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Abstract

Brualdi and Goldwasser characterized the Laplacian permanents of trees. In
this paper, we study the Laplacian permanents of trees. We characterize some
Laplacian permanents of trees. The Laplacian ratio of G is the Laplacian per-
manent of G divided by the product of degrees of all vertices. In this paper,
we obtain that for any n -vertex caterpillar tree T, there exists an n -vertex
caterpillar tree C, suchthat 7(C )<z(T).

Keywords

Laplacian Permanents, Laplacian Ratio, Tree, Caterpillar

1. Introduction

Let M =[aij](i, j€12,3--,n) bean nxn matrix. The permanent of M is
defined as
n
perM = Z Hai¢(i)’
oehy i-l
where A, isthe symmetric group of degree n. Valiant [1] proved that even for
(0,1)-matrices, computing the permanent is #P -complete.

Let G= (V (G),E(G)) beasimple connected graph with n vertices, and let
d, denote the degree of vertex V, (i=1,2,---,n) in V(G). The adjacency ma-
trix and degree matrix of graph G are denoted by A(G) and D(G), respec-
tively. The Laplacian matrix of graph G is defined as L(G)=D(G)-A(G).
Based on the Laplacian matrix of graphs, researchers began to study the Laplacian
permanents of graphs. For more research on the permanent, refer to [2]-[7]. Bru-
aldi and Goldwasser [8] obtained some results on the Laplacian permanents of

bipartite graphs: the minimum and maximum values of the Laplacian permanents
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of bipartite graphs with n vertices. They also gave bounds for perL(G).
Theorem 1. ([8]) Let T bean n -vertex tree. Then

2(n-1)<perT < 2_2*/5 (1+42) + 2+2ﬁ (1-v2).

The lower bound is achieved if and only if T is a star, and the upper bound is
achieved if and only if T isa path.

When G isatree, the minimum value of the Laplacian permanent can be ob-
tained directly from the degrees of the vertices and the size of the matching. For
the maximum value of the Laplacian permanent, it is related to the degrees of the
vertices and the size of the matching. The following problems are proposed:

Problem 1. ([8]) For an n -vertex tree with maximum degree Kk, what is the
maximum value of the Laplacian permanent?

Problem 2. ([8]) For an n -vertex tree with matching number k, what is the
maximum value of the Laplacian permanent?

Problem 3. ([8]) For an n -vertex tree thatisa ( p, q) -bipartition, what is the
maximum value of the Laplacian permanent?

Brualdi and Goldwasser [8] defined the Laplacian permanent 7Z'(G) of a
graph.

perL(G)

ViUV Vn

Brualdi and Goldwasser [8] first studied the Laplacian ratios of graphs and sys-
tematically studied the properties of the Laplacian ratios of graphs. They charac-
terized the lower bounds of the Laplacian ratios of some graphs. Goldwasser [9]
studied the maximum and minimum values of the Laplacian ratios of graphs with
matching number k. The Laplacian ratio of graph plays an important role in
statistics, chemistry, and communication. The Laplacian ratio can also be used to
count the number of spanning trees of a graph. Brualdi and Goldwasser [8] first
studied the Laplacian ratios of graphs and obtained some results on the Laplacian
ratios of trees. They further proposed the following problems in 1983:

Problem 4. ([8]) What is the minimum value of the Laplacian ratios of n -
vertex trees with maximum degree k ?

Problem 5. ([8]) What is the minimum value of the Laplacian ratios of n -
vertex trees with Kk -matching?

Problem 6. ([8]) What is the maximum value of the Laplacian ratios of n -
vertex trees?

In the past few decades, Goldwasser [9] solved Problem 5. Currently, the study
of the Laplacian ratios of graphs has attracted widespread attention. The Laplacian
ratio theory is well elaborated in [10]-[16].

We further study the Laplacian ratios of trees. Through graph transformations,
we determine the graph that minimizes the Laplacian ratios among all caterpillar
trees.

In this paper, in Section 2, we provide some preliminary knowledge. In
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Section 3, we study some Laplacian permanents of trees. We also characterize a
graph transformation related to the Laplacian ratio. We obtain that for any n -
vertex caterpillar tree T, there exists an n -vertex caterpillar tree C_ such that
Vs (Cn ) < 7Z'(T ) .In Section 4, we provide a conclusion related to the Laplacian per-

manent and the Laplacian ratio.

2. Preliminaries

To facilitate the proofs in the following sections, we introduce some basic concepts
in this section.

