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Abstract 
Ahead of the Internet of Things and the emergence of big data, the interest of 
research is today focused on radio access and the process of optimizing it or 
increasing its capacity and capacity flow per user. During the process of deter-
mining the arrival directions and beam conformation at the antennas, differ-
ent types of algorithms can be used, namely deterministic algorithms and heu-
ristics. Genetic algorithms are part of heuristics called meta-heuristics. Alt-
hough effective, observing a relatively long execution time when applied to 
spectral estimation methods and the subspace method. This case makes its in-
tegration into systems very difficult. The simulation of the same algorithms 
on the antenna array confirms the results but brings more in terms of signal 
integrity and throughput because it offers more channels. Several resolutions 
have been undertaken in this article to reduce the processing time of the ge-
netic algorithm: the definition of a new policy of selection of the initial popu-
lation and exploitation of the mutation procedure. By applying the genetic al-
gorithm to MUSIC and a process of genetic mutation, we can reduce the la-
tency of the linear antenna by about 70%. The running time of the algorithm 
leads us to explore neural networks. 
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1. Introduction 

Usually, the spatial distribution of the energy radiated by a base station antenna 
is pre-fixed at manufacture and cannot be changed in use. This leads to many 
disadvantages, such as the limitation of the number of users, the relative quality 
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of communications due to interference by adjacent channels, and the restriction 
of the range of stations. To correct these shortcomings, wireless communication 
systems increasingly rely on antenna arrays and the associated synthesis algo-
rithms. Considering the fact that the synthesis algorithms are able to dynamically 
change and reconfigure their radiation pattern, the communication signal is trans-
mitted only towards the direction of the intended user, possessing in a remarkable 
way the interferences and the multipath while reducing the spectral efficiency and 
power efficiency of the system.  

In antenna engineering, several synthesis methods have been constructed. Sto-
chastic methods are more robust than deterministic algorithms. Among the most 
popular stochastic methods, we can cite the genetic algorithm [1] [2], the swarm 
of particles…Analytical methods display computation times close to 0.1345 s [3] 
[4]. RBFN and MLP [4] [5] neural network methods associated with analytical 
methods sometimes improve the computation time. The execution time remains 
around 0.13 s. By associating genetic algorithms with analytical methods, the av-
erage computation time of the genetic algorithm increases and is around 2.7 s. 

However, this method, inspired by the work of Marc Darwin [6]-[8] in the 19th 
century, therefore arouses little enthusiasm and is less and less integrated into the 
system of antennas and electronic devices because of its latency time. Situations 
that make it impossible to use them in real-time systems. We propose to reduce 
the computation time of genetic algorithms. 

In the first section devoted to the literature review, we present what has been 
done in the field of antennas to reduce the execution time of the various synthesis 
methods in general and stochastic methods in particular. At the same time, we 
will present the problems related to genetic algorithms. 

Thereafter, the second section will present the tools and methods used to con-
tribute to the problem of latency of the genetic algorithm. 

Finally, the last section will be devoted to the presentation of the results, dis-
cussion, and perspectives. 

2. Method 

1) Design 
We used an antenna array because, in a MIMO environment, the antenna offers 

more input and output possibilities and creates the conditions for efficient use of 
the genetic algorithm: Choice of the fitness function, define solution types, fix the 
criteria for stopping the algorithm (Number of generations or stability of individ-
uals after a certain number of generations) and define a new selection policy for 
the initial population. 

