
Journal of Geoscience and Environment Protection, 2025, 13(3), 347-363 
https://www.scirp.org/journal/gep 

ISSN Online: 2327-4344 
ISSN Print: 2327-4336 

 

DOI: 10.4236/gep.2025.133019  Mar. 31, 2025 347 Journal of Geoscience and Environment Protection 
 

 
 
 

Reliable Water Quality Prediction Using 
Bayesian Multi-Scale Convolutional  
Attention Network 

Xiaolin Guo  

Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University,  
Chongqing, China 

 
 
 

Abstract 
With the rapid development of industrialization and urbanization, the issue of 
water quality deterioration has become increasingly severe. Accurately as-
sessing water quality is crucial for environmental protection and public health. 
Traditional water quality testing methods rely on sampling and laboratory 
analysis, which are costly and inefficient. In recent years, artificial intelligence 
(AI) based techniques have gained attention in research on water quality pre-
diction because of their effectiveness and advanced capabilities. However, the 
black-box nature of AI model makes it difficult to quantify the reliability of 
their predictions, limiting their practical application. To address this issue, this 
paper proposes a Bayesian multi-scale convolutional attention network for wa-
ter quality prediction. This method extracts high-level features affecting water 
quality through a multi-scale convolutional network and combines a self-at-
tention mechanism and gated feature fusion approach to enhance the repre-
sentation of key features and effectively integrate information. At the same 
time, Bayesian inference is used to generate prediction confidence intervals, 
providing a reliable assessment for the results. To the best of our knowledge, 
no research has yet combined Bayesian methods with deep learning for water 
quality prediction. Experimental results on the Kaggle water quality dataset 
demonstrate that the proposed method not only performs excellently in pre-
diction accuracy but also effectively quantifies prediction uncertainty, provid-
ing scientific support for water quality assessment. 
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1. Introduction 

The safety of drinking water quality is one of the basic needs of human survival 
and an important basis for maintaining the ecological balance of the earth. How-
ever, the swift progress of industrialization and urbanization has exposed Earth’s 
surface water to substantial human interference and eutrophication, causing a de-
cline in water quality, ecosystem damage, and the loss of vital ecological functions 
(Zhang et al., 2024). This pollution of the water environment has become a press-
ing issue, threatening the safety of drinking water sources and the stability of re-
gional water supplies (Lv et al., 2024). Therefore, water quality prediction for 
drinking water is of great significance for improving the health of the global pop-
ulation and maintaining the health of aquatic ecosystems (Zhou, Wang, Xiao, 
Wang, & Sun, 2018). 

The traditional water quality detection method involves extracting water sam-
ples from water bodies, transporting them to a laboratory for a series of chemical 
and physical measurements, and then analyzing the results to draw conclusions 
(Dogo, Nwulu, Twala, & Aigbavboa, 2019). Although this method can provide 
reliable water quality data, it is costly, inefficient, and requires substantial exper-
tise. Fortunately, the rapid development of artificial intelligence (AI) technologies 
has provided new approaches for water quality prediction (Yin et al., 2025). Cur-
rently, the use of AI techniques for water quality prediction has become a hot topic 
in the research field (Baena-Navarro, Carriazo-Regino, Torres-Hoyos, & Pinedo-
López, 2025). 

