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Abstract 
This paper presents a nonlinear micropolar nonclassical mathematical contin-
uum theory for finite deformation/finite strain deformation physics of com-
pressible thermoviscoelastic solids based on classical rotations cΘ  and its 
rates. Stress and moment measures for finite deformation/finite strain physics 
are utilized in conjunction with the finite deformation/finite strain measures 
presented in ref. [1] to derive conservation and the balance law as well as the 
constitutive theories using conjugate pairs in the entropy inequality and the 
representation theorem. The nonlinear micropolar nonclassical continuum 
theory presented in this paper for thermoviscoelastic solid: (1) incorporates 
nonlinear ordered rate dissipation mechanism for the viscous medium based 
on rates of Green’s strain tensor up to order n . This is usual viscous dissipa-
tion (macrodissipation) in the solid medium due to the viscosity of the me-
dium. (2) Also incorporates additional ordered rate dissipation mechanism 
due to microconstituents and the viscosity of medium, which depends upon 
rates of the symmetric part of the rotation gradient tensor up to order n



. We 
refer to this dissipation mechanism as microdissipation or microviscous dis-
sipation. This dissipation mechanism is consistent with the deformation 
measure derived in ref. [1] for nonlinear micropolar nonclassical continuum 
theory. (3) With the assumption of small deformation, small strain, the non-
linear micropolar nonclassical continuum theory presented here reduces to a 
consistent linear micropolar nonclassical continuum theory with both mech-
anisms of dissipation. (4) In the absence of micropolar physics, the theory re-
duces to finite deformation/finite strain classical continuum theory for com-
pressible thermoviscoelastic solid medium. The complete mathematical model 
consisting of the conservation and balance laws and the constitutive theories 
has closure without the conservation of micro inertia law needed in the mi-
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cropolar theories of Eringen for closure. It has been shown that the balance of 
moment of moments is an essential balance law in all micropolar theories for 
achieving thermodynamic and mathematical consistency of the resulting lin-
ear micropolar theory. The balance of moment of moments balance law is nec-
essary and has been successfully used in ref. [2] to derive a nonlinear micropo-
lar theory for thermoelastic solid and is essential in this nonlinear micropolar 
nonclassical continuum theory for thermoviscoelastic solid based on classical 
rotations cΘ  presented in this paper. The nonlinear micropolar nonclassical 
continuum theory based on rotations ,c αΘ Θ  and α Θ  (neglecting cΘ ) is 
not considered in the present work due to the fact that the linear micropolar 
nonclassical continuum theory based on these rotations is thermodynamically 
and mathematically inconsistent [1]. 
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Nonclassical, Micropolar, Dissipation, Ordered Rate, Conservation and  
Balance Laws, Representation Theorem, Microviscous Dissipation,  
Microdissipation, Ordered Rate, Finite Deformation Theories, Finite Strain 

 

1. Introduction, Literature Review 

In the comprehensive works published by Eringen and Eringen et al. [3]-[21] and 
references [22]-[24] on 3M nonclassical continuum theories, it is relatively easy 
to conclude that whatever needs to be done regarding the theoretical foundations 
of 3M linear and nonlinear nonclassical continuum theories has already been 
done and that what remains are probably the applications. However, upon closer 
examination, we find that this indeed is not the case. In the works published by 
Eringen and Eringen et al., as well as by many other researchers who follow the 
approaches introduced by Eringen and Eringen et al., there are some serious 
shortcomings, omissions, and the use of mathematically unjustifiable approaches 
that have led to linear and nonlinear micropolar nonclassical continuum theories 
that are thermodynamically and/or mathematically inconsistent; hence, they are 
not valid nonclassical micropolar continuum theories. We will list some of the 
concerns and issues below and discuss their consequences on the resulting non-
classical continuum theories. 

(a) Yang et al. [25] and Surana et al. [26] [27] have shown that balance of mo-
ment of moments is an essential balance law in all micropolar nonclassical con-
tinuum theories. When this balance law is used, the Cauchy moment tensor be-
comes symmetric. The constitutive theory for the nonsymmetric moment tensor 
has been addressed using two approaches: (1) in the first approach, the nonsym-
metric tensor is considered as a constitutive tensor with nonsymmetric tensors as 
its argument tensors (amongst others). This approach is used almost exclusively 
in all published works of Eringen and Eringen et al. and by those that follow Er-
ingen. It is now well established due to works of Zhang, Wang, Spencer and Smith 
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[28]-[39], that for a nonsymmetric constitutive tensor, the basis of the space of the 
constitutive tensor cannot be established. Thus, nonsymmetric constitutive ten-
sors lead to constitutive theories (derived in published works by using potentials 
or polynomial approach) that are in violation of basic principles of mathematics, 
hence cannot be valid constitutive theories. (2) In the second approach, the non-
symmetric Cauchy moment tensor is additively decomposed into symmetric and 
skew symmetric tensors (Surana et al. [26] [27]) followed by derivation of consti-
tutive theories for each using representation theorem. This approach is mathe-
matically consistent based on the works of Zhang, Wang, Spencer and Smith [28]-
[39]. Surana et al. [26] [27] have shown using simple 2D micropolar physics that 
this approach leads to nonphysical constitutive theories. Thus, in the absence of 
balance of moment of moments balance law, there are no valid means of deriving 
constitutive theory for the Cauchy moment tensor. This is a major problem in all 
3M nonclassical continuum theories of Eringen and Eringen et al. This is signifi-
cant enough to question the validity of the published works on 3M. 

(b) The strain measures presented by Eringen [8] are in fact deformation 
measures. These are derived using expressions that are not dimensionless and 
hence fail to yield the simple linear strain measure (change in length per unit 
length) for 1D case. These measures in their original form or in the modified form 
may be viewed as strain measures if they appear in the rate of work conjugate pairs 
in the entropy inequality. 

(c) In any deforming solid continua, the deformation consists of elongation of 
the material lines and change in angle between them and rigid rotation of the ma-
terial lines. Additive decomposition of the displacement gradient tensor d J  (lin-
ear elasticity) into symmetric d

s =J ε  and skew symmetric tensors d
a J  allows 

us to separate strains ( ε ) and the rotations d
a J . Energy equation and the entropy 

inequality establish rate of work conjugate pairs that enable determination of con-
stitutive tensors and their argument tensors. We remark that choice of d J  or 
d
a J  as argument tensors of the stress tensor is invalid. Important point to note is 
that rigid rotations (as in d

a J ) or strain plus rigid rotations (as in d J ) cannot be 
argument tensor of the stress constitutive tensor. The deformation measures [1] 
clearly show the strain measure for rigid microconstituents in micropolar non-
classical continuum theory to be zero. Thus, equations (20.1) and (20.6) in ref. [8], 
which consider strain measure as d J  plus rotations of microconstituents and 
then use this measure as an argument of stress tensor, have no meaning. A con-
stitutive theory for stress tensor based on this strain measure is obviously in vio-
lation of thermodynamics (second law) and is bound to be erroneous. 

