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Abstract 
Copulas are multivariate distribution functions with uniform marginal distribu-
tions. In this paper, we study a class of copulas called radial copulas, which is 
derived from residual implications where the extensions of level curves intersect 
at a point. This class of radial copulas is a comprehensive and asymmetric ex-
tension of a class of Archimedean copulas. We derive analytical formulas for key 
concordance measures, including Spearman’s rho and Kendall’s tau, and 
demonstrate that these formulas cover the entire range of positive and negative 
correlations. Furthermore, we estimate the parameters of radial copulas and 
evaluate their performance through a simulation study under various depend-
ence structures. Finally, using two datasets, we compare the performance of the 
class of radial copulas to that of several well-known copula models. 
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1. Introduction 

Copulas are multivariate distribution functions characterized by uniform mar-
ginal distributions. In 1959, Sklar [1] demonstrated that for any multivariate dis-
tribution, a copula exists that allows the joint distribution to be expressed as the 
copula applied to the marginal distributions. Because copulas are independent of 
the marginal distributions, they provide a convenient framework for addressing 
various modeling challenges. Copulas have been used in many fields, including 
finance, engineering, economics, and environmental science [2]-[5]. 

Fuzzy implications play a critical role in fuzzy logic, enabling logical reasoning 
in uncertain situations [6]. Among them, residual implications stand out as a key 
type and are derived from aggregation functions [7]-[10]. In recent years, many 
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researchers have explored fuzzy implications formed by various aggregation func-
tions [11]-[13], while others have focused on characterizing residual implications 
based on different aggregation functions [14] [15]. Additionally, some studies 
constructed different fuzzy implications from copulas, including probabilistic im-
plications and probability S-implications [16]-[18]. 

There is a one-to-one correspondence between left-continuous semicopulas 
and their derived residual implications [9]. In 1999, a characterization for residual 
implications derived from left-continuous semicopulas was provided by Demirli 
et al. [9]. In 2007, Durante et al. [19] extended this work by characterizing residual 
implications derived from quasi-copulas. More recently, in 2022, Ji et al. [20] fur-
ther advanced this area by characterizing residual implications derived from cop-
ulas through their level curves. 

This article aims to study a class of copulas derived from residual implica-
tions, where the extensions of the level curves intersect at a point. Specifically, 
this class represents a comprehensive and asymmetric extension of the Archi-
medean copula family (4.2.7) as described in [23], providing greater flexibility 
for modeling real-world phenomena. The proposed copulas include two de-
pendence parameters, a  and b , and are able to capture correlation coefficients 
in the range [ ]1,1− , i.e. Kendall’s tau and Spearman’s rho. It is well known that 
multiparameter copulas are capable of modeling a variety of dependency struc-
tures, including non-linear, asymmetric and tail dependent relationships that one-
parameter copulas cannot adequately capture. In summary, the new model allows 
for both positive and negative dependencies without imposing constraints on the 
correlation structure. These important features motivate a theoretical and practi-
cal analysis of the proposed copulas. 

The remainder of the paper is structured as follows. Section 2 provides a review 
of the fundamental concepts and key properties related to copulas and residual 
implications. In section 3, we introduce radial copulas and examine some depend-
ence concepts. Section 4 focuses on estimating the two dependence parameters of 
radial copulas and includes a simulation study to assess the performance of these 
estimators. In section 5, we perform an analysis of two real datasets to examine 
the applications of the proposed radial copulas. Finally, section 6 presents our 
conclusions. 

2. Preliminaries 

Copulas are multivariate functions characterized by uniform marginal distributions. 
Let us first review some of their definitions and properties. 

Definition 1 [21] A binary operation [ ] [ ]2: 0,1 0,1C →  is defined as a semi-
copula if it fulfills the subsequent conditions: [label=(C)]  

1. ( )0,0 0C =  and ( )1,1 1C = ;  
2. For every [ ], 0,1u v∈ , it holds that ( ),1C u u=  and ( )1,C v v= ;  
3. C  is nondecreasing in both variables.  
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Definition 2 [22] A binary operation [ ] [ ]2: 0,1 0,1C →  is defined as a quasi-
copula if it is a semicopula and also adheres to the 1-Lipschitz condition. Specifi-
cally, this implies that the following inequality is valid for all [ ]1 2 1 2, , , 0,1u u v v ∈ : 

( ) ( )1 1 2 2 1 2 1 2, ,C u v C u v u u v v− ≤ − + − . 
Definition 3 [23] A binary operation [ ] [ ]2: 0,1 0,1C →  is defined as a copula 

if it is a semicopula and also fulfills the condition of being 2-increasing. Specifi-
cally, this indicates that for any [ ]1 2 1 2, , , 0,1u u v v ∈  where 1 2u u≤  and 1 2v v≤ , 
the following inequality is valid: ( ) ( ) ( ) ( )2 2 2 1 1 2 1 1, , , , 0C u v C u v C u v C u v− − + ≥ .  