The AI-based water quality prediction methods can be divided into shallow ma-
chine learning based methods and deep learning based methods. Initially, the 
shallow machine learning methods are used for water quality prediction. Com-
pared with the method of manual sampling and sending to the laboratory for anal-
ysis, the method based on shallow machine learning greatly improves the effi-
ciency of water quality prediction. Li et al. (Li, Lu, Wu, Zhang, & Chen, 2022) 
compare the performance of methods such as Radial Basis Function Neural Net-
work (RBFNN) and Support Vector Machine (SVM) in water quality prediction 
and find that SVM exhibits the best performance. Xu et al. (Xu et al., 2021) develop 
a water quality prediction framework based on Random Forest. Lu et al. (Lu & 
Ma, 2020) add a denoising module to the methods based on Extreme Gradient 
Boosting (XGBoost) and Random Forest (RF) to predict the water quality of the 
Tualatin River. Although the shallow machine learning based water quality pre-
diction methods can overcome the high cost and low efficiency of traditional 
methods, they are unable to fully capture the deep level features in the data that 
affect water quality, which limits the improvement of their predictive perfor-
mance. The development of deep learning provides a pathway to overcome this 
challenge. Deep learning methods have the advantage of capturing the deep in-
trinsic connections of data, which makes the use of deep learning methods for 
water quality prediction mainstream. Yu et al. (Yu & Xiao, 2024) use an Long 
short-term memory (LSTM) based method to predict the water quality of the 
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Haihe River Basin. Alfwzan et al. (Alfwzan, Selim, Althobaiti, & Hussin, 2023) 
propose a deep learning-based Bi-LSTM model to predict the variables affecting 
groundwater quality. Zheng et al. (Zheng, Ding, Weng, & Wang, 2024) use a neu-
ral network based on a dual-attention mechanism for water quality prediction, 
which improves prediction accuracy compared to the LSTM method. Hu et al. 
(Hu, Lyu, Wang, Zhou, & Fang, 2023) combine the attention mechanism with 
Temporal Convolutional Networks (TCN), effectively improving the model’s per-
formance in water quality prediction. Although the above works overcome the 
limitations of machine learning-based methods, most of the aforementioned 
methods overlook the deep relationships between the features affecting water 
quality, which limits their ability to achieve better water quality prediction perfor-
mance. He et al. (He, Wu, Huang, Kang, & Gui, 2022) extract multi-scale temporal 
features of water quality, improving prediction performance. However, they do 
not consider the multi-scale complex relationships between the features affecting 
water quality. For example, in some cases, it may be necessary to focus on a single 
feature (e.g., pH value), while in other cases, the relationships between multiple 
features (e.g., hardness, dissolved oxygen) need to be jointly considered to assess 
water quality. 

Although deep learning based water quality prediction methods offer the ad-
vantages of high efficiency and low cost, their lack of interpretability poses a chal-
lenge in providing guidance to decision-makers due to low reliability. Liu et al. 
(M. Y. Liu et al., 2023) apply Bayesian methods to water quality prediction tasks, 
providing confidence intervals for the prediction results. However, the relatively 
weak inference capability of Bayesian methods may lead to certain limitations when 
the aforementioned works face more complex water quality prediction tasks. 

To address the aforementioned challenges, we combine Bayesian methods with 
deep learning approaches, while also focusing on the multi-scale relationships of 
the features that influence water quality. Specifically, we propose an end-to-end 
water quality prediction method based on a Bayesian multi-scale convolutional 
attention network. In our proposed method, we first introduce a feature capture 
module based on multi-scale CNN, which captures the relationships between fea-
tures from both global-to-local and local-to-global perspectives. Next, we propose 
a dynamic fusion module based on the attention mechanism, which adjusts the 
focus on the features influencing water quality and dynamically integrates the ex-
tracted global and local features. Additionally, we employ a Bayesian approach to 
obtain the confidence intervals for water quality predictions, thereby providing a 
reliability assessment of the results. This enables decision makers to make more 
informed and well-founded decisions in water quality management and policy 
formulation. The main contributions of this article are summarized as follows. 

1) We propose an end-to-end water quality prediction method based on a 
Bayesian multi-scale CNN attention network. And to the best of our knowledge, 
no research has yet combined Bayesian methods with deep learning for water 
quality prediction. Experiments on the Kaggle water quality prediction dataset 
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demonstrate the effectiveness of our proposed method. 
2) We use a Bayesian approach to obtain the confidence intervals for water 

quality predictions, which can quantify the uncertainty of the predictions, thereby 
providing decision makers with reliable assessments of the forecasted results. 