(d) In micropolar nonclassical continuum theory, balance of angular momenta 
defines antisymmetric Cauchy stress tensor in terms of the gradients of the Cau-
chy moment tensor. If we have constitutive theory for Cauchy moment tensor 
(which we do), then the antisymmetric Cauchy stress tensor is defined, hence can-
not be part of the constitutive theory in the stress tensor. This requires additive 
decomposition of ( )0σ  i.e., ( ) ( ) ( )0 0 0

s a= +σ σ σ  in which only ( )0
sσ , the sym-
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metric part of contravariant Cauchy stress tensor ( )0σ , can be a constitutive ten-
sor. A single constitutive theory for ( )0

sσ  must address volumetric as well as dis-
tortional deformation that are mutually exclusive; this is obviously not possible. 
Further additive decomposition of ( ) ( ) ( )0 0 0e d

s s s= +σ σ σ  is needed to describe 
volumetric (constitutive theory for equilibrium tensor, ( )0e

sσ ) and distortional 
(constitutive theory for deviatoric ( )0d

sσ  tensor) deformation physics that are 
mutually exclusive. None of these aspects are discussed in the literature on mi-
cropolar nonclassical continuum theories. In our view, the published work in this 
area lacks clarity, consistent use of concepts related to physics, and of course, the 
derivations of the constitutive theories are in total violation of the representation 
theorem. 

(e) In case of linear micropolar nonclassical continuum theory, the deformation 
measures of references [1] clearly show that the theory must only consider rigid 
rotations of the microconstituents. If we assume that rigid rotations α Θ  of the 
microconstituents are unknown degrees of freedom at a material point (Eringen, 
Eringen et al. and others), then a material point has cΘ  classical rotations 
(known in terms of displacement gradients) and unknown rotations α Θ . In the 
published works, linear micropolar nonclassical continuum theory based on 

c α+Θ Θ  and α Θ  (neglecting cΘ ) have been reported by many researchers. 
Surana et al. [40] [41] have shown that linear micropolar nonclassical continuum 
theory based on these two rotation considerations lead to spurious conjugate pairs 
in the entropy inequality that necessitate constitutive theory for ( )0

aσ , which of 
course is not physical as ( )0

aσ  are defined by balance of angular momentum 
equations. In our view [1], all published works on linear micropolar nonclassical 
continuum theory based on c α+Θ Θ  and α Θ  are in violation of physics, 
hence result in invalid micropolar nonclassical continuum theory. 

(f) Principle of equipresence used almost exclusively in published micropolar 
nonclassical continuum theory is not supported by second law of thermodynam-
ics. It creates nonphysical coupling between classical and nonclassical physics in 
the micropolar nonclassical continuum theory. 

In view of (a)-(f), the published works on 3M nonclassical continuum theory, 
whether linear or nonlinear, there are many concerns, hence, the theories are 
questionable. In published work on micropolar nonclassical continuum theory, 
the thermodynamic and mathematical details use many questionable and un-
founded approaches that cannot be supported by thermodynamic principles or 
mathematics. Thus, the natural question arises: Do we have any valid linear and 
nonlinear micropolar nonclassical continuum theory at present that is thermody-
namically and mathematically consistent? We discuss answer to this question be-
low. Surana et al. [1] [2] [26] [27] [40]-[43] have shown the following in these 
works: 

(1) Classical rotations ( cΘ ) constitute a free field in classical continuum me-
chanics. It is always present undisturbed, hence has no effect on the development 
of classical continuum theory. This implies that each material point in the de-
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formed solid medium has rotations cΘ  at the material points about the axes of 
triad, axes being parallel to x -frame. The presence of microconstituents offers 
resistance to the free field; as a consequence, the free field is no longer a free field, 
but instead defines the rigid rotations of the microconstituents i.e., cΘ  are the 
rotations of the rigid microconstituents (see [1] for explanation). Thus, we see that 
classical rotations cΘ  are sufficient to account for the rigid rotations of the mi-
croconstituents. This eliminates the need for α Θ  as additional unknown dofs at 
a material point, hence the need for spurious and nonphysical constitutive theory 
for ( )0

aσ  necessitated due to presence of α Θ  as unknown degrees of freedom 
at a material point. 

(2) Balance of moment of moments must always be used as a balance law in all 
nonclassical continuum theory (Yang et al., [25], Surana et al. [26] [27]). When 
this balance law is used, Cauchy moment tensor is symmetric and the problems 
associated with the constitutive theory for nonsymmetric moment tensor are 
eliminated. 

(3) Based on (1) and (2), Surana et al. [1] [40] [41] have presented thermody-
namically and mathematically consistent linear micropolar nonclassical contin-
uum theory for solid and fluent media with successful model problem studies. To 
our knowledge, works of Surana et al. are the only works that contain valid linear 
micropolar nonclassical continuum theory that are supported by thermodynam-
ics and mathematics. Model problem studies confirm that the micropolar non-
classical continuum theory based on cΘ  contain correct micropolar physics. 
Thermodynamic and mathematical consistency of linear micropolar nonclassical 
continuum theory based on cΘ  is assurance of its validity. 

(4) Surana et al. [40] [41] addressed thermodynamic and mathematical con-
sistency of linear micropolar theories based on rotations cΘ , c α+Θ Θ  and 

α Θ  with the conclusion that the only linear micropolar theory based on rotations 

cΘ  is a valid linear micropolar theory. 
(5) In references [44]-[46] authors derived conservation and balance laws for 

micropolar medium for finite deformation/finite strain physics using first Piola-
Kirchhoff stress *σ , first Piola-Kirchhoff moment *m , rate of deformation gra-
dient tensor J  and the rate of classical rotation gradient tensor, cΘJ , use of 
these measures is convenient in the derivation, but the final form of the conserva-
tion and balance laws can always be expressed in terms of contravariant second 
Piola-Kirchhoff stress tensor [ ]0σ  and contravariant second Piola-Kirchhoff 
moment tensor [ ]0m  and their conjugate rates as shown in this paper. These are 
valid measures for finite deformation/finite strain physics. Additive decomposi-
tion of [ ] [ ] [ ]0 0 0

s a= +σ σ σ  and [ ] [ ] [ ]0 0 0e d
s s s= +σ σ σ  are used. The constitutive 

theory for [0]e
sσ  in terms of thermodynamic pressure is derived using entropy 

inequality in Eulerian description. The final reduced form of the entropy ine-
quality contains constitutive tensors [ ]0, d

sq σ  and [ ]0m  with conjugate tensors 

[ ]0,g ε  and cΘJ , where q  and g  being tensors of rank one, and all others are 
symmetric tensors of rank two. Constitutive theories for [ ]0d

sσ , [ ]0m  and q  are 
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derived using representation theorem. This nonlinear micropolar nonclassical 
continuum theory is thermodynamically and mathematically consistent, and the 
mathematical model consisting of conservation and balance laws and the consti-
tutive theories has closure. To our knowledge, this is the only thermodynamically 
and mathematically consistent nonlinear micropolar nonclassical continuum the-
ory for thermoviscoelastic solid matter available in the published literature. 