Residual implications derived from various classes of left-continuous semicop-
ulas have been examined in [9] [19]. For any left-continuous semicopula C , the 
derived residual implication, denoted as [ ] [ ]2: 0,1 0,1CR → , is defined by  

( ) [ ] ( ){ }, sup 0,1 | , .CR u w v C u v w= ∈ ≤               (1) 

This function CR  is referred to as the residuum of C  or the C -residuum [19]. 
Proposition 4 [9] If [ ] [ ]2: 0,1 0,1C →  is a left-continuous semicopula, then 

the corresponding C  residuum CR  has the properties listed below:   
1. ( ), 1CR u w =  if and only if u w≤ ;  
2. ( )1,CR w w=  for all [ ]0,1w∈ ;  
3. If [ ]1 2, , 0,1u u w∈  with 1 2u u≤ , then it holds that ( ) ( )1 2, ,C CR u w R u w≥ ;  
4. If [ ]1 2, , 0,1u w w ∈  with 1 2w w≤ , then it holds that ( ) ( )1 2, ,C CR u w R u w≤ ;  
5. The first variable of the CR  function is left-continuous;  
6. The second variable of the CR  function is right continuous. 
On the contrary, if a function [ ] [ ]2: 0,1 0,1R →  fulfills conditions (R1) through 

(R6), then there exists a left-continuous semicopula RC  where 
RCR R= . Addition-

ally, the definition of RC  is as follows:  

( ) [ ] ( ){ }, inf 0,1 | , .RC u v w R u w v= ∈ ≥                (2) 

The set of all functions [ ] [ ]2: 0,1 0,1R →  that fulfill conditions (R1) through 
(R6) is represented by  . Given any R∈ , the associated deresiduum, referred 
to as the R -deresiduum, is denoted by RC  [19]. For simplicity, when the context 
is clear, CR  and RC  are often abbreviated as R  and C , respectively. 

Similar to the t-norms, the adjointness condition of the  

( ) ( ), ,C u v w R u w v≤ ⇔ ≥                    (3) 

applies to any left-continuous semicopula C  and its residuum R  [9]. 
Proposition 5 [19] [20] Let [ ] [ ]2: 0,1 0,1C →  be a quasi-copula. The C -re-

siduum CR  fulfills conditions (R1) through (R6) and two additional properties:   
1. For all [ ], , 0,1u w a∈  such that 1u a+ ≤  and 1w a+ ≤ , it holds that 
( ) ( ), ,R u a w a R u w+ + ≥ ;  
2. For all [ ], , 0,1u w a∈  with the condition that u w a≥ + , it holds that 
( ) ( ), ,R u w a R u w a+ ≥ + .  
By contrast, if [ ] [ ]2: 0,1 0,1R →  fulfills conditions (R1) through (R8), then the 

R -deresiduum RC  is a quasi-copula. 
The level set of R∈  for a constant [ ]0,1t∈  is defined as 

https://doi.org/10.4236/ojs.2025.152008


Y. H. Liang 
 

 

DOI: 10.4236/ojs.2025.152008 132 Open Journal of Statistics 
 
 

( ) ( ){ }, | ,u w R u w t= . Let [ ] [ ]2: 0,1 0,1R →  be a function that satisfies condi-
tions (R1) through (R8). For 0 1t≤ < , if ( ) ( )1 2, ,R u w R u w t= = , then according 
to condition (R8), we conclude that 1 2w w= . Consequently, the level set of R  
associated with [ )0,1t∈  is made up of points lying on a curve, known as the level 
curve of R  [20]. For 1t = , the level set of R  is defined as 
( ){ }, | 1,0 1u w u w u≤ ≤ ≤ ≤ . The boundary curve of this level set, 
( ){ }, | ,0 1u w w u u= ≤ ≤ , is referred to as the level curve of R  for the constant 

1. We often denote the level curve of R  as ( )tw L u= , where 0 1t≤ ≤ . 
Proposition 6 [20] Let [ ] [ ]2: 0,1 0,1C →  be a quasi-copula, and let R  rep-

resent its residuum. Suppose that ( )tw L u=  represents a level curve of R  for 
[ ]0,1t∈ . For ( )( )1 2, tu u Dom L u∈  such that 1 2u u≤ , we have 

( ) ( )2 1 2 10 t tL u L u u u≤ − ≤ − .  
The following proposition gives a necessary and sufficient condition for the R

-deresiduum C  to be a copula. 
Proposition 7 [20] Let [ ] [ ]2: 0,1 0,1R →  satisfy conditions (R1) through 

(R8). Let ( ) [ ]{ }| 0,1tw L u t= ∈  denote the set of level curves of R . The R -
deresiduum C  is a copula if and only if each level curve of R  has a domain 
that is an interval, and the inequality ( ) ( ) ( ) ( )

2 1 2 11 1 2 2v v v vL u L u L u L u− ≤ −  holds 
for [ ]1 2 1 2, , , 0,1u u v v ∈ , where 1 2u u≤ , 1 2v v≤ , and ( )

jv iL u  exists for all 
{ }, 1, 2i j∈ .  

The domain of any level curve is either ( ],1a  or [ ],1a , where 0 1a≤ ≤ , for 
the residual implication derived from a copula. Notably, the vertical distance 
between two level curves is consistently greater on the right side than on the left 
[20]. 

3. Proposed Copulas  

This section introduces a class of copulas derived from residual implications, 
which are characterized by extensions of level curves that intersect at a point. This 
class includes two dependence parameters, providing greater flexibility in model-
ing dependencies. 

For the product copula ( )Π ,u v uv= , the corresponding residual implication  

is given by ( )Π
, if

,
1, if

w u w
R u w u

u w

 >= 
 ≤

. For 0 1v≤ ≤ , the level curves of ΠR  

can  
be expressed by the equation ( )vw L u vu= = , where 0 1u< ≤ . Clearly, for a 
given value of v , the level curves of ΠR  are segments of lines with a slope of v , 
all intersecting at the origin. 