Let G beagraph.If G hasa u,v-path, then the distance between u and
vV (denoted by dg (u,v) , or simply d (u,v)) is the length of the shortest u,v -

path. The diameter is defined as max d(uv). B isapath with diameter

uvev(G)
k—1. A caterpillar is a tree that consists of a central path with leaves attached to
it. A broom graph B(n,k) is obtained by attaching n—k pendant vertices to

one end of a path B, with k vertices. S, is the star graph with n vertices.

n
Ls(G) denotes the Laplacian matrix of graph G after removing the rows and
columns corresponding to the verticesin S (S cV (G )) .Inparticular, if S= {v}
and veV(G), then L, (G) can be abbreviated as L, (G). Let A be an
NxNn matrix. A(i, J) denotes the (n - 2)><(n —2) submatrix obtained by de-
leting the i-thand j-throwsand columnsof A. A; denotes the
(n—1)x(n-1) submatrix obtained by deleting the i-th row and column of A.
Let Q, bethe nxn submatrix obtained by deleting the first row and column
of L(P,).

Lemma 2. Let A bean nxn matrixand i,je{1,2,---,n}. Then

perA= Y a;perA; and perA= aperA;.
i i

Lemma 3. ([8]) Let T bea tree. Then

Lemma 4. ([8]) Let k>2 and r=1 be integers. Then
perL(B(n,k)):(Zn—Zk +1)perQ, , +perQ,_,,

perQ, = %(1+ ﬁ)k +%(1—x/§)k )

and

perB, =¥(l+\/§)k + 2+2\/§ (1—\/§)k .

Lemma 5. ([16]) Let R, =uuU,---U;---U,,, be a path. Let T ,; be the tree
obtained by attaching n—k -1 pendant vertices to vertex Uu; of path R, .
Then

perL (Tn,k,i ) =perL(R.,)+2(n—k -1)perQ,_,perQ, ...
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Lemma 6. ([11]) A tree is a caterpillar if and only if it contains no Y -structure

(see Figure 1).

Figure 1. Y -structure.

3. Main Results

Lemma 7. Let R’ and R!™ be the graphs shown in Figure 2. Then

(1) perL(Rf):M(“ﬁ)”5+M(l_\/§)ns,

(ii) perF(R;’l) = #(14_\5)”2 N 4—2\/5 (1_\/§)n—2 +(l+\/§)n—4i+l .
(1_\/§)n—4l+1.

Figure 2. R? and R!™.

Proof. By expanding the first row and column of perR?, we obtain the perma-
nent of the Laplacian matrix of RZ.
3|1t 0o -1 0 0 0 -2 0 - 0 O
112 -1
0-1 1

0 -1 1

0 -1 2

0 -1 1
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By Lemma 2, the permanent of L ( Rf) can be expanded as

perL( ) 3x3xperQ,perQ,_; + perQ,perQ,_, + 3x perQ,perQ,_, + 3x perQ,perQ, ,.
By Lemma 4,

AR aC) CaiC e

216-127v2 s 216+12742 =
:f(Hx/E) +f(l—x/§)
By expanding the first row and column of perR!™, we obtain the permanent
of the Laplacian matrix of R!™.
3|-+ 0 20 -0 0 - 0 O
112 -1
0]-1 1

0 -1 2

0 -1 1

0 2 -1
0 -1 1]

By Lemma 2, the permanent of L(Ri’l) can be expanded as
perL( ) 3x3x perQ,;_,perQ, _,i_, + PerQ,;_,perQ, ,_; +3xperQ,,_;perQ, ,_; +3xperQ,,_,perQ, , , -

By Lemma 4,

perL(Rl) 3x3x(%(1+\/‘ '2+%(1_\/§ [%(l+\/> n 2 1+%(1_\/§)n2i1j

Lemma 8. Let T ¢ and T, ,, betwo trees. Then
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@)
perL(Tn’k’6)=(41n—41k—12+41;/—](1+f) (41n 41k — 12-%}( _J’) ,

(n—k-1)(2v2-3)" +n—k+2-1

2

(1+J§)k

perL(Tn,k,Zi ) =

(11) 2i-1
. (n—k-1)(2v2+3) +n-k-+2-1 (1—ﬁ)k

2

Proof. By Lemma 5,
perL (T, ) = perL(P,,;)+2(n -k —1)perQ.perQ, 5,
perL (Tn,k,2| ) perl—( k+1) + 2(n k l) peer—lpeer 2i+1 *

By Lemma 4,
perL (Tn,k,e ) = perL(R;)+2(n—k-1)perQgperQ,

_ 2_2\/5 (1+\/§>k+l N 2+2\/§ (1_\/§)k+1
+2(n—k—1)perQ; x(%(1+\/§)k—s +%<1_\/§)k—5j
:[41n—41k—12+ 41fj(1+ﬁ)k_5

4132
{41n 41k — 12—TJ( —J_) ,
perL (T, i) = PerL (Pey) +2(n —k 1) perQ,perQ, .,
2-2 ki 2442 Kl
== (1+\/§) + > (l—\/E)
+2(n—k—1)x(%(1+\/§)2i_l+%(1—x/§>2i_1j
1 n-2is1 1] n-2i+1
x[5(1+\/§) +E(l—«/§) j

(n—k—l)(2ﬁ—3)2i_l+n—k+x/§—l
B 2

(1+\/§)k

N _(n—k—l)(2ﬁ+32) +n-k-+2-1 (1_\/§)k.

