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Abstract 
In this article, we consider the conserved phase-field model based on micro-
concentrations. In particular, we prove the well-posedness to this model and 
then prove the convergence of the solutions to those of the classical conserved 
phase-field model as a small parameter goes to zero, on finite time intervals. 
We also prove the existence of global attractor and we finally give some nu-
merical simulations. 
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1. Introduction 

In this paper, we are interested in the study of the following three equations: 

( )2Δ Δ Δ ,u v f u
t

θ∂
+ − = −

∂
                    (1.1) 

Δ , 0,u v vε ε= − >                        (1.2) 

Δ ,u
t t
θ θ∂ ∂
− = −

∂ ∂
                        (1.3) 

where ε  is expected to be small (it is related to the inverse of the penalty mod-
ulus), u  is the order parameter, while v  is the microconcentration and θ  the 
(relative) temperature. Furthermore, here and below, we set all physical parame-
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ters equal to one and we refer the interested reader to [1]-[12]. In particular, in 
the presence of the microconcentration, the total (Ginzburg-Landau type) free en-
ergy associated with the problem read (see [13]): 

( ) ( ) ( )22 21 1 1, , , d ,
2 2 2

u v v u v v F u u xθ θ θ
εΩ

 Ψ ∇ = − + ∇ + − − 
 ∫         (1.4) 

where the potential F  is such that ( ) ( )
0

d
s

F s f τ τ= ∫ , Ω  is the domain occu-
pied by the system (we assume here that it is a bounded and regular domain of 

n , 1,2n =  or 3, with boundary Γ), and the enthalpy 

.H u θ= +                              (1.5) 

As far as the evolution equations for the order parameter are concerned, one 
postulates the relaxation dynamics (with relaxation parameter set equal to one) 

ΨΔ ,u D
t Du

∂
=

∂
                           (1.6) 

where Du  denotes a variational derivative with respect to u, which yields (1.1) 
and (1.2). Then, we have the energy equation 

div ,H q
t

∂
= −

∂
                          (1.7) 

where q is the heat flux. Assuming finally the usual Fourier law for heat conduction 

,q θ= −∇                             (1.8) 

we obtain (1.3). 
The microconcentration model was used in [14] in an application to lithium-

ion batteries, coupled with finite deformation elastoplasticity. The computational 
advantage of the microconcentration approach, compared to the standard classi-
cal conserved phase-field model, is that less regularity of shape functions is re-
quired for the concentration variables in a finite element setting [15]. 

Our aim in this paper is to prove the aforementioned convergence. We also prove 
the well-posedness to the conserved phase-field model based on microconcentra-
tions and obtain error estimates on the difference of the solutions to this model and 
the classical conserved phase-field model, on finite time intervals. Finally, we prove 
the existence of global attractor and we give some numerical simulations. 

2. Our Problem 

We recall that we are interested in the following initial and boundary value prob-
lem: 

( )2Δ Δ Δ ,u v f u
t

θ∂
+ − = −

∂
                     (2.1) 

Δ ,u v vε= −                            (2.2) 

Δ ,u
t t
θ θ∂ ∂
− = −

∂ ∂
                         (2.3) 

Δ 0 on ,u v v θ
ν ν ν ν
∂ ∂ ∂ ∂

= = = = Γ
∂ ∂ ∂ ∂

                  (2.4) 
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0 00 0, ,t tu u θ θ
= =
= =                        (2.5) 

in a bounded and regular domain nΩ⊂  , 1,2n =  or 3, with boundary Γ; ν   

denotes the unit outer normal to Γ and ϕ ϕ ν
ν
∂

= ∇ ⋅
∂

 denotes the normal deriva-

tive on Γ. In particular, we assume, throughout this paper, that 

00 1.ε ε< ≤ <                           (2.6) 

As far as the nonlinear term is concerned, we make the following assumptions: 

( ) ( )2 , 0 0,f f∈ =                       (2.7) 

1.f ′ ≥ −                             (2.8) 

( ) 4
1 1

1 , 0,
8

F s s c c≥ − ≥                      (2.9) 

( ) ( ) ( )2 3 4 2 3 4, , 0, , 0, ,f s s c F s c F s c c c c s≥ − ≥ − > ≥ ∈       (2.10) 

where ( ) ( )
0

d
s

F s f τ τ= ∫ . 
Remark 2.1. In particular, the usual cubic nonlinear term ( ) 3f s s s= −  satis-

fied these assumptions and ( ) 4 21 1
4 2

F s s s= − . 

3. Preliminaries and Notation 

We introduce here our main assumptions, together with several mathematical 
tools which are needed in order to give a precise analytical statement of our re-
sults. 