2. Scope of Work 

In this paper, we present finite deformation/finite strain nonlinear micropolar 
nonclassical continuum theory for compressible thermoviscoelastic solids. This 
nonlinear micropolar nonclassical continuum theory incorporates the finite de-
formation/finite strain deformation physics for thermoelastic solid, but also in-
corporates mechanisms of dissipation that are absent in the nonlinear micropolar 
nonclassical continuum theory for thermoelastic solids. We begin with the con-
servation and balance laws in references [1] [26] [41] for finite deformation/finite 
strain micropolar physics expressed in terms of *σ , *m  and their rate of work 
conjugates J  and cΘJ . * *,mσ  are convenient to use in the derivation of the 
conservation and balance laws but these are not valid measures for finite defor-
mation/finite strain physics. Expressing *σ  and *m  in terms of [ ]0σ  and 

[ ]0m , contravariant second Piola-Kirchhoff stress and moment tensors and estab-
lishing their rate of work conjugate is not straight forward due to micropolar 
physics. This is an important aspect of the derivation presented in this paper. Of 
course, without the valid rate of work conjugate, the constitutive theories cannot 
be derived. Thus, there are two important aspects of the work presented in this 
paper: (1) conservation and balance laws expressed in terms of [ ]0σ  and [ ]0m  
with thermodynamically valid rate of work conjugates (2) the second aspect of the 
work is derivation of ordered rate constitutive theories for [ ] [ ]0 0,mσ  and q  
based on the conjugate pair in the entropy inequality and theory of isotropic ten-
sors, thus ensuring thermodynamic and mathematical consistency of the result-
ing mathematical model. Theories incorporate micro as well as macro ordered 
rate nonlinear deformation mechanism. The additive decomposition of [ ]0σ ; 

[ ] [ ] [ ]0 0 0
s a= +σ σ σ ; [ ] [ ] [ ]0 0 0e d

s s s= +σ σ σ  is necessary to consider various aspects 
of deformation physics. The constitutive theory for equilibrium stress tensor 

[ ]0e
sσ  describing volumetric deformation physics remains the same as in ref. [42] 
[43]; hence, only the final forms of the equations related to the constitutive theory 
for equilibrium stress tensor are presented. Constitutive theories for [ ]0d

sσ  and 
[ ]0m  address distortional deformation physics as well as dissipation mechanisms. 

The rate of work conjugate pair [ ]
[ ]

0
0: σ ε  in the reduced form of the entropy in-

equality suggests that elasticity must be due to [ ]0ε  and dissipation mechanism 
is due to [ ] [ ]0 1=ε ε  i.e., Green’s strain rate of order one. In the present work, we 
generalize this nonlinear dissipation mechanism to be a function of Green’s strain 
rates of up to order n  i.e., dependent on [ ]; 1,2, ,i i n= ε . Thus, we have or-
dered rate theory for the dissipation of the medium, which is entirely due to vis-
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cous drag forces between the particles of the medium. The second nonlinear 
mechanism of dissipation is due to microconstituents and the viscosity of the me-
dium, micro viscous dissipation or micro dissipation. The rigid rotations of the 
microconstituents must overcome the viscous drag forces due to surrounding vis-
cous medium. This mechanism is naturally a function of the rotation rates of the 
microconstituents. Based on this line of reasoning and using classical rotations 

cΘ , we have a free field cΘ  and associated rotation rate c
Θ  field in the ab-

sence of microconstituents. Due to the presence of microconstituents, the rota-
tions cΘ  and their rates c

Θ  are in fact rotations and rotation rates of the mi-
croconstituents. The mechanical work expended due to the rotations of the mi-
croconstituents in overcoming viscous drag results in additional entropy genera-
tion that influences thermal field. This mechanism of dissipation, micro dissipa-
tion or micro viscous dissipation, is also incorporated in the present work as an 
ordered rate theory of up to order n . The constitutive theories for [ ]0, d

sq σ  and 
[ ]0m  are derived using integrity (complete basis) in conjunction with representa-

tion theorem. In each case, material coefficients are derived. The material coeffi-
cients can be a function of the combined invariants of the argument tensors of 
each constitutive tensor and temperature θ . Simplified constitutive theories that 
are linear in the components of the argument tensor are also presented. Linear 
micropolar nonclassical continuum theory is shown to be a complete subset of 
nonlinear micropolar nonclassical continuum theory presented in this paper. 
Also, the nonlinear finite deformation/finite strain classical continuum theory re-
mains intact when micropolar physics is discarded. It is shown that the nonlinear 
micropolar nonclassical continuum theory for thermoviscoelastic solid presented 
in this paper is thermodynamically and mathematically consistent, and that the 
mathematical model consisting of conservation and balance laws and constitutive 
theories has closure. 

3. Consideration of Various Measures 

In the following, we present a short summary of various measures considered in 
deriving the conservation and balance law and the constitutive theories for non-
linear micropolar nonclassical continuum theory for compressible thermoviscoe-
lastic solid matter. In finite deformation physics, use of contravariant Cauchy 
stress tensor and derivation of corresponding first and second Piola-Kirchhoff 
stress tensors using correspondence rules is commonly used in classical contin-
uum mechanics [42] [43]. In the case of nonlinear micropolar nonclassical con-
tinuum theory, these measures also remain valid. Additionally, we have contra-
variant Cauchy moment tensors and derivations of corresponding first and sec-
ond Piola-Kircchoff moment tensors. The Cauchy principle holds for co- and con-
tra-variant stress and moment tensors [42]-[46], and interrelationships between 
Cauchy, first and second Piola-Kirchhoff stress tensors as well as moment tensors 
provide flexibility in terms of a suitable choice of measure that maintains simplic-
ity in the details of the derivations. Following references [42] [43] [45] [46], we 
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have the following (for compressible matter): 
Cauchy principle: 

( )( ) ( )( )T T0
0;= ⋅ = ⋅P n P nσ σ                      (1) 

( )( ) ( )( )T T0
0;= ⋅ = ⋅M m n M m n                     (2) 

Correspondence rules for first, second Piola-Kirchhoff stress and moment ten-
sors: 

{ } { } { } { }
( ) ( )T TT 1 T 10 0* T * T

;

;

dF dF dM dM

J J m J m Jσ σ
− −

= =

          = =          

           (3) 

{ } [ ]{ } { } [ ]{ }
[ ] [ ] ( ) [ ] [ ] ( )T TT T1 11 10 00 0T T

;

;

dF J dF dM J dM

J J J m J J m Jσ σ
− −− −

= =

         = =         

      (4) 

We note that since ( )0σ  is not symmetric. *σ  and [ ]0σ  are nonsymmetric 
as well. When balance of moment of moments is used as a balance law, ( )0m  is 
symmetric, hence [ ]0m  is symmetric but *m  remains not symmetric. 