3) We propose a multi-scale CNN feature capturing method that can capture 
the relationships between features from both global-to-local and local-to-global 
perspectives, thereby enhancing the model’s performance in water quality predic-
tion. 

4) We propose a dynamic feature fusion method based on an attention network. 
This method can adjust the focus on key factors influencing water quality and 
dynamically integrate multi-scale features through a gating mechanism. The re-
mainder of this article is organized as follows. Section II defines the research prob-
lem addressed in this paper. Section III details the structure and theory of the pro-
posed water quality prediction method. Section IV introduces the experimental 
setup and comparative experiments. Section V concludes the paper. 

2. Problem Definition 

In this study, the water quality prediction is conducted by assessing the health 
status of water using multiple indicators. 

 

 
Figure 1. Structure of the proposed method. 
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Suppose a water sample has n indicators, denoted as 1 2[ , ,..., ]nx x x x=  and the 
water quality status is represented as {1,..., }y C∈  where C  indicates the num-
ber of water quality levels. In this study, 2C = . The water quality prediction task 
in this study can be formulated as: 

 ( )fx y⋅→  (1) 

The task of this study is to learn the mapping function ( )f ⋅  from water fea-
tures to water quality health states, enabling water quality prediction. 

3. Methodology 

This section provides a detailed description of the proposed water quality predic-
tion network, as shown in Figure 1. We will first describe the overall network 
architecture, followed by a detailed introduction to the proposed multi-scale fea-
ture extraction block and dynamic fusion block. Finally, we will explain the pro-
cess of obtaining the confidence intervals using Bayesian inference. 

3.1. Overall Network Architecture 

As shown Figure 1, we propose an end-to-end water quality prediction network. 
First, we normalize the input data and then feed it into the multi-scale feature 
extraction block we designed. The multi-scale feature extraction block leverages 
Bayesian convolution to extract key features influencing water quality from both 
global-to-local and local-to-global perspectives. Next, the extracted multi-scale 
features are input into the dynamic fusion block based on multi-head attention 
(MHSA) mechanism. This block adjusts the network’s focus on features and dy-
namically integrates features from different scales using a gating mechanism. Fi-
nally, the fused features are passed into the Bayesian fully connected layers to ob-
tain the prediction results. To quantify the uncertainty of the predictions, we use 
Bayesian inference to compute the confidence intervals of the predicted results. 

3.2. Multi-Scale Feature Extraction Block 

In the process of water quality assessment, a single indicator is sometimes suffi-
cient for making a judgment, such as when the pH value is too high or too low. 
However, in many cases, a single indicator is not enough to comprehensively eval-
uate water quality, and a joint analysis of multiple indicators is necessary. Most 
existing studies often overlook the local and global relationships within water 
quality features (Mei, Li, Zhang, Li, & Song, 2022; Yang et al., 2023). To address 
this issue, we design the multi-scale feature extraction block, with the core idea of 
progressively extracting and capturing key features affecting water quality from 
both global-to-local and local-to-global perspectives. 

Specifically, as shown in the multi-scale feature extraction block in Figure 1, 
the normalized data is input into the multi-scale feature extraction block and di-
vided into three branches. The left branch consists of three layers of Bayesian con-
volutional networks, with progressively larger kernel sizes. This design allows the 
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network’s receptive field to gradually expand, shifting the focus from capturing 
local features to capturing global features. For the first layer of Bayesian convolu-
tion, given the input X, assume that the weights 1LW  and bias 1Lb  follow a 
Gaussian distribution, which can be formulated as 
 

1 1

2
1 ~ ( , )

L LL W WW η µ σ
, (2) 

and 

 
1 1

2
1 ~ ( , )

L LL b bb η µ σ . (3) 