We denote by ϕ  the spatial average of a function ( )1Lϕ∈ Ω , 

( ) ( )1 d
Vol

x xϕ ϕ
Ω

=
Ω ∫  

and, for ( ) ( )1 1H Hϕ − ′∈ Ω = Ω , 

( ) ( ) ( )1 1,

1 ,1 ,
Vol H Hϕ ϕ − Ω Ω

=
Ω

 

where .,.  denotes the duality product. Furthermore, we set 

,ϕ ϕ ϕ= −  

where ϕ  denotes the conjugate of ϕ . 
We then set 

( ) ( ){ }1 1 , 0H Hϕ ϕΩ = ∈ Ω =  

and 

( ) ( ){ }2 2 , 0 .L Lϕ ϕΩ = ∈ Ω =  

Integrating (2.1) over the spatial domain Ω , we have, owing to (2.4), 

d 0.
d

u
t

=                           (3.1) 

Furthermore, integrating then (2.2) and (2.3) over Ω , we obtain resp. 
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,u v=                            (3.2) 

so that, also, 
d 0
d

v
t

=                            (3.3) 

and 
d 0,
d

H
t

=                           (3.4) 

which also yields, owing to (3.1), 

d 0.
dt

θ =                           (3.5) 

We thus have the conservation of temperature, the conservation of mass, both 
for the order parameter u  and the microconcentration v . 

Let A  be the operator defined by 

( ) ( ) ( )( ) ( )1 1
1

,, , , ,H HAu u Hϕ ϕ ϕ− Ω Ω
= ∇ ∇ ∀ ∈ Ω  

where ( )( ).,.  denotes the usual 2L -scalar product, with associated norm . , 
and the operator A  is an unbounded linear, selfadjoint and positive operator 
with compact inverse and is an isomorphism from ( )1 ΩH  onto its dual. Fur-
thermore, 

( ) ( ) ( )2 1 , 0 onA H H ϕϕ
ν
∂ = ∈ Ω ∩ Ω = Γ ∂ 

  

and Au h= , ( )u A∈ , ( )2h L∈ Ω , is equivalent to 

, 0 on .uu h
ν
∂

−∆ = = Γ
∂

 

We will thus write Δ−  instead of A  in what follows, meaning that we con-
sider that this operator acts on functions with null spatial average; of course, it can 
also be defined on functions with nonvanishing spatial average. We refer the in-
terested reader to, e.g., [16] for more details on this. Having this, we can rewrite, 
equivalently, (2.1) in the (weaker) form: 

( ) ( )1
0Δ Δ ,u v f u

t
θ θ− ∂

− − + = −
∂

                 (3.6) 

noting that 

0u
t

∂
=

∂
 

and 

0 , 0.tθ θ= ∀ ≥  

We only keep one boundary condition on v , namely 

0 on .v
ν
∂

= Γ
∂

                       (3.7) 

Remark 3.1. In particular, it follows from (2.1) to (2.3) that 
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( ) ( )2Δ Δ Δ Δ Δ ,v v v f v v
t

ε ε θ∂
− + − − = −

∂
               (3.8) 

( )Δ Δ ,v v
t t
θ θ ε∂ ∂
− = − −

∂ ∂
                    (3.9) 

which we can rewrite in the following (at least formally) equivalent form: 

( )( ) ( )1
0Δ Δ Δ ,v v v f u v v

t
ε ε θ−∂

− + − + + − =
∂

            (3.10) 

( )Δ ,v v
t t
θ θ ε∂ ∂
− = +

∂ ∂
                    (3.11) 

where Δ−  denoting the minus Laplace operator with Neumann boundary con-
ditions and acting on functions with null average. Also recall that 

0 0, , 0.u v u tθ θ= = = ∀ ≥                 (3.12) 

Alternatively, we can rewrite (2.2) in the equivalent form: 

( ) 1
0 , Δ ,u v I uu ε −= = −                     (3.13) 

allowing us to rewrite (3.10)-(3.11) in the equivalent form: 

( ) ( ) ( )1 1
0Δ Δ Δ .u I u f u u

t
ε θ− −∂

− − − + + =
∂

             (3.14) 

Δ ,u
t t
θ θ∂ ∂
− =

∂ ∂
                     (3.15) 

This shows that we can rewrite (2.1)-(2.4) as an equivalent problem for the sole 
unknown ( ), ,u v θ . 

We set ( )
1
2

1. Δ .−

−
= − ; 1.