4. Classical Rotations, Their Gradients and Other  
Considerations 

In reference [1], authors have discussed that in the absence of microconstituents, 
the classical rotation field is a free field, hence the classical continuum theories are 
not affected by its presence. Based on classical continuum mechanics in every de-
forming solid matter, the classical rotation field exists as a free field. In the pres-
ence of microconstituents, the classical rotation field is no longer a free field, in-
stead it describes the rigid rotations of the microconstituents. A simple example 
illustrates this quite well. Consider 1D axial deformation of an unconstrained rod 
subjected to a force at the right end. The rigid body translations of the rod is a free 
field that has no affect on the deformation of the rod as all points of the rod are 
moving in the same direction by the same amount. If we constrain the left end of 
the rod from moving, then the deformation field is no longer a free field and is in 
fact the actual deformation field of the constrained rod with load on the right end. 
Thus, we see that the obstruction (constrained left end in this case) changes the 
free field to the actual deformation field of the constrained rod. Our situation of 

cΘ  as a free field and the microconstituents obstructing this free field is exactly 
similar to the axial rod. That is the free field cΘ  in the presence of microconstit-
uents becomes a rotation field cΘ  describing the rotations of the microconstit-
uents, meaning cΘ  are in fact the rotations of the microconstituents. 

Thus, in micropolar theory requiring rigid rotations of the microconstituents, 
classical rotations serve as their rigid rotations. Furthermore, it has been shown 
in references [40] [41] that if we consider rigid rotations of the microconstituents 
as additional unknown degrees of freedom at the material points, a valid linear 
micropolar theory that is thermodynamically and mathematically consistent is 
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not possible. In case of linear micropolar theories [40] [41], authors have shown 
that a micropolar theory based on classical rotations as rigid rotations of the mi-
croconstituents is always thermodynamically and mathematically consistent pro-
vided balance of moment of moments is used as a balance law and the constitutive 
theories are derived using representation theorem. The work presented in this pa-
per for nonlinear micropolar continuum theory for thermoviscoelastic solids is 
strictly based on classical rotations as rigid rotations of the microconstituents, 
thus in this micropolar theory a material point only has three translational degrees 
of freedom. Some details of classical rotations cΘ , their gradients, stress and mo-
ment tensors are given below: 

( ) ( ) ( )

3 32 1 2 1
1 2 3

2 3 3 1 1 2

1 1 2 2 3 3

i i
c i j ijk

j j

c c c

u u
x x

u uu u u u
x x x x x x

∂ ∂
= × = × =

∂ ∂

     ∂ ∂∂ ∂ ∂ ∂
= − + − + −     ∂ ∂ ∂ ∂ ∂ ∂    
= Θ + Θ + Θ

u e e

e e e

e e e

Θ ∇ 

         (5) 

[ ] { }
{ } [ ] [ ]s a
x

J J J
x

 ∂
= = + ∂ 

                    (6) 

[ ] [ ] [ ]( ) [ ] [ ] [ ]( )T T1 1;
2 2s aJ J J J J J= + = −               (7) 

{ }
{ }
cc c c

s aJ J J
x

Θ Θ Θ∂ Θ     = = +     ∂
                  (8) 

T T1 1;
2 2

c c c c c c
s aJ J J J J J
Θ Θ Θ Θ Θ Θ              = + = −                 

        (9) 

(1)-(9) are basic measures, definitions and relations that are used in deriving 
the conservation and balance laws and the constitutive theories. 

We note that 
2

cΘ  appears in [ ]a J . In the conservation and balance laws, we  

must use [ ]0σ , [ ]0m  and [ ]0ε  as these are valid measures for finite defor-
mation/finite strain physics. However, since this is a relationship between [ ]0σ , 

[ ]0m , [ ]0ε  and *σ , *m  and J , for the sake of simplicity in the derivation of 
the conservation and the balance laws, we can use *σ , [ ]0m  and J  and finally 
express this in [ ]0σ , [ ]0m  and [ ]0ε  using relationship between them. The de-
formation measures for nonlinear 3M theories derived in ref. [1] are utilized in 
conjunction with entropy inequality. 

5. Conservation and Balance Laws 

Consider conservation and the balance laws derived in references [1] [41] for fi-
nite deformation/finite strain physics of micropolar medium using * *, ,m Jσ  
and cΘJ . Conservation of mass, balance of linear momenta, balance of angular 
momenta, first and the second law of thermodynamics are given below: 

( ) ( )0 ,J tρ ρ=x x                          (10) 
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*
0 0 0bDv

Dt
ρ ρ− − ⋅ =F ∇ σ                      (11) 

* *
0: 0bρ∇ ⋅ + + =m mσ                      (12) 

0ijk ijm =                             (13) 

( )* * *
0 0: : 0c b

c
De
Dt

ρ ρ
Θ

+∇ ⋅ − − − ⋅ ⋅ + =q J m J m m  Θ ∇σ       (14) 

( )* * *
0 0: : 0c b

c
D D
Dt Dt

θρ η ρ
θ

ΘΦ ⋅ + + − − − ⋅ ⋅ + ≤ 
 

q g J m J m m  Θ ∇σ   (15) 

This mathematical model contains: ( ) ( ) ( ) ( ) ( )3 , 9 , 6 , 3 , 1θu m qσ , a total of 22 
dependent variables, but has only balance of linear momenta (3), balance of an-
gular momenta (3) and first law of thermodynamics (1), seven partial differential 
equations in total. Thus, an additional 15 equations are needed for closure. These 
are provided by the constitutive theories for stress tensor (6), moment tensor (6), 
and heat vector (3). 