The output of the first Bayesian convolution is 

 ' '
1 1 1 1[ : ]L L L LZ W X i i K b= ⋅ + +  (4) 

where '
1LW  represents the sampled values of the weights in the first layer of 

Bayesian convolution, '
1Lb  represents the sampled values of the biases in the first 

layer of Bayesian convolution, i represents the starting position of the convolution 
operation, and 1LK  represents the size of the convolution window during each 
operation. Similarly, we can obtain the output 3LZ  of the third layer of Bayesian 
convolution on the left. Similar to the three layers of Bayesian convolution on the 
left, the network on the right also consists of three layers of Bayesian convolutions. 
However, the kernel sizes in the right-side network decrease from large to small, 
starting with global feature extraction and gradually focusing on local features. 
Using the same computation method, the output of the third layer on the right 
can be denoted as 3RZ . Unlike the left and right branches, the middle branch is 
designed as a residual branch. Given the input X, after passing through the global 
average pooling (GAP) layer, the resulting feature is added to 3RZ  and 3LZ . 

This design, by introducing residual connections, can enhance the multi-scale 
feature extraction block’s perception of global information, thereby improving 
both the training speed and model stability. 

3.3. Dynamic Fusion Block 

The features influencing water quality have varying levels of importance, and 
there are also interdependencies among these features. Inspired by Wu et al. (Wu 
et al., 2019), we design the dynamic fusion block, as shown in Figure 1. The core 
idea of our design is to assign different importance weights to multi-scale features 
using MHSA, and then dynamically fuse features from different scales through 
gating mechanisms. 

Specifically, for the two outputs of the multi-scale feature extraction block, we 
first input them into the MHSA. The structure of MHSA is shown in Figure 2. 
Given the input X, it is passed through the fully connected layers to obtain the 
queries (Q), keys (K), and values (V). 

 ( )m
Q Q QQ W X b= σ ⋅ + , (5) 

 ( )m
K K KK W X b= σ ⋅ + , (6) 

 ( )m
V V VV W X b= σ ⋅ + , (7) 
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Figure 2. Structure of the MHSA. 

 
where mQ , mK  and mV  are the m-th heads of Q, K and V respectively, Qσ , 

Kσ  and Vσ  are activation functions, QW , KW  and VW  are weights, Qb , 

Kb  and Vb  are biases. Then, the Q and K are multiplied and passed through a 
softmax function to obtain the attention scores. The final output of MHSA (Y) is 
obtained by multiplying the attention scores with the V and then concatenating 
them, which can be formulated as 

 
( )

( ) max( ) , 1,...,
m m T

m mQ KO soft V m M
d

= = ,  (8) 

 (1) ( )( ,..., )MY Concat O O= ,  (9) 

where d is the dimension of each head. 
Let the outputs of the MHSA on the left and right be denoted as LY  and RY , 

respectively. The output of the dynamic fusion block is 

 ( ) ( )R L L RF sigmoid Y Y sigmoid Y Y= + 

 (10) 

where   denotes element-wise multiplication. And it is worth mentioning that 
in the left part, the sigmoid activation function maps RY  (or LY ) to the range of 
0 to 1. The result is then multiplied by LY  (or RY ), which amplifies the im-
portant features in LY  (or RY ) and reduces the less important ones, thus high-
lighting the key features that influence water quality. 

3.4. Bayesian Inference 

Our proposed method uses Bayesian inference to obtain the confidence intervals 
of the predicted results. In our proposed method, both the convolutional networks 
and fully connected layers are implemented in a Bayesian form. Unlike traditional 
convolutional networks and fully connected layers, during training, the model 
learns not only the mean of the parameters but also their standard deviation. This 
enables the model to quantify the uncertainty of the parameters. 