−  is a norm on ( ){ }1 , 0v H v−∈ Ω =  which is  

equivalent to the usual ( )1H − Ω -norm. More generally, we denote by . X  the 
norm on the Banach space X. 

Throughout this paper, the same letters c , c′  and c′′  denote (nonnegative 
or positive) constants which may vary from line to line, or even in a same line, 
and which are independent of ε  (but may depend on 0ε ). 

4. Priori Estimates 

In this section, we will establish a number of important inequalities that will be 
used later in the proof of the existence of the solution, the existence of global at-
tractor and the convergence to the conserved phase-field model. 

We assume that 

0 1 0 2,u M Mθ≤ ≤                       (4.1) 

for fixed positive constants 1M  and 2M , which yields, owing to (3.12), 

( ) ( ) ( )1 2, , 0.u t v t M t M tθ= ≤ ≤ ≥                (4.2) 

We start with the following proposition. 
Proposition 4.1 Any sufficiently regular solution to (2.1)-(2.5) satisfies the fol-

lowing estimates: 
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( ) ( ) ( ) ( ) ( )

( ) ( )( )
4 2

4 2 1

2 2 2

2 2 2
0 0 0e , 0, 0

L H

c t
ML H

u t v t t

c u v c c t

θ

θ

Ω Ω

′−
Ω Ω

+ +

′′ ′≤ + + + > ≥
         (4.3) 

and 

( ) ( )

( ) ( )( )
1 3

4 2 1

2
2 2

0
1

2 2 2
0 0 0

d

e , 0, 0.

t

H H

c t
ML H

u v s
t

c u v c c t

θ

θ

Ω Ω
−

′−
Ω Ω

 ∂
+ +  ∂ 

′′ ′≤ + + + > ≥

∫
        (4.4) 

Proof. The estimates below will be formal, but they can easily be justified within, 
e.g., a standard Galerkin scheme. 

We multiply (3.6) by u
t

∂
∂

 and have, integrating over Ω  and by parts, 

( )
2

0
1

d, d , .
d

u u u uv F u x
t t t t t

θ θ
Ω

−

∂  ∂   ∂  ∂   − ∆ + = − Ω      ∂ ∂ ∂ ∂      
∫  

Noting that, owing to (2.2), 

Δu v v
t t t

ε∂ ∂ ∂
= −

∂ ∂ ∂
                       (4.5) 

and 

0,u
t

∂
=

∂
 

we thus deduce from the above that 

( )( )
2

2 2

1

d 2 d 2 2 , .
d

u uv v F u x
t t t

ε θ
Ω

−

∂  ∂  ∇ + ∆ + + =   ∂ ∂  
∫     (4.6) 

We then multiply (2.3) by θ  to obtain 

2 2d 2 2 , .
d

u
t t
θ θ θ ∂  + ∇ = −   ∂  

                (4.7) 

The sum of (4.6) and (4.7) gives, setting 

( )2 2 2
1 2 dE v v F u xε θ

Ω
= ∇ + ∆ + +∫  

the differential equality 
2

21

1

d 2 2 0,
d
E u
t t

θ
−

∂
+ + ∇ =

∂
                   (4.8) 

i.e., the decay of the total free energy. 
We now multiply (3.6) by u  and have, owing to (3.2), (2.10) and (4.2), 

( )( ) 1

2 2 2 2

1

d d , 0.
d Mu c v v F u x c c
t

ε θ
− Ω

′+ ∇ + ∆ + ≤ + >∫       (4.9) 

We next multiply (3.6) by Δu−  and find, owing to (2.8), 

( )( )2 2 21 d 3 1Δ ,Δ .
2 d 2 2

u u v u
t

θ+ ≤ ∇ + ∇             (4.10) 
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Noting that, owing to (2.2), 

( )1Δ ,v u v
ε

− = −  

we have 

( )( )

( )

2 2 2

2 2 2

d 1 23 ,
d

1 11
1

u u u v
t

u v

θ
ε ε

θ
ε ε ε

 + − ∇ ≤ ∇ + ∇ ∇ 
 

 ≤ ∇ + − ∇ + ∇  − 

 

and we find 

( )
2 2 2 2d 1 12 ,

d 1
u u v

t
θ

ε ε ε
 + − ∇ ≤ + ∇  − 

           (4.11) 

which gives 

( ) ( )2 2 2 2
0 0

0

d 11 2 .
d 1

u u v
t
ε ε ε θ

ε
+ − ∇ ≤ + ∇

−
         (4.12) 

Writing now, in view of (2.2), 
2Δ Δ Δ ,u v vε= −  

we deduce from (4.10) that 

2 2 2 2 2d Δ 3 .
d

u v v u
t

θ+ ∆ + ∇ ≤ ∇ + ∇              (4.13) 