6. Constitutive Theories 

In the derivation of the constitutive theories, the first important step is to establish 
constitutive tensors and their argument tensors. The entropy inequality and axi-
oms of constitutive theory suffice for this purpose. Based on the conjugate pairs 

:q g , * : Jσ  and * : cΘm J  and axioms of constitutive theory, * *, ,q mσ  are 
likely the initial choice for the constitutive theories. * *, ,m Jσ  and cΘJ  are all 
nonsymmetric tensors of rank two, hence cannot be utilized in deriving constitu-
tive theories using representation theorem. Thus, at this stage, we have: 

( ) ( ) ( )* * * *, ; , ; ,cθ θ θ
Θ

= ≠ ≠q q g J m m Jσ σ             (16) 

Through additive decompositions, all nonsymmetric second rank tensors must 
be expressed as symmetric and skew-symmetric tensors. Additionally, the last 
term in (15) must also be addressed i.e., either eliminated by substitution or quan-
tified otherwise, so that entropy inequality is not effected by its arbitrary but ad-
missible value. We present details below: 

From balance of angular momenta, we have: 
* *

0 :bρ∇ ⋅ + = −m m σ                       (17) 

Using (17), the last term in (15) can be written as: 

( ) ( )* *
0 :b

c cρ⋅ ⋅ + = − ⋅m m Θ ∇ Θ σ                 (18) 

A simple calculation shows that 

( )* * *: : :c a a⋅ = =J J  Θ σ σ σ                   (19) 

Therefore, 

( )* *
0 :b

c aρ⋅ ⋅ + = −m m J Θ ∇ σ                   (20) 

Using (20), the entropy inequality (15) can be written as: 
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* * *
0 : : : 0c

a
D D
Dt Dt
θ θρ η

θ
Θ⋅ + + − − + ≤ 

 
q g J m J J  σ σ          (21) 

Consider * : Jσ  term in (21) 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

T TT* * *

T*

T T* *

T* *

: : :

:

: :

: :

s a

s a

s a

= =

= +

= +

= +

J J J

J J

J J

J J

  

 

 

 

σ σ σ

σ

σ σ

σ σ

                   (22) 

Consider ( )T* : sJσ  term in (22) 

( ) ( ) ( )
[ ]( ) ( ) ( )( )
[ ] [ ]( ) ( ) ( )( )
[ ]( ) [ ]( )
[ ]( ) [ ]( )
[ ]( ) [ ]( )
[ ]( ) [ ]( )

T T* * T T

T0 T

0 0 T

0 0 T

0 0 T

0 0 T

0 0 T

1:
2

1 :
2
1 :
2
1 1: :
2 2
1 1: :
2 2
1 1: :
2 2
1 1: :
2 2

s

s a

s s

s s

a a

a a

= ⋅ ⋅ + ⋅

= ⋅ + ⋅ + ⋅ −

= ⋅ − + ⋅ + ⋅ −

= ⋅ ⋅ + ⋅ ⋅

+ ⋅ ⋅ − ⋅ ⋅

− ⋅ ⋅ − ⋅ ⋅

− ⋅ ⋅ + ⋅ ⋅

J L J J L

J D W J J D W

J D W J J D W

J D J J J D

J W J J J W

J D J J J D

J W J J J W

σ σ

σ

σ σ

σ σ

σ σ

σ σ

σ σ

      (23) 

We consider each term in (23) 

[ ]( )( ) ( ) [ ] ( ) [ ]
[ ]

0 0 0T
0

1 1 1: : :
2 2 2s s s⋅ ⋅ = ⋅ ⋅ =J D J J D J σ σ σ ε          (24) 

[ ]( ) [ ] ( ) [ ]
[ ]

0 0 0T T
0

1 1 1: : :
2 2 2s s s⋅ ⋅ = ⋅ ⋅ =J J D J D J σ σ σ ε          (25) 

[ ]( )( ) [ ] [ ] ( )0 0 0T T1 1 1: : : 0
2 2 2s s s⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ =J W J J W J J W Jσ σ σ       (26) 

[ ]( )( ) [ ]( ) ( )0 0T T1 1: : 0
2 2s s⋅ ⋅ = ⋅ ⋅ =J J W J W Jσ σ           (27) 

[ ]( )( ) [ ] [ ] ( )0 0 0T T1 1 1: : : 0
2 2 2a a a⋅ ⋅ = − ⋅ ⋅ = − ⋅ ⋅ =J D J J D J J D Jσ σ σ      (28) 

[ ]( ) [ ] ( )0 0T T1 1: : 0
2 2s s− ⋅ ⋅ = ⋅ ⋅ =J J D J D Jσ σ          (29) 

[ ]( ) ( ) [ ] ( ) [ ] ( )0 0 0T T T T1 1 1: : :
2 2 2a a a− ⋅ ⋅ = − ⋅ ⋅ = − ⋅ ⋅J W J J J W J W Jσ σ σ    (30) 

[ ] ( ) [ ] ( ) [ ] ( )
[ ] ( )

T0 0 0T T T

0 T T

1 1 1: : :
2 2 2

1 :
2

a a a

a

⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅

J J W J W J J W J

J W J

σ σ σ

σ
       (31) 

Substituting (24)-(31) in (23), we obtain 
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( ) [ ]
[ ]

T 0*
0: :s s=J σ σ ε                        (32) 

Substituting from (32) into (22) we obtain 

( ) [ ]
[ ]

0* *
0: : :s a= +J J 

σ σ ε σ                      (33) 

Substituting from (33) into (21), and noting that * : aJσ  terms cancel, we ob-
tain the following form of entropy inequality: 

[ ]
[ ]

0 *
0 0: : 0c

s
D D
Dt Dt

θρ η
θ

ΘΦ ⋅ + + − − ≤ 
 

q g m Jσ ε            (34) 

We substitute ( ) [ ]( )TT 0* = ⋅m J m  in the last term of (34): 

( ) [ ] [ ] ( )( )0 0* T T: : : .c c cΘ Θ Θ= ⋅ = ⋅m J m J J m J J               (35) 

Substituting (35) in (34), we obtain the final form of entropy inequality: 

[ ]
[ ]

[ ] ( )( )0 0 T
0 0: : 0.c

s
D D
Dt Dt

θρ η
θ

ΘΦ ⋅ + + − − ⋅ ≤ 
 

q g m J Jσ ε          (36) 

From the entropy inequality (36), we observe that [ ]0ε  and ( ) ( )T cΘ⋅J J  are 
rate of work conjugate to [ ]0

sσ  and [ ]0m  (symmetric). 
We must check the validity of these rate terms in (36) by comparing them with 

the nonlinear deformation measures given by: 

[ ] [ ] [ ] ( ) [ ]
( )

{ }
T T; ; 2

a
a

J
J J I J J

x

α
α

  ∂    −    ∂
 

               (37) 

in which ( )J α 
   is the micro deformation gradient tensor. Its additive decom-

position into symmetric and skew symmetric components contains microconstit-
uent rigid rotations α Θ  in the skew symmetric part of tensor. Since microcon-
stituent rigid rotations are in fact classical rotations cΘ  (due to free field in the 
absence of microconstituents), in (37) we can replace α Θ  by cΘ  i.e., in place  

of ( )
a J α 
   by [ ]a J  and 

( )

{ }
a J

x

α  ∂   
 ∂
 

 by c J
Θ 

 
. 

