ]( ) [ ]( ) [ ]( ), ,; 4 ;4 ;4k i k u i k u iT v u T v u T v u+ −→ = → ∪ →   . Let the edges incident 
to u  in [ ];4iT v u→  be labeled as 1 2 1 2, , , , , , ,p s th h h e e e +  , where  

1 2, , , ph h h   are non-pendant edges, and 1 2, , , s te e e +   are pendant edges. Let 

1 2 1 2, , , , , , ,p s th h h e e e +′ ′ ′ ′ ′ ′
    be the corresponding edges in T   (without applying 

Graph Transformation 4). Let ( )k T  be the set of all k -matchings of T  that 
contain 1 2 1 2, , , , , , ,p s th h h e e e +′ ′ ′ ′ ′ ′

   , denoted by ( )k T+  , and those that do not 
contain 1 2 1 2, , , , , , ,p s th h h e e e +′ ′ ′ ′ ′ ′

  , denoted by ( )k T− . Clearly,  
( ) ( ) ( )k k kT T T+ −= ∪   . Due to the structure of T  and [ ];4iT v u→ , for any 

[ ]( ), ; 4k u iT v uµ −∈ → , there exists a ( )k Tµ −′∈  such that ( ) ( )d dµ µ′ = . We 
further partition [ ]( ), ; 4k u iT v u+ →   into two subsets: [ ]( ), ; 4k u iT v u++ →  
(those k  -matchings that contain one of 1 2, , , ph h h  ) and [ ]( ), ; 4k u iT v u+− →  
(those k -matchings that contain one of 1 2, , , s te e e + ). Clearly,  

[ ]( ) [ ]( ) [ ]( ), , ,; 4 ;4 ;4k u i k u i k u iT v u T v u T v u+ ++ +−→ = → ∪ →   . Similarly, we parti-
tion ( )k T+  into two subsets: ( )k T++  (those k -matchings that contain one 
of 1 2, , , ph h h′ ′ ′

 ) and ( )k T+−  (those k -matchings that contain one of  

1 2, , , s te e e +′ ′ ′
 ). Clearly, ( ) ( ) ( )k k kT T T+ ++ +−= ∪   . Due to the structure of T  

and [ ];4iT v u→ , we have ( ) ( ) ( )1i id h d h i p′ > ≤ ≤ . Therefore, for any  
[ ]( ), ; 4k u iT v uµ ++∈ →  , there exists a ( )k Tµ ++′∈  , such that ( ) ( )d dµ µ′ >  . 

Now consider [ ]( ), ; 4k u iT v u+− →  and ( )k T+− . For [ ];4iT v u→ ,  

 
( ) ( ) ( )

1 21 2

1 1 1 .
ts t v v v

s t
d e d e d e d d d s+

+
+ + + =

+ + + +
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For T ,  

 
( ) ( ) ( )

1 21 2

1 1 1 1 1 1 1 .
ts t v v v

s
d e d e d e s t d d d+

 
+ + + = + + + +  ′ ′ ′ +  

    

Since 1 2
1 2

1 2

1
1 1 1 1 1

1

t
t

t

v v v ss t
v v v

v v v

d d d s s td d d
s t s

d d d

+
+ + + + × +

≥ × ≥
+ + + + + ×







 , 

we have 
1 2 1 2

1 1 1 1

t tv v v v v v

s ts
s t d d d d d d s

  +
+ + + + ≥  + + + + + 





. Therefore,  

( ) ( ) [ ]( ) ( )
, ;4

1 1

k k u iT T v ud dµ µµ µ+− +−∈ ∈ →

≥∑ ∑
 

 . Thus, we have ( ) [ ]( );4k k iT T v uπ π> →  , 

and hence ( ) [ ]( );4iT T v uπ π> → .                                  □ 

Theorem 10. For any n -vertex caterpillar tree T , there exists an n -vertex 
caterpillar tree nC  such that ( ) ( )nC Tπ π≤ .  

Proof. Since T  is a caterpillar tree, by Lemma 6, T  must contain a Y -struc-
ture. By applying Graph Transformation 1, we can reduce the number of Y -
structures in T . If T  still contains a Y -structure, we can apply Graph Trans-
formation 1 again to transform T  into a graph nC  without any Y -structure. 
By Lemma 6, nC  is a caterpillar tree, and ( ) ( )nC Tπ π≤ .        □ 

4. Conclusion 

In this paper, we studied the Laplacian permanents and the Laplacian ratios of 
trees. We characterized some Laplacian permanents of trees. We also obtained a 
graph transformation related to the Laplacian ratio. In future research, we will 
further study the Laplacian permanents and the Laplacian ratios of graphs. 
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