Summing (4.8), 1δ  times (4.9) and (4.13), where 1 0δ >  is small enough, we 
obtain, setting 

2 2
2 1 1 1E E u uδ

−
= + +  

an inequality of the form 

( ) ( )1 3 1

2
2 22

2
1

d ,
d MH H

E uc E v c
t t

θ
Ω Ω

−

 ∂ ′+ + + + ≤  ∂ 
          (4.14) 

where 2E  satisfies 

( ) ( )( )4 2
2 2 2

2 .L HE c u v cθ
Ω Ω

′+ + −≥                (4.15) 

In particular, it follows from (4.14)-(4.15) and Gronwall’s lemma the dissipative 
estimate (4.3) and (4.4), where 

( ) 1
0 0Δ .v I uε −= −  

Remark 4.1. When 0ε = , then we have v u=  and (4.8) reads: 
2

21

1

d 2 2 0,
d
E u
t t

θ
−

∂
+ + ∇ =

∂
                 (4.16) 

where 

( )2 2
1 2 d ,E u F u x θ

Ω
= ∇ + +∫  

which is precisely the energy decay for the classical conserved phase-field model 

https://doi.org/10.4236/am.2025.163014


A. J. Ntsokongo et al. 
 

 

DOI: 10.4236/am.2025.163014 282 Applied Mathematics 
 

(see [17]). 

5. Well-Posedness and Semigroup 

In this section we consider that 0ε >  is fixed. We have the following. 
Theorem 5.1. Let 0T >  be given. We assume that (2.6) holds,  

( ) ( ) ( )1 2
0 0,u H Lθ ∈ Ω × Ω  and ( )2

0u Hε ∈ Ω . Then, (2.1)-(2.5) possesses a unique 
weak solution ( ),u θ  such that 

( )( ) ( )( )4 2 1; 0, ; ,u L L L T H∞ +∈ Ω ∩ Ω  

( )( )2 10, ; ,u L T H
t

−∂
∈ Ω

∂
 

( )( ) ( )( )2 2 3; 0, ; ,v L H L T H∞ +∈ Ω ∩ Ω  

( )( )2 10, ;v L T H
t
∂

∈ Ω
∂

 

and 

( )( ) ( )( )2 2 1; 0, ; .L L L T Hθ ∞ +∈ Ω ∩ Ω  

Furthermore, [ ] ( )( )40, ; wu T L∈ Ω , [ ] ( )( )20, ;v T H∈ Ω  and  
[ ] ( )( )20, ;T Lθ ∈ Ω  where the index w  denotes the weak topology. 

Proof. Existence: The proof of existence, as well as of further regularity, is based 
on the above a priori estimates and a proper Galerkin scheme. Furthermore, the 
continuity results follow from the Lions-Magenes theorem and the Strauss lemma 
(see, e.g., [18] for details). 

We can note that (3.10)-(3.11) is associated with the following weak formula-
tion: 

Find ( ) [ ] ( )31, , : 0,u v T Hθ → Ω , such that 

( )( )( ) ( )( ) ( )( )( )
( )( ) ( )

1
0

d , , ,
d

, in ,

v v v f u v v
t

ε ϕ ϕ ε ϕ

θ ϕ

−−∆ + + ∇ ∇ + + − ∆

′= Ω
     (5.1) 

( )( ) ( )( ) ( )( ) ( )d d, , , in ,
d d

v v
t t

θ ϕ θ ϕ ε ϕ ′+ ∇ ∇ = − − ∆ Ω        (5.2) 

( )1 ,Hϕ∀ ∈ Ω  

0 00 0
, .t t

v v θ θ
= =
= =                      (5.3) 

Let ( )i i
e

∈  be eigenvectors of the minus Laplace operator associated with Neu-
mann boundary conditions; these eigenvectors are associated with the eigenvalues 

1 20 λ λ≤< ≤ , 
Δ i i ie eλ− =  

and acting on functions with null spatial average. We assume that the sie  are 
orthonormal in ( )2L Ω  and orthogonal in ( )1H Ω . 