[ ] [ ] [ ]( ) [ ] [ ]T T; ; 2 c
aJ J I J J JΘ −                     (38) 

These measures in the form listed in (38) or with some minor modifications 
must be utilized in the nonlinear micropolar nonclassical continuum theory for 
compressible thermoviscoelastic solid without memory. From entropy inequality 
(36), we note [ ]0, sq σ  and m  as constitutive tensors and [ ]0,g ε  and T cΘ⋅J J  
as their argument tensors are valid based on axiom of constitutive theory in the 
nonlinear micropolar nonclassical continuum theory for thermoviscoelastic solid. 
Thus, we see that [ ] [ ] [ ]TJ J I−  is a deformation measure in (37) and not a strain  

measure. We need to multiply by 1
2

 to obtain strain measure [ ]0ε , then it is 

valid argument tensor of [ ]0
sσ . Likewise, [ ]T2 c

aJ JΘ    is not conjugate to [ ]0m  
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either, we need to multiply by 1
2

 to obtain a measure conjugate to [ ]0m . We  

remark that as pointed out in ref. [1] and substantiated here, the derivations of  

strain measure initiated using ( )( ) ( )( )2 2
ds dsα α−  only yield deformation  

measures and not strain measures as we have seen here. Last term in (36) requires 
further considerations. We note that work conjugate pair is [ ] ( )0 T: cΘ⋅m J J , in 
which [ ]0m  is symmetric, thus we must consider: 

[ ] ( )( ) [ ] ( ) ( ) ( ) ( )( )TT0 0 T1: :
2

c c cΘ Θ Θ⋅ = ⋅ + ⋅m J J m J J J J            (39) 

We substitute (39) in (36) 

[ ]
[ ]

[ ] ( ) ( ) ( ) ( )( )T0 0 T
0 0

1: : 0
2

c c
s

D D
Dt Dt

θρ η
θ

Θ ΘΦ ⋅ + + − − ⋅ + ⋅ ≤ 
 

q g m J J J J 

σ ε (40) 

We can also substitute [ ] [ ] TT 0* Jσ σ   =     in the conservation and balance 
laws. Thus, the conservation and balance laws (10)-(15) now have the following 
form: 

( ) ( )0 ,J tρ ρ=x x                        (41) 

[ ]( )0 T
0 0 0bD

Dt
ρ ρ− − ⋅ ⋅ =

v F J∇ σ                 (42) 

[ ]( ) [ ]( )0 0T T
0: 0bρ⋅ ⋅ + ⋅ + =m J J m∇ σ              (43) 

( )0 0ijk ijm =                          (44) 

[ ]
[ ]

[ ]
[ ]

0 0
0 0 0: : 0c

s
De
Dt

ρ Θ+∇ ⋅ − − =q m σ ε ε             (45) 

[ ]
[ ]

[ ]
[ ]( )0 0

0 0 0: : 0c
s

D D
Dt Dt

θρ η
θ

ΘΦ ⋅ + + − − ≤ 
 

q g m σ ε ε         (46) 

in which 

[ ] [ ] ( ) ( ) ( ) ( )( )TT
0 1

1
2

c c c cΘ Θ Θ Θ= = ⋅ + ⋅J J J J 

ε ε            (47) 

Remarks 
(1) [ ]0

cΘ
ε  is the strain rate conjugate to [ ]0m . 

(2) The linear micropolar nonclassical continuum theory for infinitesimal de-
formation is a complete subset of the nonlinear micropolar nonclassical contin-
uum theory described by conservation and balance laws (41)-(47). In this case, 

[ ] ( ) [ ] ( )

[ ] [ ]

0 00 0

0 0

; ;

; c cΘ Θ

≈ = =

= =

J I m m
   

σ σ

ε ε ε ε
                  (48) 

in which ε  is linear strain measure and cΘε  is the symmetric part of the clas-
sical rotation gradient tensor. Thus, (41)-(47) reduce to the linear micropolar 
nonclassical continuum theory for infinitesimal deformation. 

(3) When cΘ  is not considered, the conservation and balance laws (41)-(47) 
reduce to finite deformation/finite strain classical continuum physics. 
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(4) When cΘ  is a free field (i.e., cΘ  is not considered) and the deformation 
is infinitesimal, the conservation and balance laws (41)-(47) reduce to infinitesi-
mal deformation classical continuum mechanics. 

(5) All conjugate pairs in the entropy inequality define constitutive tensors and 
their argument tensors that are supported by the representation theorem; hence, 
they would yield thermodynamically and mathematically consistent constitutive 
theories. 

6.1. Constitutive Theory for Equilibrium Stress [ ]e
s

0σ  

Recall that the additive decomposition [ ] [ ] [ ]0 0 0
s a= +σ σ σ  is necessary because 

[ ]0
aσ  cannot be part of the constitutive theories, as it is defined by balance of 
angular momenta through gradients of moment tensor. To address volumetric 
and distortional deformation physics (mutually exclusive) in nonlinear micropo-
lar nonclassical continuum theory, we must further additively decompose [ ]0σ  
into equilibrium [ ]0e

sσ  and deviatoric [ ]0d
sσ  components. Volumetric defor-

mation physics is associated with [ ]0e
sσ , while distortion deformation physics is 

described by [ ]0d
sσ . As discussed in ref. [1], compressibility in solids in Lagran-

gian description is controlled by J , and the density in the current configuration 
is deterministic through conservation of mass if J  is known. Thus, density is 
not a dependent variable in the conservation and balance laws in Lagrangian de-
scription for solid matter. The equation of state in solids is a consequence of den-
sity change i.e., for a density change caused due by J , there is a pressure field 
associated with it. The presence of this pressure field through equilibrium stress 
in balance of linear momenta is essential for correct force balance. We further 
elaborate that in compressible solids, one could determine solution for compress-
ible case without using equation of state, but such solutions would be erroneous 
due to incorrect force balance in the balance of linear momenta. Since compress-
ibility physics depends upon density and temperature, the constitutive theory for 

[ ]0e
sσ  must be obtained using the constitutive theory for ( )0eσ . Details of the 
derivation of the constitutive theory for [ ]0e

sσ  can be found in recent papers [40] 
[41] by the authors, including references [42] [43]. The final form of the constitu-
tive theory for [ ]0e

sσ  for compressible and incompressible cases are given by: 

[ ] ( ) ( ) ( ) ( )( ) ( )
T 10 1 1 T, , compressiblee

s p pρ θ ρ θ
−− −= ⋅ ⋅ = ⋅J J J J J Jσ     (49) 

[ ] ( ) ( )( ) ( )( ) ( )
T 10 1 1 T incompressiblee

s p pθ θ
−− −= ⋅ = ⋅J J J J J Jσ      (50) 

in which, ( ),p ρ θ  and ( )p θ  are thermodynamic and mechanical pressures. 
In (50), we could have used ≈J I  and 1≈J , but we leave the expression as 

it is in (50). Reduced form of entropy inequality (after considering constitutive 
theory for [ ]0e

sσ ) in Lagrangian description is given by: 

[ ]
[ ]

( )
[ ]( )0 0

0 0: : 0cd
sθ

Θ⋅
− − ≤

q g m σ ε ε               (51) 