The main idea of using Bayesian methods to obtain the confidence intervals of 
the predicted results is as follows: by sampling multiple different parameter values 
from the probability distribution of the parameters and performing multiple for-
ward passes. Each forward pass will yield different prediction results, and these re-
sults can be used to compute the mean and standard deviation of the predictions. 
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Finally, based on the mean and standard deviation, we can construct the confi-
dence intervals of the predictions, thereby quantifying the uncertainty of the pre-
dictions. Specifically, we sample the model’s prediction output for N times. The 
mean and standard deviation of these predictions can be expressed as 

 
1

1 N

S i
i

S
N =

µ = ∑ ,  (11) 

and 

 2

1

1 ( )
N

S i S
i

S
N =

σ = −µ∑ ,  (12) 

where iS  is the prediction result obtained from the i-th sampling, Sµ  is the 
mean of the predicted results, Sσ  is the standard deviation of the predicted re-
sults. If the confidence level is set to 95%, the 95% confidence interval (CI) can be 
expressed as 

 ˆ ˆˆ ˆ[ 1.96 , 1.96 ]mean S mean SCI S S= − ⋅σ + ⋅σ .  (13) 

4. Experiment 

In this section, we will first introduce the dataset used, followed by the experi-
mental setup and evaluation metrics. Subsequently, we will conduct comparative 
experiments, sensitivity analyses, and ablation studies to validate the superiority, 
robustness, and necessity of each component of the proposed method. 

4.1. Dataset Description 

This study uses the dataset provided by Kaggle (Chakravarthy et al., 2023). The 
dataset contains 3276 records, with each record consisting of 9 features, including 
pH, Hardness, Solids, Chloramines, Sulfate, Conductivity, Organic Carbon, Tri-
halomethanes, and Turbidity, refer to Table 1. The target label is Potability, which 
indicates whether the water is safe to drink, with a value of 0 meaning unsafe to 
drink and 1 meaning safe to drink. 

 
Table 1. Feature description. 

Feature Description 

pH Water’s acidity or alkalinity 

Hardness Concentration of calcium and magnesium ions 

Solids Total dissolved and suspended solids in water 

Chloramines Disinfection by-products formed during chlorination 

Sulfate Concentration of sulfate salts in water 

Conductivity Water’s ability to conduct electricity 

Organic carbon Amount of organic carbon in water 

Trihalomethanes Disinfection by-products that may pose health risks 

Turbidity Clarity of water, indicating suspended particles 
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4.2. Experimental Setup 

1) Data normalization: Since the value ranges of the features in the dataset differ 
significantly, some features may have an outsized influence on the model during 
training, while others may have less impact. To address this issue and ensure that 
all features are compared on the same scale, thereby improving the model’s train-
ing efficiency and accuracy, this study normalizes the input features. The process 
of normalizing the feature Xi can be formulated as 

 min,'

max, min,

i i
i

i i

X X
X

X X
−

=
−

,  (14) 

where min,iX  and max,iX  are the minimum and maximum values of the i-th fea-
ture, respectively. 

2) Missing value imputation: As shown in Figure 3, missing values exist in the 
features Trihalomethanes, Sulfate, and ph. Among them, Sulfate has the most 
missing values, with 781 missing entries, followed by pH, with 491 missing entries. 

 

 

Figure 3. Number of data entries for features and labels. 
 

In this paper, we used the Iterative Imputation method (J. C. Liu, Gelman, Hill, 
Su, & Kropko, 2014) to fill in the missing values. The main process is as follows: 
first, the missing values are initialized with the mean of the feature; then, other 
features without missing values are used as independent variables to train a linear 
regression model to predict the missing values of the current feature. After 10 it-
erations, the imputation results are gradually optimized, and the missing feature 
values are ultimately estimated. In this study, we use 80% of the data for training 
and the remaining data for testing. 

4.3. Evaluation Metrics 

In this paper, we select Accuracy, Precision, Recall, and F1-Score as evaluation 
metrics (Arslan et al., 2025). Each metric measures the model’s performance from 
different perspectives. The metric Accuracy can be formulated as 
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TP TNAccuracy

TP TN FP FN
+

=
+ + +

,  (15) 

where TP  is the number of correctly predicted positive samples, TN  is the 
number of correctly predicted negative samples, FP  is the number of samples 
incorrectly predicted as positive and FN  is the number of samples incorrectly 
predicted as negative. The metric precision evaluates the ratio of actual positive 
instances among those predicted as positive. 