We set for m∈ , 

{ }1, , .m mV Span e e=   
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Actually, here, the only difficulty is to prove the existence of a local in time 
solution to an approximated problem. To do so, keeping the same notation as in 
the previous section, we consider the following approximated problem, for 
m∈  given: 

Find ( ) [ ] 3, , : 0,m m m mu v T Vθ → , such that 

( )( )( ) ( )( ) ( )( )( )
( )( ) ( )

1
0

d , , ,
d

, in ,

m m m m m

m

v v v f u v v
t

ε ϕ ϕ ε ϕ

θ ϕ

−−∆ + + ∇ ∇ + + − ∆

′= Ω
  (5.4) 

( )( ) ( )( ) ( )( ) ( )d d, , , in ,
d dm m m mv v
t t

θ ϕ θ ϕ ε ϕ ′+ ∇ ∇ = − − ∆ Ω      (5.5) 

,mVϕ∀ ∈  

0, 0,0 0
, ,m m m mt t

v v θ θ
= =
= =                     (5.6) 

where 

0, 0, 0, ,m m mu v vε= −                        (5.7) 

0, 0 0, 0,m m m mu P u Pθ θ= =                      (5.8) 

mP  being the orthogonal projector onto mV  (for the ( )2L Ω -norm). 
The existence of a local in time solution to (5.4)-(5.8) then follows from the 

Cauchy-Lipschitz theorem. Having this, we can pass to the limit in a standard way, 
owing to the above a priori estimates (which also hold at the approximated level) 
and standard Aubin-Lions compactness results, and deduce the existence of a so-
lution. 

Uniqueness: Let ( )1 1 1, ,u v θ  and ( )2 2 2, ,u v θ  be two solutions with initial data 
( )0,1 0,1,u θ  and ( )0,2 0,2,u θ , respectively, such that 0, 1iu M≤  and  

0, 2i Mθ ≤ , 1,2i = . We set 

( ) ( ) ( )1 1 1 2 2 2, , , , , ,u v u v u vθ θ θ= −  

and have 

( ) ( ) ( )1
1 2Δ Δ ,u v f u f u

t
θ− ∂

− − + − =
∂

               (5.9) 

Δ ,u v vε= −                        (5.10) 

Δ ,u
t t
θ θ∂ ∂
− = −

∂ ∂
                     (5.11) 

0, 0,u v tθ= = = ≥                  (5.12) 

0 on ,v θ
ν ν
∂ ∂

= = Γ
∂ ∂

                  (5.13) 

0 00 0, .t tu u θ θ
= =
= =                   (5.14) 

We multiply (5.9) by u  and have, owing to (2.8), 

( )( )2 2 2

1

1 d 3 1, .
2 d 2 2

u v u u
t

θ
−
+ −∆ ≤ +              (5.15) 
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Next, multiplying (5.11) by ( ) ( )1Δ u θ−− + , we find 

2 2 2

1

d .
d

u u
t

θ θ
−

≤+ +                     (5.16) 

Summing finally 2δ  times (5.15) and (5.16), where 2 0δ >  is small enough, 
we find 

( ) ( )( ) ( ) ( )2 2 2 2
2 2 2 21 1

d Δ , 1 3 1 ,
d

u u v u u
t
δ θ δ δ θ δ

− −
+ + + − + − ≤ +    (5.17) 

where 

21 0.δ− >  

Note that it follows from (5.10) that 

( )( ) 2 2Δ , Δv u v vε− = ∇ +  

and 
2 2 2 222 Δ .u v v vε ε= + ∇ +  

We thus deduce that 

( ) ( ) ( )

( )( )

2 2 2 2 2
2 2 21 1

2 2 22
2

d Δ 1
d

3 1 2 Δ

u u v v
t

v v v

δ θ δ ε δ θ

δ ε ε

− −
+ + + ∇ + + −

≤ + + ∇ +
 

and (2.6) yields, employing the Poincar-Wirtinger inequality, 

( ) ( ) ( )2 2 2 2 2
2 0 2 21 1

d 1 Δ 1 .
d

u u v c v
t
δ θ ε εδ δ θ

− −
+ + + − + − ≤ ∇     (5.18) 

Writing next 

( ) ( )
212 2 2 222

1 1
1

Δ Δ 2 ,u v v u v v vε ε ε−

− −
−

= − − = + + ∇  

it follows that, setting 
2 2

3 2 1 1E u uδ θ
− −

= + +  

an inequality of the form 

3
32

d ,
d
E c E
t ε
≤                        (5.19) 

3E  satisfies 

( )2 2
3 1 1 , 0.E c u cθ

− −
′ ′+ >≥                  (5.20) 

It follows from (5.19), (5.20) and Gronwall’s lemma that 

( ) ( ) ( )2 2 2 2
0 02 1 11 1

exp , 0,cu t t c t u tθ θ
ε − −− −

 ′+ ≤ + ≥ 
 

       (5.21) 

finally yields the continuous (with respect to the ( )21H − Ω -norm) dependence 
on the initial data, as well as the uniqueness, for ( ), ,u v θ . 