Constitutive Theory for [ ]0d
sσ  
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The constitutive theory for [ ]0d
sσ  must address: (1) distortional deformation 

physics and (2) the macrodissipation mechanism due to viscosity of the medium. 
From the rate of work conjugate pairs [ ]

[ ]
0

0:d
s σ ε  in the reduced form of the en-

tropy inequality, [ ]
[ ]

0
0:d

sσ ε  is the work conjugate pair, suggesting that [ ]0ε  as 
argument tensor of [ ]0d

sσ  is a valid choice. From viscous fluid physics, we know 
that dissipation is a function of convected time derivative of the Green or Almansi 
strain tensor. Symmetric part of the velocity gradient tensor D  (where viscous 
stress is proportional to D ) is the first convected time derivative of the Green 
and Almansi strain tensors. This holds for any viscous medium. Thus, at the very 
minimum, the dissipation mechanism will require [ ]0d

sσ  to be a function of [ ]0ε  
or [ ]1ε , the first convected time derivative of the Green’s strain tensor (same as 
ordinary time derivative in this case). We can generalize this by assuming that 
viscous dissipation mechanism depends on strain rates [ ]; 1,2, ,i i n= ε  of up to 
order n . This is macro dissipation. This provides ordered rate dissipation mech-
anism. θ  is naturally an argument tensor of [ ]0d

sσ . Thus, we can write: 
[ ] [ ]

[ ] [ ]( )0 0
0 , , ; 1,2, ,d d

s s i i nθ= = σ σ ε ε                 (52) 

Now we can derive constitutive theory for [ ]0d
sσ  using representation theo-

rem. Let ; 1,2, ,i i Nσ σ=G 



 be the combined generators of the argument 
tensors of [ ]0d

sσ  in (52), that are symmetric tensors of rank two. Then, 
, ; 1,2, ,i i Nσ σ=I G 



 constitute the basis of the space of tensor [ ]0d
sσ , re-

ferred to as integrity. Hence, we can express [ ]0d
sσ  as a linear combination of 

, ; 1,2, ,i i Nσ σ=I G 



 in the current configuration. 

[ ] ( ) ( )0 0

1
; , ; 0,1, , ; 1,2, ,

N
d i i i i j
s

i
I i N j M

σ

σ σ σ σ σ σ σ σα α α α θ
=

= + = = =∑I G  

   

σ  

(53) 

in which ; 1,2, ,jI j Mσ σ= 



 are the combined invariants of the same argu-
ment tensor of [ ]0d

sσ  in (52). 
The material coefficients in (53) are determined by expanding  

; 0,1, ,i i Nσ σα = 



 in Taylor series in ; 1,2, ,jI j Mσ σ= 



 and the tempera-
ture θ  about a known configuration Ω  (based on principle of smooth neigh-
borhood) and retaining only up to linear terms in ; 1,2, ,jI j Mσ σ= 



 and tem-
perature θ  (for simplicity of the resulting constitutive theory). 

( ) ( )
1

; 0,1, ,
i iM

i i j j
j

j
I I i N

I

σ σ σ
σ σ σ σ σ

σ
α αα α θ θ

θ ΩΩ Ω
= Ω Ω

∂ ∂
= + − + − =

∂∂∑ 

 

  



  (54) 

Substituting for 0σα


 and ; 1,2, ,i i Nσ σα = 



 from (54) into (53) 

[ ] ( ) ( )

( ) ( ) ( )

0 0
0

1

1 1

M
md j j

s j
j

i iN M
i j j i

j
i j

I I
I

I I
I

σ

σ σ

σ σ
σ σ σ

σ

σ σ
σ σ σ σ

σ

α αα θ θ
θ

α αα θ θ
θ

ΩΩ Ω
= Ω Ω

ΩΩ Ω
= = Ω Ω

 ∂ ∂ = + − + −
 ∂∂ 

 ∂ ∂ + + − + −
 ∂∂ 

∑

∑ ∑

I

G

 

 



 

  



σ

   (55) 

Collecting coefficients of ( ), , , ,j i j i iI Iσ σ σ σ σθ θ
Ω

−I I G G G
   

 and  
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( )θ θ
Ω

− I  in (55) 

[ ] ( )

( )

( )

( ) ( )

0 0
0 0

1 1

1 1

1 1

0

1

M M
d j j
s j j

j j

iN M
i j i

j
i j

iN M
j i

j
i j

iN
i

i

I I
I I

I
I

I
I

σ σ

σ σ

σ σ

σ

σ σ
σ σ σ

σ σ

σ
σ σ σ

σ

σ
σ σ

σ

σ σ
σ

α αα

αα

α

α αθ θ θ θ
θ θ

Ω Ω
= =Ω Ω

Ω Ω
= = Ω

= = Ω

Ω Ω
= Ω Ω

 ∂ ∂ = + − +
 ∂ ∂ 

 ∂ + + −
 ∂ 

∂
+

∂

∂ ∂
+ − + −

∂ ∂

∑ ∑

∑ ∑

∑∑

∑

I I

G

G

G I

 

 

 



 





 



 



σ

         (56) 

If we define 

( )
( ) ( ) ( )

( )
( )
( ) ( ) ( )

( )
( )

0 0
0 0

1

1

0

;

;

;

M
j

jj j
j

i iM
i j

i ijj j
j

i

i tm

I a
I I

b I c
I I

d

σ

σ

σ σ
σ σ

σ σ

σ σ
σ σ

σ σ

σ σ
σ

α α
σ α

α α
α

α α
α

θ θ

Ω Ω Ω
=

Ω Ω

Ω Ω
=

Ω Ω

Ω
ΩΩ

∂ ∂
= + − =

∂ − ∂

∂ ∂
= + − =

∂ ∂

∂ ∂
= − = −

∂ ∂

∑

∑

 

 

 

 

  

 





         (57) 

then, using (57) in (56), we can write (56) in a more compact form. 

[ ] ( ) ( ) ( )( )

( )( ) ( ) ( )

0
0

1 1 1 1

1

N M M N
d j i j i
s i j ij

i j j i

N
i i

tm
j

a I b c I

d

σ σ σ σ

σ

σ σ σ σ σ σ σ

σ σ

σ

θ θ α θ θ

Ω
= = = =

Ω ΩΩ
=

= + + +

− − − −

∑ ∑ ∑∑

∑

I I G G

G I

     

 

σ
    (58) 

Equation (58) defines material coefficients, that can be functions of θ
Ω

 and 

; 1,2, ,jI j Mσ σ

Ω
= 



. 