2) Mathematical Formalization of the Antenna Array [9] 
We consider a MIMO system composed of mt antennas on transmission and 

mr antennas on reception. We note , the vector of size mt, containing the symbols 
sent, and y, the vector of size mr, containing thesymbols received. The relation 
between x and y is then written: 
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where H is the channel matrix of size mt × mr, and n is the noise vector. The ca-
pacity of the MIMO channel is then written: 

rmI  is the identity matrix, ρ  is the signal-to-noise ratio and Q is the correlation 
matrix of the transmitted symbols. iλ  is the eigenvalues of the matrix *H H  

a) Antennes Array [10]-[12] 
In this work, our study will be limited to uniform linear antenna arrays, as rep-

resented in Figure 1 below. 
Consider a uniform linear network of elements regularly spaced by a distance 

(see Figure 1). These sources are supplied with the same amplitude and with a 
phase gradient. For a point P located in the far radiation zone, the total field is the 
sum of the field radiated by each of the sources, i.e.: 
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where ( )0E ϑ  is the radiation of an isolated element. The array factor ( )AF ϑ , 
which depends solely on the excitation law of the antenna elements and their ar-
rangements, is defined by: 
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Figure 1. Beam-scanned linear array. 
 

This array factor is further written. 
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To obtain a maximum of radiation in a given direction, it is necessary to find 
the phase gradient that maximizes the modulus of the network factor in this di-
rection, that is: 

02 sin 0d ϑ ϕ
λ

π + =                         (7) 

In other words, the pointing direction of the network will be given by the rela-
tion: 

1
0 sin 0
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                      (8) 

Equation 

It is possible to adjust the orientation of the radiation of an array antenna by play-
ing on the phase gradient between its antenna elements: this is the principle of 
sweep antennas [6] [13] [14]. 

Chromosome Coding: 
The directions of arrival that must be found by the GAs are real; each individual 

of the population representing all the directions of arrival will be coded in real 
value. 

Each chromosome (individual) will, therefore, be a vector of real numbers of 
size equal to the number of sources to be located. 

The value of each of the elements (genes) of the chromosome vector will belong 
to the set of possible values of the directions of arrival (search space). It is illus-
trated in Figure 2. 
 

 
Figure 2. Chromosome vector. 

 
Search Space: 
The search space of the different genes corresponds to the set of values that a 
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direction of arrival can take. For a linear network, and taking into account the 
periodicity of the directions, this is any interval of length 180˚. 

We chose the interval [−90˚, 90˚]. 
Any gene found outside this interval after a crossing operation will simply be 

brought back to the corresponding value by a periodicity of 180˚. 
Population Initialization: 
To try to reduce computation times, the population will be initialized to asso-

ciate chance and intelligence. The first individual will be generated from a basic 
DoA estimation method (pre-estimator). 

Then, chance will intervene to complete the population by randomly generating 
other individuals in the vicinity of the first. 

From an individual [ ]1 2, , , Lθ θ θ
, produced by the pre-estimator, we will ran-

domly generate other individuals [ ]1 1 2 2, , , L Lθ α θ α θ α+ + +
, where the iα  are 

random numbers, until the desired population size is reached. 
Evaluation: 
The assessment is based on the fitness of each individual. Given the nature of 

the cost function, which is a function to be minimized, the fittest individual will 
be the one whose value of the cost function ( [ ]{ }1 2, , , Lf θ θ θ

 for the individual 
[ ]1 2, , , Lθ θ θ

) is the lowest. 
Crossover: 
The crossover method adopted is one-point crossing. The cross point is ran-

domly selected, as illustrated in Figure 3(a). 
 

 
Figure 3. Crossover process. 
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Mutation: 
The mutation comes in very little to reduce the random nature of the search a 

bit. The mutation rate is set at 2%. The mutant gene is also chosen randomly, as 
shown in Figure 3(b). 