This yields uniform in time estimates (i.e., on + ) on the solutions, as well as 
the dissipativity of the corresponding solution operators, we set 
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( ) ( )1 2 .H LΦ = Ω × Ω  

We have the continuous (with respect to the semigroup 

( ) ( ) ( ) ( )( ) ( ]0 0 0: , , , , 0, 0,S t u u t t tε ε
ε θ θ ε εΦ→Φ ≥ ∈  

(i.e., ( )0S Iε =  (identity operator) and ( ) ( ) ( ), , 0S t s S t S s t sε ε ε+ = ≥ ). We 
then deduce from (4.3) the following theorem. 

Theorem 5.2. The semigroup ( )S tε  is dissipative in Φ , i.e., there exists a 
bounded set 0 ⊂ Φ  (called absorbing set) such that, for every bounded set 

⊂ Φ , there exists ( )0 0 0t t= ≥  such that 0t t≥  implies ( ) 0S tε ⊂  . 
We thus deduce from standard results the following theorem. 
Theorem 5.3. The semigroup ( )S tε  possesses the connected global attractor 

ε  such that ε  is compact in Φ , verifying: 
1. ε  is invariant, i.e., ( ) , 0S t tε ε ε= ∀ ≥  ; 
2. ε  attracts all bounded sets of initial data in the following sense: 

B∀ ⊂ Φ  bounded, ( )( ), 0dist S t Bε ε →  as t →+∞ , 

where dist denotes the Hausdorff semi-distance between sets defined by 

( ), supinf
b Ba A

dist A B a b
Φ∈∈

= −  

(we refer the reader to, e.g., [18] for more details.) 
The next step would be to study the existence of finite-dimensional attractors 

for , 0t ≥ , ( ]00,ε ε∈ , and their stability with respect to ε , as well as their 
convergence to (proper ( )S tε  liftings of) those corresponding to ( )S tε  as 

0ε +→ . In particular, one interesting and important problem would be to con-
struct a robust (i.e., both upper and lower semicontinuous as 0ε +→ ) family of 
exponential attractors, meaning that the dynamics of the original and limit prob-
lems are close in some proper sense. This will be addressed elsewhere. We also 
refer the interested reader to, e.g., [19] for discussions on such objects. 

6. Convergence to the Classical Conserved Phase-Field Model 

Our aim in this section is to pass to the limit in (2.1)-(2.5) as ε  goes to 0+ . Note 
that the limit problem for 0ε =  corresponds to the classical conserved phase-
field model, 

( )
0

2 0 0 0Δ Δ Δ ,u v f u
t

θ∂
+ − = −

∂
                   (6.1) 

0 0 ,u v=                             (6.2) 
0 0

0Δ ,u
t t
θ θ∂ ∂

− = −
∂ ∂

                        (6.3) 

0 0 0 0Δ 0 on ,u v v θ
ν ν ν ν

∂ ∂ ∂ ∂
= = = = Γ

∂ ∂ ∂ ∂
                (6.4) 

0 0
0 00 0
, .

t t
u u θ θ

= =
= =                      (6.5) 

To do so, we first need to derive estimates on the solutions to (2.1)-(2.5) which 
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are independent of ε  (we consider here strong solutions as given in Theorem 
5.1). We thus consider the initial and boundary value problem 

( )2Δ Δ Δ ,u v f u
t

ε
ε ε εθ∂

+ − = −
∂

                     (6.6) 

Δ ,u v vε ε εε= −                            (6.7) 

Δ ,u
t t

ε ε
εθ θ∂ ∂

− = −
∂ ∂

                         (6.8) 

0 on ,u v vε ε ε εθ
ν ν ν ν

∂ ∂ ∂∆ ∂
= = = = Γ

∂ ∂ ∂ ∂
                   (6.9) 

0 00 0
, ,

t t
u uε εθ θ

= =
= =                       (6.10) 

Repeating, for (6.6)-(6.10), the estimates leading to (4.14), we obtain 

( ) ( )1 3

2
2 22

2
1

d ,
d H H

E uc E v c
t t

ε ε
ε ε εθ

Ω Ω
−

 ∂  ′+ + + + ≤
 ∂ 

           (6.11) 

where 
2 2

2 1 1 1
E E u uε ε ε εδ

−
= + +  

and 

( )2 2 2

1 Δ 2 d .E v v F u xε ε ε ε εε θ
Ω

= ∇ + + +∫           (6.12) 

We can now prove the following. 
Theorem 6.1. We assume that the assumptions of Theorem 5.1 hold. Then, the 

sequence of solutions ( ), ,u vε ε εθ  to (6.6)-(6.10) converges to a solution to (6.1)-
(6.5) on finite time intervals [ ]0,T , 0T > , as 0ε +→ . 