According to Proposition 6, if the level curves lie on a line, then the slope of the 
level curves of residual implications lies within the interval [ ]0,1 . Consequently, 
when the level curves of a residual implication derived from a copula are straight 
lines intersecting at a common point, this intersection point is represented as 
( ),a b− − , where 0 b a≤ ≤ . Given the intersection point ( ),a b− −  of the ex-
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tended level curves and noting that they always pass through ( )1,v , we derive the  

equation of the line on which these level curves lie as 
1

w b v b
u a a
+ +

=
+ +

. This simplifies  

to 
1

uv bu av bw
a

+ + −
=

+
. Thus, ( ),

, if
,

1, if
a b

aw w bu b u w
R u w u a

u w

+ − + >= +
 ≤

.  

It follows from Propositions 5 and 7 that the function ,a bR  is a residual implica-
tion derived from a copula. 

For ,a b  in R  such that 0 b a≤ ≤ , let [ ] [ ]2
, : 0,1 0,1a bR →  be a function 

given by  

( ),
, if ,

,
1, if .

a b

aw w bu b u w
R u w u a

u w

+ − + >= +
 ≤

               (4) 

Then the corresponding copula [ ] [ ]2
, : 0,1 0,1a bC →  is given by  

( )

( )

( ) ( )

( )
,

1
0, if ,

1 1
, , if ,

1
1

, if .

a b

b u
v

u a
b u a b u buv bu av bC u v v

a u a u a
a b u b

u v
u a

−
< +

 − + − ++ + −
= ≤ <

+ + +
 + − +

≥
+

      (5) 

 

 

Figure 1. Graphs of ,a bR  and ,a bC  for 1a =  and 0.3b = . 

 
We refer to the copula ,a bC  as a radial copula. The left side of Figure 1 shows 

some level curves of ,a bR , while the right side displays the graph of the radial 
copula ,a bC . 

Remark 1 Here are some special cases of the radial copula: [label = ()]  
1. If 0a = , then 0b = , i.e., ( ) ( )0,0 , Π ,C u v u v uv= = .  
2. If a b= < +∞ , then ( ) ( ) ( )( ), , max 1 ,0a aC u v uv au av a a= + + − + , which is 

equal to the Archimedean copula family (4.2.7) in [23].  
3. If a = +∞  and 0 b≤ < +∞ , then ( ) ( ),lim , ,a ba

C u v M u v
→+∞

= .  
4. If [ ]0,1k ∈  and b ka= , then  
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( )
( )

( ) ( )
( )

,

0, if 1 ,
lim , , if 1 1 ,

, if 1 .
a kaa

v k u
C u v ku v k k u v k u k

u v k u k
→+∞

< −
= + − − ≤ < − +
 ≥ − +

 

 
Figure 2. Graphical plots of Ca,b for various parameter sets a and b. 

 
The latter part of the formula is equal to the copula Cθ  studied in [20, Example  

5.14]. In particular, if 0k = , then ( ) ( ),0lim , ,aa
C u v M u v

→+∞
= . If 1k = , then 

( ) ( ),lim , ,a aa
C u v W u v

→+∞
= .  

The class of radial copulas is obviously an asymmetric extension of the Archi-
medean copula family (4.2.7), as presented in [23]. Notably, the Archimedean 
copula family (4.2.7) does not include the Frechet-Hoeffding upper bound M . 
As a result, the class of radial copulas provides a comprehensive extension of the 
Archimedean copula family (4.2.7). In Figure 2 and Figure 3, we show the radial 
copula plots and their contour plots for four different parameter value sets a  
and b . 

There are various methods employed to generate observations ( ),x y  for a 
pair of random variables ( ),X Y  characterized by a joint distribution function 
H . One such method involves utilizing the copula function and the concept of 
conditional probability, referred to as the conditional distribution method [23]. 
This approach proposes an algorithm for generating random samples from the 
copula ,a bC  using the conditional copula V  given U u= . The algorithm is as 
follows: 
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1. Generate two independent uniform random variables iu  and it  from the 
interval [ ]0,1 .  

2. Define ( ) ( )1
ii iuv c t−= , where ( )1

iuc −  represents a quasi-inverse of the function  

iuc , and also ( ) ( ), ,
i

a b i i
u i

i

C u v
c v

u
∂

=
∂

. Specifically, the conditional distribution  

function ( )
iu ic v  is given by  

( ) ( )

( )

( ) ( )

( )

,

1
0, if ,

, 1 1
, if ,

1
1

1, if ,

i

i
i

i

a b i i i ii
u i i

i i i

i
i

i

b u
v

u a
C u v b u a b u bv b

c v v
u a u a u a

a b u b
v

u a

 −
< +

∂ − + − ++= = ≤ <
∂ + + +

 + − +
 ≥

+

 

 

 
Figure 3. Contour plots of Ca,b for various parameter sets a and b. 

 
and its quasi-inverse ( ) ( )1

i iuc t−  is given by  

( ) ( )

( )

( )

( )

1

1
, if ,

1 , if ,

1
, if .

i

i
i

i i

i
i i iu

i i

i i
i

i i

b u bt
u a u a

u bbc t a t b t
u a u a

a b u b u b
t

u a u a

−

 −
<

+ +
 += + − ≤ <

+ +
 + − + + ≥

+ +
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3. Repeat steps i and ii n  times to generate a set of independent and identically 
distributed pairs ( ),i iu v  from the copula ,a bC .  