Survival Policy: 
Only the best individuals will be part of the next generation, at a rate of 25% for 

parents and 75% for children. 
Stop Criterion: 
The DoA estimation process stops if the maximum number of generations is 

reached or if the best individual has remained the same for the last ten generations. 
An example of the parameters of a genetic algorithm applied to the estimation 

of the directions of arrival: 
Chromosome Coding: reel. 
Population Size: 50. 
Max Generation Number: 50. 
Initialization: mixte (Pré-estimation et hazard). 
Research Area: [−90˚, 90˚]. 
Selection: Emperor-Selective Scheme (EMS). 
Reproduction: Crossover (2% mutation). 
Stopping Criterion: Maximum number of generations or best stable individual 

over the last 10 generations. 
To reduce the computation time of the directions of arrival, we have tried to 

take measures aimed at increasing the speed of convergence compared to the clas-
sical genetic algorithm. Figure 4 shows the flowchart of the genetic algorithm. We 
acted on several levels: 
 

 
Figure 4. Flowchart of genetic algorithm [7] [8]. 
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 On the choice of coding: real rather than binary. 
 At the initial generation, the population is initialized, not randomly as in the 

classic approach, but a little more intelligently from a supposed good candidate 
(pre-estimated) provided by a pre-estimator whose choice is based on the com-
promise resolution/computation time. 

 At the mating pool selection, we have opted for the elitist strategy, which con-
sists of taking the best individual as one of the parents of all the children. 

 Selection for the future generation: only the best individuals, chosen exclu-
sively between parents and children, are allowed to survive in the next gener-
ation. 

 On the stopping criterion, the evolution of the population can be stopped when 
the best individual has remained the same over a certain number of consecu-
tive generations; this allows the algorithm. 

3. Results and Discussion 

This section presents the results that we obtained by simulation of the various 
algorithms for the synthesis of the networks of antennas. We compare them to the 
results obtained by modified genetic algorithms. 

1) Traditional Methods of Determining the Directions of Arrival 
We can observe, for elements too close together, a clear degradation of the qual-

ity of the estimation of the angles of arrival. This can be explained by the increase 
in mutual coupling effects between radiating elements, which are not taken into 
account in our model. 

The noise degrades the quality of the estimate, however, this one has practically 
no effect on the methods based on the decomposition in subspace like PISARENKO, 
MUSIC, and Minimum standard, to name a few [15]-[18]. In Table 1, we have the 
processing time of the classic method and AG method calculated by the Matlab 
code of this method. 
 
Table 1. Comparison of DoA process time. 

Method Average process time (s) 

BARLETT 0.17566 

CAPON 0.178447 

PRONY 0.190271 

MEM 0.177403 

PISARENKO 0.173082 

MUSIC 0.17947 

NORM-MIN 0.172794 

ML-AG Classique 1.5 (45 gén) 

ML-AG Intelligent 0.46 (12 gén) 

AG-BARLETT 0.265775 
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Continued 

AG-CAPON 0.274417 

AG-MEM 0.269666 

AG-PISARZNKO 0.272009 

AG-NORM_MIN 0.264251 

AG-MUSIC 0.268659 

 
2) Processing Time 
The antenna uses 10 elements and four sources. We obtained the following pro-

cess times: 
It is clear that the methods based on genetic algorithms are the slowest. How-

ever, with the approach we propose, we manage to reduce the computation time 
by 70%. We thus go from a computation time ratio of around 10 (classic ML-AG) 
to a ratio of 3 (intelligent ML-AG) when compared to basic techniques. 

Applying a genetic algorithm to MUSIC using an antenna array designed with 
10 elements and 3 source samples. Music has the best resolution. Figure 5(a) and 
Figure 5(b) plot the distribution of radiated energy to determine the direction of 
arrival. Figure 5(c) shows the convergence of the fitness function. The time of 
convergence of the classic is too high. 

 

 
Figure 5. AG_sur_MUSIC on a planar antenna, 10 elements, 3 sources, SNR = 30 dB. 
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Table 2 shows the error of the estimation process, and Table 3 shows the pro-
cess time. The error is null, and the processing time is long for AG, but can be 
used in real-time applications. 
 
Table 2. The error was committed in the estimation process. 

DoA Estimated DoA Detected Error Committed 

50 50 0 

80 80 0 

120 120 0 

 
Table 3. Comparison of processing time analysis and AG method. 