 TPPrecision
TP FP

=
+

.  (16) 

The Recall metric emphasizes the model’s capability to identify positive in-
stances 

 TPRecall
TP FN

=
+

.  (17) 

And the metric F1-Score is the harmonic mean of Precision and Recall, com-
bining both metrics into a single value, which provides a balance between Preci-
sion and Recall 

 1- 2 Precision RecallF Score
Precision Recall

×
= ×

+
.  (18) 

4.4. Model Performance 

Figure 4 shows the performance of the proposed method across four evaluation 
metrics. The model achieves a precision of 0.96, recall of 0.98, accuracy of 0.98, 
and an F1-score of 0.97. This demonstrates that the proposed method performs 
well in predicting both positive and negative samples. 

 

 

Figure 4. Model performance. 
 

Figure 5 shows the predicted probability range of the proposed method under 
a 95% confidence interval for 20 test samples (where the proposed method cor-
rectly predicted all 20 test samples). It can be observed that the proposed method 
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has different prediction ranges for different test samples, which can help decision-
makers make more reliable and robust decisions. 

 

 
Figure 5. 95% confidence intervals for the predicted probabilities of 20 test samples. 

4.5. Comparative Experiments 

To demonstrate the superiority of the proposed method, we compare its predic-
tion performance with classic machine learning methods such as SVM, K-Nearest 
Neighbors(KNN), DecisionTree(DT), RF, and XGBoost, as well as state-of-the art 
deep learning works including ANN (Rustam et al., 2022) and LSTM (P. Liu, 
Wang, Sangaiah, Xie, & Yin, 2019). 

 
Table 2. Results of the comparison experiments. 

Methods Precision Recall Accuracy F1-score 

SVM 0.31 0.50 0.63 0.39 

KNN 0.60 0.59 0.64 0.59 

DT 0.59 0.59 0.61 0.59 

RF 0.66 0.61 0.68 0.61 

XGBoost 0.61 0.60 0.65 0.60 

ANN 0.82 0.52 0.77 0.64 

LSTM 0.70 0.32 0.68 0.44 

Proposed 0.96 0.98 0.98 0.97 

 
As shown in Table 2 and Figure 6, our method outperforms all others across 

the four evaluation metrics, demonstrating the superiority of the proposed method. 
Comparing the proposed method with ANN and LSTM, it can be observed that, 
although the latter are also deep networks, they are unable to capture the rela-
tionships between water quality features, resulting in suboptimal performance 
in water quality prediction. In contrast to shallow machine learning methods, 
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the proposed approach outperforms the shallow machine learning methods by a 
large margin. This is because the shallow machine learning methods fail to recog-
nize the intricate connections between water quality features and water quality 
states. 

To further compare the dependence of the above methods on the data, we 
reduce the training set to 20% and 10%. Table 3 and Figure 7 show the model 
performance when only 20% of the data is used for training. As can be seen from 
the table, with the reduction in the training data, most methods experience vary-
ing degrees of performance degradation. The proposed method still demonstrates 
the best performance. The prediction performance of ANN and LSTM decreases 
the most, as deep learning methods depend significantly on vast quantities of 
training data. In contrast, the proposed method mitigates the dependence on data 
by capturing the complex relationships between water quality features and ad-
justing the focus, enabling it to uncover the essential features that influence water 
quality states. Table 4 and Figure 8 show the comparison of model performance  

 

 
Figure 6. Results of the comparison experiments. 

 
Table 3. Comparison of the results using 20% of the total dataset for training. 