Figure 4 displays scatter plots derived from 500 simulated data points, which 
were generated using the previously described algorithm with four distinct sets of 
parameter values for a  and b . Figures 4(c) and 4(d) correspond to the scatter 
plots of copulas in [25] with 0.9θ =  (right) and 0.4θ =  (left), respectively. 

For any copula C , we have the decomposition  
( ) ( ) ( ), , , ,C CC u v A u v S u v= +  

where  

( ) ( ) ( ) ( ) ( )
2

0 0
, , d d and , , , ,

u v
C C CA u v C s t t s S u v C u v A u v

s t
∂

= = −
∂ ∂∫ ∫     (6) 

with CA  representing the absolutely continuous component and CS  the singu-
lar component of the copula C . 

If a copula C  satisfies CC A=  on [ ]20,1 , that is, if C  can be represented  

as a joint distribution with density 
( )2 ,C u v

u v
∂
∂ ∂

, then C  is absolutely continuous. 

If CC S=  on [ ]20,1 , meaning that 
( )2 ,

0
C u v

u v
∂

=
∂ ∂

 almost everywhere, then C   

is classified as singular [23]. Conversely, if this condition does not hold, C  can 
be decomposed into an absolutely continuous component CA  and a singular 
component CS . 

 

 
Figure 4. The scatter plots are derived from 500 simulated observations of Ca,b. 

https://doi.org/10.4236/ojs.2025.152008


Y. H. Liang 
 

 

DOI: 10.4236/ojs.2025.152008 137 Open Journal of Statistics 
 
 

Proposition 8 The radial copula contains an absolutely continuous 
,a bCA  and 

singular components 
,a bCS . Thus we have  

( )
( ) ( )1 1

, if ,, 1
0, otherwise,

C

b u a b u buv vA u v a u a u a
− + − +

≤ <=  + + +


 

and consequently  

( )

( )

( ) ( )

( )

1
0, if ,

1 1
, , if ,

1
1

, if .

C

b u
v

u a
b u a b u bbu av bS u v v

a u a u a
a b u b

u v
u a

−
< +

 − + − ++ −
= ≤ <

+ + +
 + − +

≥
+

 

Proof. The proof is immediate, so it is omitted.  
Thus, the ,a bC -measure of the singular component of ,a bC  is expressed as 

( )
,

1,1 1
a bCS = . In other words, if U  and V  are uniformly distributed random 

variables across the interval [0, 1], and their joint distribution is characterized by 
the copula ,a bC , then it follows that [ ] 1P U V= = . 

In the following proposition, we explore the statistical properties of the copula 

,a bC . Specifically, we examine the behavior of classical concordance measures, in-
cluding Kendall’s τ  and Spearman’s ρ , under the copula ,a bC . 

Let X  and Y  be continuous random variables associated with the copula 
C , where F  and G  represent their respective marginal distribution functions. 
Using the probability transformations ( )u F x=  and ( )v G y= , Kendall’s τ  
for X  and Y  can be expressed as [23]:  

( ) ( )2, 1 4 , , d d ,X Y C u v C u v u v
u v

τ ∂ ∂
= −

∂ ∂∫∫I              (7) 

and Spearman’s ρ  as [23]:  

( )2, 12 , d d 3.X Y C u v u vρ = −∫∫I                  (8) 

Proposition 9 Let X  and Y  be continuous random variables of copula 

,a bC , where 0 b a≤ ≤ . Then  
1. Kendall’s τ  for the random variables X  and Y  is given by  

( ),
12 4 1 ln ,a b

aa b a
a

τ + = − − 
 

                  (9) 

which takes values between −1 and 1. 
2. Spearman’s ρ  for the random variables X  and Y  is given by  

( ) ( )2 2 2 3
,

13 2 2 4 6 2 2 ln ,a b
aa a b ab a b ab a a

a
ρ +

= + − − + + − −      (10) 

which also takes values between −1 and 1.  
Proof.  
1. Given that the copula ,a bC  contains both an absolutely continuous and a 
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singular component, we apply formula 7 to compute Kendall’s ,a bτ . Then  

( ) ( )
( )( )

( )
( ) ( )

2
, ,

1 1
, if ,

, , 1
0, otherwise,

a b a b

u a v b b u a b u b
v

u a u aC u v C u v a
u v

 + + − + − +
≤ <∂ ∂ + += +

∂ ∂ 


 

and hence 

( ) ( )

( )( )
( )( )

( )

( )
( )

( )

2,

1
1

1 20

2
1 1

0 0

2

1 4 , , d d

1 4 d d
1

1 2 211 4 d d
2 1 1

1 1 1 1 11 4 ln 1 ln
4 2 2

12 4 1 ln .

a b

a b u b
u a

b u
u a

C u v C u v u v
u v

u a v b
v u

a

a b u bu bu u u
a u a a

a aa a b a
a a

aa b a
a

τ

+ − +
+

−
+

∂ ∂
= −

∂ ∂
 + +
 = −
 + 

 + − +
= − +  + + + 

 + +  = − − + + −  
  

+ = − − 
 

∫∫

∫ ∫

∫ ∫

I

 

In particular, if a = +∞  and 0b = , then we have  

,0
1lim 2 1 ln ,aa

aa a
a

τ
→+∞

+ = − 
 

 

which can be written as  

( )

( )

1 20 ,0

2 3

2

2 2 ln 1
lim

12 2
2

1.

t
t

t t
t

t t t O t

t

τ
→

− +
=

 − − + 
 =

=

 

Similarly, if a b= = +∞ , then we obtain ,
1lim 2 1 ln 1a aa

aa a
a

τ
→+∞

+ = − − = − 
 

.  