 Time (s) 

Time for Analytical Method 0.603745 

Time for AG 1.74493 

 
3) Results (Processing Time) of the AG Approach 
To validate our approach, we simulated the classical approaches and the same 

methods coupled to GA on different types of antenna arrays under the following 
conditions (Table 4): 3 sources (50˚, 80˚, and 120˚), 10 elements with distance 
factor of 0.5 and 100 samples and 30dB signal to noise ratio. The simulation gives 
us the following results. 
 
Table 4. Simulation of different algorithms on planer antenna, 10 elements, 3 sources, and 
rapport signal/noise = 30 dB. 

 Analytic Method (s) AG_Analystics (s) 

Prony 0.6927 0.357 

MinNorm 0.4149 0.3577 

Capon 0.3524 0.2422 

Pisarenko 0.2868 0.2438 

MEM 0.2999 0.4108 

MUSIC 0.1322 0.3821 

Barlett 0.03122 0.4219 

 
The results present slowness for genetic algorithms in general. These delays per-

sist when the number of antenna elements is reduced. But it still improves the 
execution time of the algorithms. We can see this in Table 5 below. 

To improve the efficiency of genetic algorithms, Figures 4-6 below show the 
results obtained by GAs. On the first, we have the evolution curve obtained by 
classic AG, and on the second, the curve obtained by “intelligent” AG. We can see: 
 The qualities of the estimates remain comparable in the two cases; 
 In the second case, convergence (stability) happens much faster (around the 
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12th generation) than in the first (around the 40th generation) and practically 
in a ratio that is between 1/4 and 1/3, which means a DoA estimation time 
about 3 to 4 times shorter, considering that the time needed for the pre-esti-
mator is negligible compared to the overall time. 

 
Table 5. Simulations of different algorithms on planar antenna, 5 elements, 3 sources, and 
rapport signal/noise = 30 dB. 

 Analytic Method (s) AG_Analystics (s) 

Prony 0.6927 0.357 

MinNorm 0.4149 0.3577 

Capon 0.3524 0.2422 

Pisarenko 0.2868 0.2438 

MEM 0.2999 0.4108 

MUSIC 0.1322 0.3821 

Barlett 0.03122 0.4219 

 

 
Figure 6. Simulation of different algorithms on planer antenna, 10 elements, 3 
sources, and rapport signal/noise = 30 dB. 

 

 
Figure 7. Simulations of different algorithms on planar antenna, 5 elements, 3 
sources, and rapport signal/noise = 30 dB. 
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These results clearly show that the measures taken with the intention of reduc-
ing the computation time do indeed have a significant positive effect on the com-
putation time, since they make it possible to save around 70%. 

To check the reproducibility of these results, we repeated the simulation with 6 
sources and then with 2, and the findings are substantially the same. (Figure 6 and 
Figure 7) 

Figures 8(a)-(c) plot the distribution of radiated energy to determine the di-
rection of arrival. Figure 8(d) shows the convergence of the fitness function. The 
time of convergence of the classic is too high. 

 

 
Figure 8. Classic AG with 10 elements and 3 sources. 

 
Figure 6 illustrates the convergence speed of the genetic algorithm using the 

modified genetic algorithm. 
Table 6 shows the error of the estimation process, and Table 7 shows the pro-

cess time. The error is low and can’t disturb our DoA process. The process time is 
long for AG but can be used in real-time applications. 

Figure 8(d) shows the convergence of the fitness function for Smart AG. The 
time of convergence of this is too low. 

The table below shows the result of applying a genetic algorithm to the beam-
forming process. The process time is lower than the analytic method. We can read 
it in Table 5 below. 
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Table 6. The error was committed in the estimation process. 

DoA Estimated DoA detected Error Comitted 

50 50.5 0.5 
80 81.5 1.5 
120 86.5 −33.5 

 
Table 7. Comparison of processing time analysis and AG method. 