Methods Precision Recall Accuracy F1-score 

Scheme A 0.79 0.73 0.81 0.76 

Scheme B 0.76 0.83 0.85 0.79 

Scheme C 0.64 0.71 0.70 0.67 

Scheme D 0.69 0.71 0.74 0.70 

Proposed 0.81 0.90 0.88 0.86 
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Figure 7. Comparison of the results using 20% of the total dataset for training. 

 
Table 4. Comparison of the results using 10% of the total dataset for training. 

Methods Precision Recall Accuracy F1-score 

SVM 0.31 0.50 0.63 0.39 

KNN 0.55 0.55 0.59 0.55 

DT 0.56 0.56 0.58 0.56 

RF 0.62 0.59 0.65 0.59 

XGBoost 0.57 0.56 0.61 0.56 

ANN 0.53 0.36 0.64 0.43 

LSTM 0.54 0.42 0.65 0.48 

Proposed 0.81 0.90 0.88 0.86 
 

 
Figure 8. Comparison of the results using 10% of the total dataset for training. 
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when the training set is reduced to 10% of the total dataset. It can be observed that 
the proposed method still outperforms the others, further proving its superiority. 

4.6. Sensitivity Analysis 

To investigate the sensitivity of the proposed method to parameters, we compared 
the performance of the method with Bayesian convolution layers set to 2 and 4. 
As shown in Figure 9, overall, the proposed method exhibits a certain level of 
robustness to changes in the number of Bayesian convolution layers. When the 
number of convolution layers is 2, the model performance decreases the most 
compared to when the number of convolution layers is 4. This is because the 
model is not able to fully learn both local and global features with too few convo-
lution layers. When the number of convolution layers is 4, the model’s perfor-
mance also decreases. This is because the model tends to overfit with a larger num-
ber of layers. 

 

 
Figure 9. Model performance with different numbers of Bayesian convolutional Layers. 

4.7. Ablation Experiments 

To demonstrate the necessity of each element in the proposed model, we designed 
ablation experiments. Specifically, we sequentially remove the left Bayesian con-
volutional layer in the multi-scale feature extraction block (A), the right Bayesian 
convolutional layer in the multi-scale feature extraction block (B), the entire 
multi-scale feature extraction block (C), and the dynamic fusion block (D). 

Table 5 presents the results of the ablation experiments. As can be seen from 
the table, the proposed method achieves the best performance, demonstrating the 
necessity of each component in the proposed method. Comparing scheme A and 
B, it can be observed that removing the left convolutional network leads to a more 
significant performance decline, which indicates that capturing the relationships 
between water quality features from local to global is more effective. Comparing 
scheme C and D, it can be seen that removing the multi-scale feature extraction 
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block results in a greater performance drop. This is because, without the multi-
scale feature extraction block, the dynamic fusion block is unable to effectively 
capture the deep connections between water quality features and water quality 
states. 

 
Table 5. Results of the ablation experiments. 

Methods Precision Recall Accuracy F1-score 

SVM 0.31 0.50 0.63 0.39 

KNN 0.55 0.55 0.59 0.55 

DT 0.56 0.56 0.58 0.56 

RF 0.62 0.59 0.65 0.59 

XGBoost 0.57 0.56 0.61 0.56 

ANN 0.53 0.36 0.64 0.43 

LSTM 0.54 0.42 0.65 0.48 

Proposed 0.81 0.90 0.88 0.86 

5. Conclusion 

In this paper, we propose an end-to-end water quality prediction network using 
Bayesian multi-scale convolutional attention network. Our proposed method is 
capable of simultaneously capturing both global and local features that influence 
water quality and dynamically integrating them. More importantly, the proposed 
method provides the confidence intervals of the prediction results, offering deci-
sion-makers with more reliable and robust insights for water quality management. 
Our comparative experiments demonstrate the superiority of the proposed method. 
In future research, we will explore the temporal changes in water quality and in-
vestigate the time-series prediction of key water quality features. 
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