2. We use formula 8 and the copula ,a bC  to derive Spearman’s ,a bρ . Then we 
have  

( )

( )

( )

( )

( )
( )

( )

( ) ( )

2,

1
1 1

110

2
1

0

21

0

12 , d d 3

12 d d d 3
1

1 2
12 d 3

2

1 212 d 3
2 2

212

a b

a b u b
u a a b u bb u

u au a

C u v u v

uv bu av b v u v u
a

a b u a b u
u

u a u a

a b a au a a b u
u a u a

ρ

+ − +
+

+ − +−
++

= −

  + + − = + −   +  
  − + −

= + −    + +  
  − +

= − + + − + −    + +  

=

∫∫

∫ ∫ ∫

∫

∫

I

( )
2

2 2 32 4 1 1 12 2 ln 3
4 2

a a b ab aa b ab a a
a

 + − − + +
+ + − − − 

 
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( ) ( )2 2 2 3 13 2 2 4 6 2 2 ln .aa a b ab a b ab a a
a
+

= + − − + + − −   

In particular, if a = +∞  and 0b = , then we have 

( ) ( )2 2 3
,0

1lim 3 2 6 ln ,aa

aa a a a
a

ρ
→+∞

+
= + + − −  

which can be written as  

( )

( )

1 2 2 30 ,0

2 3 4
2 2 3

2 3

2

2 1 1 1lim 3 6 ln 1

2 1 1 1 1 13 6
2 3

2

1.

t
t

t
tt t t

t t t O t
tt t t

t t
t

ρ
→

   = + + − − +   
   

    = + + − − − + +    
    
−

=

=

 

Similarly, if a b= = +∞ , then we get  

( ) ( )2 2 3
,

1lim 3 2 6 ln 1a aa

aa a a a
a

ρ
→+∞

+
= − − + + = − .  

The full [ ]1,1−  range for Kendall’s ,a bτ  and Spearman’s ,a bρ  is theoreti-
cally proven in Proposition 9, which establishes that both ,a bτ  and ,a bρ  are 
constrained within this range for all radial copulas. In practice, the a  parameter 
controls the overall strength of the dependence between the variables, with larger 
values indicating stronger dependence. The b  parameter, on the other hand, 
primarily affects the tail dependence, with larger values leading to greater corre-
lation at the extreme values. Together, a  and b  provide flexibility in modeling 
both general dependence and extreme comovements. In Figure 5, we plot Spear-
man’s ρ  and Kendall’s τ  as functions of the dependency parameters a  and 
b , where b  is constrained by the condition 0 b a≤ ≤ . Specifically, it is set as 

( )min 10,b a a= −  and further adjusted to 0 if 0b < . 
 

 
(a) Spearman’s ρ values 
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(b) Kendall’s τ values 

Figure 5. Spearman’s ρ  and Kendall’s τ  plotted against dependence parameters a  
and b . 

4. Parameter Estimation of Radial Copulas: A Simulation  
Study 

In this section, we estimate the two dependence parameters ( ),a b  of the copula 

,a bC  using the ( ),τ ρ -inversion method and bivariate L-moments. Furthermore, 
a simulation study is performed to measure the performance of these two estima-
tion methods. 

Tsukahara [24] introduced the rank approximate Z-estimation (RAZ) estima-
tors, which are derived from Kendall’s tau (τ ) and Spearman’s rho ( ρ ). These 
estimators are referred to as the τ -score and ρ -score RAZ estimators. Let us 
assume where 1r = , with ˆnτ  and ˆnρ  denoting the sample estimators of Ken-
dall’s tau (τ ) and Spearman’s rho ( ρ ), respectively. The τ -inverse estimator 

τ̂θ  and the ρ -inverse estimator ρ̂θ  of θ  are defined using a method that is 
analogous to the method of moments:  

( ) ( )1 1andˆ ˆ ˆˆ .n nτ ρθ τ τ θ ρ ρ− −= =  

When 2r = , the parameters ( )1 2,θ θ=θ  can be estimated by solving the fol-
lowing system of equations:  

( )1 2, ,ˆnτ θ θ τ=  

( )1 2, .ˆnρ θ θ ρ=  

We refer to the solution obtained from the preceding system as the ( ),τ ρ -
inversion estimator of θ  [25]. This method is employed to estimate the param-
eters ( ),a b  of the radial copula ,a bC  as shown in the formula 5. The corre-
sponding Kendall’s tau (τ ) and Spearman’s rho ( ρ ) are computed from the for-
mulas 9 and 10, respectively:  
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( ) ( ) 1, 2 4 1 ln ,aa b a b a
a

τ + = − − 
 

 

( ) ( ) ( )2 2 2 3 1, 3 2 2 4 6 2 2 ln .aa b a a b ab a b ab a a
a

ρ +
= + − − + + − −  

The solution of the following system is defined as the ( ),τ ρ  inversion estima-
tor for the parameters ( ),a b :  

( )
( ) ˆ

, ,

, .