O

Definition 1. Let T beatree containinga Y -structure, where U isthe cen-
tral vertex of the Y -structure, and V;,V,, -, V,, W, W,,--+,W, € N (V) , where

W, W,,---,W, are pendant verticesin T ,and V,,V,,---,V, are non-pendant ver-

ticesin T. T[v, >U;4] isobtained by contracting the edges uv; (1<i<t) and
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then attaching all vertices V;,V,,--+,V, to U. We call T[v, >u;4] the graph
obtained from T by Graph Transformation 1.

Theorem 9. Let T and T[v, »>u;1] be the graphs shown in Figure 3. Then
x(T)>z(T[v, > u1]).

T T[V;_'u,l]

Figure 3. Graph Transformation 1.

Proof.Let T, (T) bethesetofall k-matchingsof T,and let
7, (T[v, > u;4]) be the set of all k -matchings of T[v, —u;4]. We can parti-
tion the k -matchings of T[v; > Uu;4] into two types: those that do not contain
vertex U, denoted by 7, (T [v, > u;4]) , and those that contain vertex u, de-
noted by 7', (T [v; > u;4]) . Clearly,
T (T[v > u4]) =7, (T[vi > u;4]) U T, (T [V, - u;4]). Let the edges incident
to U in T [vi > u;4] belabeledas hy,h,,---,h e, €., where

h,h,,---,h, are non-pendant edges, and e,e,,---,€,,, are pendant edges. Let

"1 Csit
!

hi,hy,-++ N5, €/,85,++, €., be the corresponding edges in T (without applying
Graph Transformation 4). Let 7, (T) bethesetofall k -matchingsof T that
contain hy,hy,---,hi e/,e),-, gH, denoted by 7,"(T), and those that do not
contain hj,h;,---,h7 e],e),--, €[, denoted by 7, (T). Clearly,
T, (T)=T7;(T)UT (T). Due to the structure of T and T[v, —>u;4], for any
pneT,(T[v, >u;4]), thereexistsa p'e T, (T) suchthat d(x')=d(u). We
further partition 7., (T[v, >u;4]) into two subsets: 7. (T[v, - u;4])
(those k -matchings that contain one of h,hy,-h,) and 7.7 (T[v, > u;4])
(those k -matchings that contain one of e,,e,,::-,¢,,, ). Clearly,
T, (Tv > w4]) =75 (T[v, > w4]) T, (T [V > u;4]). Similarly, we parti-
tion ’T+( ) into two subsets: 7,”"(T) (those K -matchings that contain one
of hi,hy,---,ht)and 7,"°(T) (those k -matchings that contain one of
el,€y,+,el,). Clearly, 7."(T)=7."(T)UTZ, (T). Due to the structure of T
and T[v; > u;4], wehave d(h/)>d(h)(1<i< p). Therefore, for any
peT (T[v, >u;4]), there exists a 4 €7, (T), such that d(x')>d(u).
Now consider 7.'; (T[v, > u;4]) and 7, (T).For T[v, >u;4],

(R S S s+t |

d(e,) d(e,) d(ey,) d,+d, +--+d, +s
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For T,

l + l + et l = 1 i+i+...+i+s
d(e) d(ey) d(e,) s+t(d, d '

S+t

S; dv1+dv2+'”+dvt+1xs> 4 d 4 L > s+t
S+ cee
ince -y 2 w0y, WXt 2 1 1 1 >

Vi V2 Vt

d, d, d, 1

1 2 t
11 1 1 S+t

we have —| —+—+--+—+5 |2 . Therefore,
s+tld, d, d, d, +d, +--+d, +s
1 1

= Z ——— . Thus, we have 77,'(T)>7[ T[v, > u;4]),
et 3 () e T 9 (42) ‘ (Tl )

and hence 7(T)>z(T[v, »u;4]). O

Theorem 10. For any n -vertex caterpillar tree T, there exists an n -vertex
caterpillar tree C, suchthat 7(C,)<z(T).

Proof Since T isacaterpillar tree,by Lemma 6, T mustcontaina Y -struc-
ture. By applying Graph Transformation 1, we can reduce the number of Y -
structuresin T.If T still containsa Y -structure, we can apply Graph Trans-
formation 1 again to transform T intoa graph C, without any Y -structure.
By Lemma 6, C, isa caterpillar tree,and 7(C,)<7(T). O

4. Conclusion

In this paper, we studied the Laplacian permanents and the Laplacian ratios of
trees. We characterized some Laplacian permanents of trees. We also obtained a
graph transformation related to the Laplacian ratio. In future research, we will

further study the Laplacian permanents and the Laplacian ratios of graphs.
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