Proof. It follows from the uniform (with respect to ε ) a priori estimates de-
rived and standard Aubin-Lions compactness results that, at least for a subse-
quence that we do not relabel, there exist ( )0 0 0, ,u v θ  and χ  such that, in par-
ticular, 

( )( ) ( )( )0 4 2 1    0, ; weak- , in 0, ; weakly and a.e.,u u in L T L L T Hε ∞→ Ω Ω  

( )( )
0

2 1in 0, ; weaklyu u L T H
t t

ε
−∂ ∂

→ Ω
∂ ∂

 

( )( ) ( )( )0 1 2 2in 0, ; Ω weak- and 0, ; Ω weakly,v v L T H L T Hε ∞→   

( )( ) ( )( )
1

2 2 32 in 0, ; weak- and 0, ; weaklyv L T H L T Hεε χ ∞→ Ω Ω  

and 

( )( ) ( )( )0 2 2 1in 0, ; weak- and 0, ; weakly.L T L L T Hεθ θ ∞→ Ω Ω  

For a proper u , which implies that 

( ) ( ) ( ) ( ) ( )( )
4

0 3a.e. and is bounded in 0, .f u f u f u L Tε ε→ Ω ×  

Therefore, ( ) ( )0f u f uε →  in ( ) ( )( )
4
3 0,L TΩ ×  weakly, which is sufficient to 
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pass to the limit in the weak formulation. 
Having this, it is now standard to pass to the limit in (6.6)-(6.10) to find, at the 

limit, 

( )( ) ( )( ) ( )( )( ) ( )0 0 0d , , , 0 in ,
d

u u f u
t

ϕ ϕ ϕ ′+ ∆ ∆ + ∇ ∇ = Ω       (6.13) 

( )( ) ( )( ) ( )( ) ( )0 0 0d d, , , in ,
d d

u
t t

θ ϕ θ ϕ ϕ ′+ ∇ ∇ = − Ω         (6.14) 

0 0
0 00 0
,

t t
u u θ θ

= =
= =                     (6.15) 

i.e., ( )0 0,u θ  is solution to the classical conserved phase-field model. 
Noting finally that the solution to the classical conserved phase-field model 

(6.1)-(6.5) is unique, we see that the whole sequence ( ), ,u vε ε εθ  converges. 
We can also derive error estimates and prove the following. 
Theorem 6.2. Under the assumptions of Theorem 6.1, then, 0T∀ > , 

( ) ( ) ( )( )4 2

2 2 2 2 20 0
0 0 01 1

, e .c T
L Hu u c T u vε εθ θ ε θ′

Ω Ω− −
− + − + +≤  

Proof. We set ( ) ( ) ( )0 0 0, , , , , ,u v u v u vε ε εθ θ θ= − . Note that 

0, 0.u v tθ= = = ≥                     (6.16) 

Furthermore, ( ), ,u v θ  solves 

( ) ( ) ( )1 0Δ Δ ,u v f u f u
t

ε θ− ∂
− − + − =

∂
                 (6.17) 

Δu v vε= −                           (6.18) 

Δ u
t t
θ θ∂ ∂
− =

∂ ∂
                         (6.19) 

0 on ,v θ
ν ν
∂ ∂

= = Γ
∂ ∂

                       (6.20) 

0 00 0, .t tu u θ θ
= =
= =                        (6.21) 

Multiplying (6.17) by u , we obtain, owing to (2.8), 

( )( )2 2 2

1

d 2 ,Δ 3 .
d

u u v u
t

θ
−
− ≤ +                 (6.22) 

Note that, employing the interpolation inequality 

2

1u u u
−

≤ ∇  

we can write, owing to (6.18), 
2

1 1 Δ .u u u u vε
− −
∇ + ∇≤                  (6.23) 

Moreover, employing again (6.18), we can see that 

( )( ) ( )( )22 ,Δ 2 2 , Δ .u v v v vεε− = ∇ − ∇ ∇ 
            (6.24) 
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It thus follows from (6.22) to (6.24) that 

2 2 2

1 1 1

d 2 3 3 Δ 2 Δ ,
d

u v u u u v v v
t

ε ε θ
− − −
+ ∇ ∇ + ∇ + ∇ ∇ +≤  

which yields, employing Young’s inequality, 

( )22 2 2 22
1 1

d Δ .
d

u v c u v
t

εε θ
− −

+ ∇ +≤+ ∇                 (6.25) 