ˆn

n

a b

a b

τ τ

ρ ρ

=

=
                       (11) 

Another key method for estimating bivariate copula models with multiparam-
eter is the application of bivariate L-moments. To begin, we offer a brief overview 
of univariate L-moments. Hosking [26] proposed L-moments, denoted by kλ , as 
an alternative to the traditional central moments ( )k

k Yµ µ = −  , which are 
derived from the distribution function (df) YF  of the random variable Y . Using 
the quantile function 1

YF − , the L  moment kλ  can be represented as follows:  

( ) ( )1
1  d ,k Y kF u P u uλ −
−= ∫  

where kP  denotes the shifted Legendre polynomial [27]. In the following, we will 
use the first three shifted Legendre polynomials:  

( ) ( ) ( ) 2
0 1 21, 2 1, 6 6 1.P u P u u P u u u= = − = − +  

The bivariate L-moments (BLM) extend univariate L-moments to the multivar-
iate setting. Next we introduce the fundamental notations and definitions associ-
ated with BLM. Let ( )1X  and ( )2X  represent two random variables with finite 
means, the marginal distributions 1F  and 2F , as well as the respective se-
quences of L  moments denoted by ( )1

kλ  and ( )2
kλ . Serfling et al. [28] intro-

duced the k-th L-comoment of ( )1X  in relation to ( )2X , which corresponds to 
the covariance between ( )1X  and ( )( )( )2

2kP F X  for values of 1k ≥ . This rela-
tionship can be expressed as follows:  

[ ]
( ) ( )( )( )( )1 2

212 Cov , ,kk X P F Xλ =  

with asymmetric counterpart [ ]21kλ . If F  is assumed to be part of a parametric 
family of distribution functions, the k-th L-comoment [ ]12kλ  is influenced by 
both the parameters of the marginal distributionsd and the dependence structure 
between ( )1X  and ( )2X . Given that our primary goal is to estimate the parame-
ters of the copula, it is more practical to apply the k-th L-comoment of ( )( )1

1F X  
in relation to ( )2X , rather than using [ ]12kλ  directly. Thus, we define:  

[ ]
( )( ) ( )( )( )( )1 2

1 212 Cov , , 1,3, .kk F X P F X kδ = =   

This quantity [ ]12kδ  is referred to as the k-th bivariate copula L-moment of 
( )1X  in relation to ( )2X . 
Brahimi et al. [25] introduced the k-th bivariate copula L-moment of ( )1X  in 

relation to ( )2X , which can be expressed, for each 1k ≥ , as  
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[ ] ( )( ) ( )1 1

12 0 0
, d d .kk C u v uv u P vδ = −∫ ∫               (12) 

Using this formula, it is possible to set up a system of equations to estimate the 
parameters of multivariate copula models. For example, if 2r =  and C Cθ= , 

( )1 2,θ θ=θ , then based on formula 12, the first two bivariate copula L-moments 
are provided by [25]  

[ ] ( )1 1

1 12 0 0

12 , d d ,
2

C u v u vδ = −∫ ∫ θ                 (13) 

[ ] ( ) ( )1 1

2 12 0 0

16 2 1 , d d .
2

v C u v u vδ = − −∫ ∫ θ               (14) 

Below is the estimation process for the copula ,a bC  using the BLM method, 
structured as follows 

1. Step 1: Compute the empirical L-moments. Using the observed sample  
( ) ( )( )1 2

1, ,
,i i i n

X X
= 

, the empirical L-moment [ ]12k̂δ  is computed as follows:  

[ ]
( )( ) ( )( )( )1 2* *

1: 2:12
1

1 ,ˆ
n

n i k n ik
i

F X P F X
n

δ
=

= ∑  

where for each 1, 2j = , *
:j nF  denotes the rescaled empirical distribution func-

tion, given as ( )*
: : 1j n j nF nF n= + , where ( ) ( ){ }: 1

1 n j
j n j i jiF x X x

n =
= ≤∑ 1  is the 

empirical distribution function. 
2. Step 2: Construct the system of equations. Using formula 12, we can derive a 

system of r  equations as follows:  

[ ] ( ) [ ]112 12, , , 1, , .ˆ
rk k k rδ θ θ δ= =   

For the radial copula ,a bC , according to formulas 13 and 14, the two first biva-
riate copula L-moments are given by:  

[ ] ( ) ( )2 2 2 3
1 12

1, 2 2 2 ln ,
2
a aa b a ab b a b ab a a

a
δ + = + − − + + − −  

 
 

[ ] ( )

( )( )

2 3 2 2 2
2 12

2 3 2 2 2

, 6 6 15 18 15 18
2

13 1 2 2 6 2 6 ln .

aa b a a ab a b b ab

aa a a ab a b b ab
a

δ = + + − − + +

+ − + + − − + +  
 

 

3. Step 3: Solve the system  

( ) [ ]

( )( ) [ ]

2 2 2 3
1 12

2 3 2 2 2

2 3 2 2 2
2 12

12 2 2 ln ,
2

6 6 15 18 15 18
2

13 1 2 2 6 .