 Time (s) 

Time for Analytical Method 0.0770687 
Time for AG 0.308275 

 
4) Classic Methods of Beamforming and Those Combined with Genetic  

Algorithms 
As explained above, the second part of using smart antennas is beamforming. 

We have in Table 8 and Table 9 below the results of the simulations of the differ-
ent beamforming algorithms. Figure 9 and Figure 10 compare the two algo-
rithms. We highlighted the beamforming time and the efficiency of genetic algo-
rithms to reduce this delay, which, at the beginning, was within acceptable limits. 
The GA divides the initially high time by 30. The comparison of processing time 
analysis with the AG method is shown in Table 10. 
 
Table 8. Simulation of different beamforming algorithms on antenna planar, AG binaire, 
10 elements, 3 sources, and SNR = 30 dB. 

 Analytic Method (s) AG_Analystics (s) 

LMS 3.41561 0.142317 
CMS 3.59347 0.143728 

MVDR 3.24273 0.135114 
RLS 4.31776 0.179907 
DMI 3.664009 0.152671 

Nullsteer 0.118367 0.116543 
Conv 0.118367 0.164399 

 
Table 9. Simulation of different beamforming algorithms on AG binary antenna planar, 5 
elements, 3 sources, and SNR = 30 dB. 

 Analytic Beamforming Method 
AG_Analytic  

Beamforming Method(s) 
LMS 0.6927 0.357 

CMS 0.4149 0.3577 

MVDR 0.3524 0.2422 

RLS 0.2868 0.2438 

DMI 0.2999 0.4108 

Nullsteer 0.1322 0.3821 

Conv 0.03122 0.4219 
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Figure 9. Simulation of different beamforming algorithms on antenna planar, AG binaire, 
10 elements, 3 sources, and SNR = 30 dB. 
 

 
Figure 10. Simulation of different beamforming algorithms on AG binary antenna planar, 
5 elements, 3 sources, and SNR = 30 dB. 
 

The determination of signal arrival and beamforming has another virtue, which is 
the reduction of energy consumption in a 5G architecture [19]. It is illustrated in 
Figure 11. 

Figures 11(a)-(c) plot the distribution of radiated energy to determine the di-
rection of arrival using AG_sur_Nulls. The processing time in Table 9 is satisfac-
tory for real-time applications. 

4. Conclusions 

The results allowed us to assess the effects of a certain number of parameters 
on the precision of the algorithms for calculating the angles of arrival and the 
shaping of the associated beams within the framework of a wireless communica-
tion system with networks of antennae. The tests carried out show that: 
 Despite the diversity of the quality of the results provided, the computation 

times remain comparable for the classic DoA estimation methods, the slowest 
being the PRONY approach (linear prediction). 
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Figure 11. Smart AG with 2 sources. 
 

Table 10. Comparison of processing time analysis and AG method. 

 Time (s) 

Time for Analytical Method 0.127897 

Time for AG 0.11627 

 
 The classic GA approach, which has the advantage of being a global optimum 

search technique, requires a longer calculation time which is around 10 times 
the time required for a local optimum approach. 

 In addition, AG reduces beam shaping time by 30 times. 
 We also note that GAs and spectral methods reduce the influence of noise on 

communications to zero. 
We have proposed a new approach based on GAs, which we have named “smart 

GA”. It considerably reduces this computation time. The result obtained is around 
70% reduction. 

The tests carried out show that despite the diversity of the quality of the results 
provided, the computation times remain comparable for the classic DoA estima-
tion methods, the slowest being the PRONY approach (linear prediction); the 
classical GA approach requires a longer computation time which is around 10 
times the time required for a local optimum approach. In addition, AG reduces 
beam shaping time by 30 times. We also note that GAs and spectral methods re-
duce the influence of noise on communications to zero. 
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Among other processing techniques, neural networks have been used to avoid 
interference in planar antenna arrays. They also offer computational capabilities 
and performance [20]-[22]. However, neural networks seem to have a head start 
because they use a learning and memory module to save the different positions of 
the useful signals. 
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