Let us next multiply (6.19) by ( )1( Δ) u θ−− +  to obtain 

2 2 2

1

d .
d

u u
t

θ θ
−

≤+ +                         (6.26) 

Summing (6.25) and 2ε  times (6.26), we find 

( ) ( )22 2 2 22 2 2
1 1 1

d Δ , 0,
d

u u c u v u c
t

εε θ ε ε
− − −
+ + ≤ + ∇ + >       (6.27) 

where 

( )2 2 2 22
1 1 1 1 .u u c uε θ θ
− − − −

≥+ + +                  (6.28) 

Applying Gronwall’s lemma to (6.27), owing to (6.28) leads to 

( ) ( ) ( ) ( )( )
22 2

1 1 0

2 2 1 e Δ d .c T T
u t t c T v u s sεθ ε ′

− −
+ + ∇ +≤ ∫  

Integrating next (6.11) over ( )0,T , we find 

( )( ) ( ) ( )( )4 2

2 2 2 22
0 0 00

Δ d ,
T

L Hv u s s c u vε θ
Ω Ω

∇ + ≤ + +∫  

which finishes the proof. 
Remark 6.1. According to (2.2), the error estimate on ( ),u θ  implies the error 

estimate on v . 

7. Numerical Simulations 

As far as the numerical simulations are concerned, we use a P1-finite element for 
the space discretization, together with a semi-implicit Euler time discretization 
(i.e., implicit for the linear terms and explicit for the nonlinear ones). The numer-
ical simulations are performed with the software Freefem++ [20]. In the simula-
tions below, we set ( ) ( )0,1 0,1Ω = ×  and we choose ( ) 3f s s s= − . The triangu-
lation h  is obtained by dividing Ω  into 100 × 100 rectangles and by dividing 
each rectangle along the same diagonal. We set  

( )0
0 |; is affine ; 0 on

h
h h h

T h
vV v v T
ν

 ∂
= ∈ Ω ∀ ∈ = Γ ∂ 

  . The time step is taken as  

0.001tδ = . 
In order to simulate a spinodal decomposition, the initial data 0

hu  is taken as 
the projection onto 0

hV  of a randomly distributed function between 0.5 and 0.7. 
The solution ( ) 0., h

hu n t Vδ ∈  is denoted by n
hu . 

The full discretization scheme of (2.1)-(2.4) reads: Then, for 0n ≥ , we look for

( )1 1 1 1, , ,n n n n h h h h
h h h hu w v V V V Vθ+ + + + ∈ × × ×  such that: 
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( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( )

1 1 1

1 1

1 1 1

1 1 1

1 1, , , , ,

, , , ,

, , , 0,

1 1 1 1, , , , , ,

n n n n
h h h h

n n n
h h h

n n n
h h h

n n n n n
h h h h h

u w u
t t

w v f u

u v v

u u
t t t t

φ φ θ φ φ
δ δ

ψ ψ ψ

τ τ ε τ

ϕ θ ϕ θ ϕ θ ϕ ϕ
δ δ δ δ

+ + +

+ +

+ + +

+ + +

 + ∇ ∇ − ∇ ∇ =

 − ∇ ∇ = −

 − − ∇ ∇ =

 + + ∇ ∇ = +

 (7.1) 

for all 0, , , hVφ ψ τ ϕ ∈ . 
Figure 1 corresponding to the fixed parameter 0.05ε = , show the evolution of 

hθ , first part of the numerical solution ( ), ,n n n
h h hu v θ  to (7.1), at different times 

0.05t =  ( 50n = ), 0.1t =  ( 100n = ). 
Figure 2 and Figure 3 correspond to the numerical solution hθ  at time 

0.1t =  ( 100n = ), for different values of ε : 0.1ε = , 0.01ε = , 0.001ε = , 
0ε = . It illustrates the fact that, as ε  tends to 0, the solution ( ),h hu θ  tends to 

the solution of the classical conserved phase-field model (corresponding to the 
trivial case 0ε = ). 

 

 
Figure 1. hθ  with 0.05ε = ; at time 0.05t =  (left), 0.1t =  (right). 

 

 

Figure 2. hθ  at time 0.1t = ; when 0.1ε =  (left), 0.01ε =  (right). 
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Figure 3. hθ  at time 0.1t = ; when 0.001ε =  (left), 0ε =  (right). 

8. Conclusion 

In this article, we proposed a conserved phase-field model based on microconcen-
trations. In particular, we proved the existence and uniqueness of solutions, as 
well as the convergence to the classical conserved phase-field model and the ex-
istence of the global attractor. Furthermore, we obtained some numerical simula-
tions. 
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