ˆ

ˆ2 6 ln

a aa ab b a b ab a a
a

a a a ab a b b ab

aa a a ab a b b ab
a

δ

δ

+
+ − − + + − − =

+ + − − + +

+
− + + − − + + =

     (15) 

The solution ( )ˆˆ,a b  obtained is referred to as the BLM estimator for the pa-
rameters of the copula ,a bC . 
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A simulation study was conducted to assess the performance of the ( ),τ ρ -in-
version method in comparison with bivariate L-moments for estimating the de-
pendence parameters ( ),a b  of the radial copula. The evaluation of performance 
is conducted through the assessment of bias and RMSE, which are defined below:  

( ) ( )
1 2

2

1 1

1 1Bias , R SE ,ˆ ˆM
N N

i i
i iN N

θ θ θ θ
= =

 
= − = − 

 
∑ ∑  

where îθ  represents an estimate of θ  derived from the i -th sample out of N  
generated samples obtained from the underlying copula [25]. For this study, we 
set 1000N = . To evaluate the reduction in bias and RMSE as the sample size in-
creases to 50,100,200,500n = , the estimation procedures for both methods were 
repeated by solving the systems in 11 and 15. 

The chosen values for the parameters ( ),a b  must be reasonable, ensuring that 
each pair reflects a specific level of dependence: weak, moderate, or strong. Table 
1 shows the selected values of the real parameters, while Table 2 gives an overview 
of the bias and RMSE for both the ( ),τ ρ -inversion estimator and the BLM esti-
mator applied to the radial copula. The results for bias and RMSE show that the 
BLM estimator consistently outperforms the ( ),τ ρ -inversion estimator across 
all sample sizes. The outperformance of the BLM estimator over the ( ),τ ρ -in-
version method is consistent with the findings of Brahimi et al. [25]. This is be-
cause the ( ),τ ρ -inversion method involves solving an optimization problem un-
der constraints, whereas the BLM estimator directly solves a system of equations, 
which is generally more efficient and stable for parameter estimation. Further-
more, as the sample size increases from 50n =  to 500n = , both the bias and 
RMSE for the parameters ( ),a b  typically decrease, indicating enhanced perfor-
mance of the estimators with larger samples. 

 
Table 1. Selected true parameters for the radial copula. 

 τ a b 
Weak 0.01 0.208 0.1 

Moderate 0.5 2.650 0.5 
Strong 0.8 11.647 0.9 

 
Table 2. Bias and RMSE of radial copula (τ, ρ)-inversion and BLM estimators. 

 τ = 0.01 τ = 0.5 τ = 0.8 
 a = 0.208 b = 0.1 a = 2.650 b = 0.5 a = 11.647 b = 0.9 
 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

n=50             

τ − ρ 0.0282 0.309 0.0132 0.1566 −0.053 0.1037 −0.0176 0.1986 −0.1477 0.2963 −0.1277 0.2351 
BLM −0.0575 0.1059 −0.0274 0.0664 −0.0104 0.0261 −0.0283 0.1195 −0.0202 0.0313 −0.0915 0.1455 

n=100             

τ − ρ 0.0227 0.3157 0.0113 0.1596 −0.037 0.0673 −0.0113 0.1406 −0.138 0.264 −0.107 0.2053 
BLM −0.0314 0.0841 −0.0159 0.0502 −0.009 0.0185 −0.0129 0.0782 −0.0129 0.0245 −0.0524 0.1007 

n=200             
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Continued  

τ − ρ 0.0239 0.3162 0.012 0.1584 −0.0209 0.0465 −0.0072 0.1007 −0.1063 0.212 −0.091 0.1749 
BLM −0.0149 0.0593 −0.0073 0.0347 −0.009 0.0185 −0.0129 0.0782 −0.0076 0.0183 −0.0288 0.0698 

n=500             

τ − ρ 0.0543 0.317 0.0276 0.1587 −0.0104 0.0302 −0.0014 0.0666 −0.0819 0.1478 −0.0604 0.1217 
BLM −0.0084 0.0372 −0.0036 0.0223 −0.0064 0.0136 −0.0065 0.0491 −0.002 0.0086 −0.0071 0.0315 

5. Applications   

In this section, we investigate the goodness-of-fit performance of radial copulas 
under different dependence structures. We assess the fit of radial copulas to two 
datasets previously analyzed in the literature using different bivariate distribu-
tions, including various copulas. 
 

 
Figure 6. Scatterplot of mean wind speed versus mean ozone. 

5.1. New York Air Quality Data  

The dataset “air quality” contains daily air quality measurements collected over 
153 consecutive days in the New York Metropolitan Area. Two variables to be 
examined in this study are average wind speed (measured in miles per hour) and 
average ozone levels (measured in parts per billion). For a comprehensive descrip-
tion of the data, please consult Chambers et al. [29] (Appendix, Dataset 2). This 
dataset is still accessible in the R package “datasets”. 

In our study, we analyze 116 observations after excluding missing data. Figure 6 
illustrates a negative correlation between average wind speed and mean ozone levels. 
This is further confirmed by the negative empirical values of Spearman’s rho (−0.590) 
and Kendall’s tau (−0.428). To further explore this correlation, we use the bivariate 
L-moments estimator to model their dependence structure through the radial copula, 
obtaining the dependence parameters ( ) ( ), 0.563,0 538ˆˆ .a b = . We then use formu-
las (9) and (10) to calculate the concordance measures for the radial copula: Spear-
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man’s rho is ˆˆ ,
0.506

a b
ρ = −  and Kendall’s tau is ˆˆ ,

0.436
a b
τ = − .  

The goodness-of-fit of the radial copula ,a bC  is assessed using the Kolmogo-
rov-Smirnov (KS) and Cramer-von Mises (CVM) statistics, applying the boot-
strap algorithm presented by Genest et al. [30]. These two tests are related to the 
empirical process ( )nn nn C Cθ= − , and their corresponding statistics are 
given by  

( ) [ ]
( ) ( ) ( )

2

1 1 2

0 0
, 0,1

sup , and , d , ,n n n n n
u v

T u v S u v C u v
∈

= = ∫ ∫   

respectively. Furthermore, various well-known copula families commonly used to 
model negative dependence are applied to the New York air quality data; however, 
none yield significant results. Therefore, our results are primarily comparable 
with those previously described by Ghosh et al. [31] and El Ktaibi et al. [32], which 
are based on different negatively dependent copulas. Specifically, the copulas in 
these studies have the following definitions:  

( )
( )

( )
( )

( ) ( )

1
1

1

1
1 (1 ) ,0 ,1 1

11,

1 1 1 ,0 1, 1,
1

v
v u u v v u

C u v

u v u u v

α
α α

α

α
α

αα α
α αα

α
α

+ −
+

+

 +
− − + − < ≤ − < < + += 

  − − − − < < < <   +

 

and  

( ) ( )1 1, , ,C u v u v W u vθ θ θ θ
θ

− −=  

where ( ) ( ), max 1,0W u v u v= + −  and ( ) ( )2, 0,1α θ ∈ . 
Table 3 shows that our model exhibits an excellent fit to the data, presenting 

the highest p-values among the models considered. It also outperforms the models 
presented by Ghosh et al. [31] and El Ktaibi et al. [32] 

 
Table 3. Goodness-of-fit test for air quality data. 

 KS CVM 
 Test statistic p-value Test statistic p-value 

Ca,b Tn = 0.077 0.585 Sn = 0.099 0.269 
Cθ Tn = 0.078 0.584 Sn = 0.120 0.219 
Cα Tn = 0.099 0.232 Sn = 0.224 0.039 

5.2. Twins Data  

This dataset, as summarized by Ashenfelter et al. [33], contains hourly wages for 
149 pairs of identical twins in the United States, each with varying levels of edu-
cation. The study focuses on individuals aged 18 and older. The two variables un-
der examination are the hourly wages (measured in log U.S. dollars) of each twin 
sibling. This dataset is also available in the supplementary material provided by 
Tang et al. [34]. A plot of these data is shown in Figure 7, where the observations 
tend to cluster around the major diagonal of the unit square. The calculated values 
of Spearman’s rho and Kendall’s tau for the hourly wages of each twin pair are 
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0.558 and 0.421, respectively, indicating a positive correlation between these var-
iables. 

Next, we fit the data using the bivariate L-moments estimator to model their 
dependence structure through the radial copula, obtaining the dependence pa-
rameters ( ) ( ), 0.765,0 003ˆˆ .a b = . We then apply formulas (9) and (10) to compute 
the concordance measures for the radial copula. Specifically, Spearman’s rho is 

ˆˆ ,
0.571

a b
ρ = , and Kendall’s tau is ˆˆ ,

0.504
a b
τ = . To assess the goodness-of-fit of 

the radial copula ,a bC , we use the KS and CVM statistics with the bootstrap algo-
rithm from Genest et al. [30]. When fitting the twins dataset, various classical cop-
ula families commonly used to model positive dependence are considered, includ-
ing Plackett, Clayton, and Gumbel copulas [35] [36]. As shown in Table 4, our 
model demonstrates superior goodness-of-fit to the twins data, as indicated by its 
relatively high p-value compared to other models. The improved performance of 
our model can be attributed to the increased flexibility of radial copulas in captur-
ing complex nonlinear dependencies. In contrast, Archimedean copulas, while 
useful in certain contexts, may face limitations when attempting to capture such 
complex relationships due to their more structured and simpler forms. 

 
Table 4. Goodness-of-fit test for twins data. 

 KS CVM 
 Test statistic p-value Test statistic p-value 

Ca,b Tn = 0.052 0.854 Sn = 0.102 0.638 
Gumble Tn = 0.056 0.864 Sn = 0.119 0.527 
Plackett Tn = 0.062 0.777 Sn = 0.104 0.630 
Clayton Tn = 0.078 0.492 Sn = 0.112 0.620 

 

 
Figure 7. Scatter plot of hourly wages of identical twins. 

6. Conclusions  

In this paper, we have examined a class of copulas called radial copulas, which is 
derived from residual implications where the extensions of level curves intersect 

https://doi.org/10.4236/ojs.2025.152008


Y. H. Liang 
 

 

DOI: 10.4236/ojs.2025.152008 147 Open Journal of Statistics 
 
 

at a point. The class of radial copulas is a comprehensive and asymmetric exten-
sion of the Archimedean copula family (4.2.7) presented in [23]. Notably, radial 
copulas can capture both positive and negative dependencies. A simulation anal-
ysis is performed to evaluate the effectiveness of the ( ),τ ρ -inversion and bivari-
ate L-moments estimations methods in different modes. Furthermore, the efficacy 
of radial copulas is demonstrated through simulations and real case studies on two 
datasets (New York air quality dataset and twins dataset). We suggest that the 
radial copula based approach is straightforward in simulation and explanation 
and will be an important addition to copula theory. While applying radial copulas 
to high-dimensional datasets presensts challenges, such as increased computa-
tional complexity and difficulties in parameter estimation, these issues are 
acknowledged and will be addressed in future research. 
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