This constitutive theory is based on integrity (complete basis) and requires 
( ) ( ) ( )( )( )2 1N M N Mσ σ σ σ+ + +  material coefficients. Various simplified forms 

of the constitutive theory for [ ]0d
sσ  can be obtained from (58) by choosing de-

sired generators and invariants. The most simplified yet some what general con-
stitutive theory for [ ]0d

sσ  is the one in which [ ]0d
sσ  is a linear function of the 

components of the argument tensor in (52). This is given by, after redefining ma-
terial coefficients: 

[ ] [ ]( ) [ ]

[ ]( ) ( )

0
0 0

1

1

2 tr 2

tr

n
d
s i i

i
n

i tmi
i

I

I

σ µ λ η

κ α θ θ

Ω
=

Ω
=

= + + +

+ − −

∑

∑

I

I

σ ε ε ε

ε
            (59) 

in which µ  and λ  are similar to Lames coefficients in linear elasticity. iη  
and iκ  are damping material coefficients associated with strain rate [ ]iε . This 
constitutive theory is nonlinear in the components of the displacement gradient 
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tensor. The dissipation mechanism is nonlinear and is defined by strain rates 

[ ]; 1,2, ,i i n= ε  of up to order n . 

6.2. Constitutive Theory for [ ]m 0  

Just like the constitutive theory for [ ]0d
sσ  that addresses macro elasticity and 

macro dissipation due to viscosity of the medium, the constitutive theory for [ ]0m  
must also address: (1) the macro distortional deformation physics (macro elastic-
ity) and (2) the dissipation mechanism between the microconstituents and the 
viscosity of the medium, micro dissipation or micro viscous dissipation mecha-
nism. From the reduced form of the entropy inequality, we consider the rate of 
work conjugate pair [ ]

[ ]( )0
0: cΘm ε  in which: 

[ ] ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )( )

TT
0

T

1
2
1
2
1
2

c c c

c c c c

c c c c

c c

s a s a s a s a

s s s s a a a a

s s a a

Θ Θ Θ

Θ Θ Θ Θ

Θ Θ Θ Θ

Θ Θ

= ⋅ + ⋅

= + ⋅ + + − ⋅ +

= ⋅ + ⋅ − ⋅ + ⋅

= ⋅ − ⋅

J J J J

J J J J J J J J

J J J J J J J J

J J J J

 



   

   

 

ε

      (60) 

Thus, we can write 

[ ] [ ]( ) [ ]( )[1]0 1 1
c c c c

s s a a
Θ Θ Θ Θ= = ⋅ − ⋅J J J Jε ε              (61) 

Generalizing (61) to include rates of c
s
ΘJ  and c

a
ΘJ  up to orders n , we can 

write: 

[ ] [ ]( ) [ ]( ); 1,2, ,c c c
s s a ai i i i nΘ Θ Θ= ⋅ − ⋅ =J J J J 



ε            (62) 

and 

[ ] ( ) ( )0
c c c

s s a a
Θ Θ Θ= ⋅ − ⋅J J J Jε                   (63) 

Thus, based on rate of work conjugate pair [ ]
[ ]( )0
0: cΘm ε , [ ]0

cΘ
ε  in (63) must 

be an argument tensor of [ ]0m . If we assume that dissipation between the micro-
constituents and the viscous medium (micro viscous dissipation or microdissipa-
tion mechanism) depends on rate of cΘJ , then [ ]; 1,2, ,c

i i nΘ = 



ε  in (62) must 
also be argument tensors of [ ]0m . Choice of θ  as an argument tensor of [ ]0m  
is obvious. Thus, we have: 

[ ] [ ]
[ ] [ ]( )0 0
0 , , ; 1,2, ,c c

i i nθΘ Θ= =m m 



ε ε               (64) 

in which [ ]0
cΘε  and [ ]; 1,2, ,c

i i nΘ = 



ε  are defined by (63) and (62). Now, we 
can derive constitutive theory for [ ]0m  using representation theorem [28]-[39]. 
Let ; 1,2, ,m i mi N=G 



 and ; 1,2, ,m j mI j M= 



 be the combined generators 
and combined invariants of the argument tensors of [ ]0m  in (64) that are sym-
metric tensors of rank two. Then , ; 1,2, ,m i mi N=I G 



 constitute the basis of 
the space of constitutive tensor [ ]0m  (integrity), hence we can express [ ]0m  as a 
linear combination of the basis in the current configuration. 

[ ] ( )0 0

1

mN
m m i m i

i
α α

=

= +∑m G
  

                     (65) 
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The coefficients ; 0,1, ,m i mi Nα = 



 in the linear combination can be func-
tions of ; 1,2, ,m j mI j M= 



 and θ . We remark that coefficients  
; 0,1, ,m i mi Nα = 



 are not material coefficients. Material coefficients in (65) 
are determined by considering Taylor series expansion of ; 0,1, ,m i mi Nα = 



 
(based on axioms of smooth neighborhood [42] [43]) in ; 1,2, ,m j mI j M= 



 
and θ  about a known configuration Ω  and retaining only up to linear terms 
in ; 1,2, ,m j mI j M= 



 and θ  (for simplicity) 

( ) ( )
1

; 0,1, ,
m m i m iM

m i m i m j m j m
m j

j
I I i N

I
α αα α θ θ

θ ΩΩ Ω
= Ω Ω

∂ ∂
= + − + − =

∂∂∑ 

 

  



  (66) 

Substituting 0mα


 and ; 1,2, ,m i mi Nα = 

 

 from (66) in (65), we get: 

[ ] ( ) ( )

( ) ( )

0 0
0 0

1

1 1

m

n m

m mM
m m j m j

m j
j

m i m iN M
m i m j m j m i

m j
i j

I I
I

I I
I

α αα θ θ
θ

α αα θ θ
θ

ΩΩ Ω
= Ω Ω

ΩΩ Ω
= = Ω Ω

 ∂ ∂ = + − + −
 ∂∂ 

 ∂ ∂ + + − + −
 ∂∂ 

∑

∑ ∑

m I

G

 

 



 

  



   (67) 

Collecting coefficients (defined in Ω ) of I , m jI I


, m iG


, ( )m j m iI G


, 

( ) m iθ θ
Ω

− G


, ( )θ θ
Ω

− I  in (67), we can write (67) as follow: 

[ ] ( )
( ) ( ) ( )

( )

( )
( ) ( )

( )
( ) ( )( )

( ) ( ) ( )

0 0
0 0

1 1

1 1

1 1

0

1

m m

m m

m m

m

m mM M
m m j m j

m j m j
j j

m iN M
m i m j m i

m j
i j

m iN M
m j m i

m j
i j

m i mN
m i

i

I I
I I

I
I

I
I

α α
α

α
α

α

α αθ θ θ θ
θ θ

Ω
= =

Ω Ω

Ω Ω= =
Ω

= =
Ω

Ω Ω
= ΩΩ

 ∂ ∂ = + − + ∂ ∂ 
 

 ∂ + + − ∂ 
 

∂
+

∂

∂ ∂
+ − + −

∂ ∂

∑ ∑

∑ ∑

∑∑

∑

m I I

G

G

G I

 

 

 



 





 









       (68) 

If we define 

( )

( )

( )
( )

0 0

1

0

1

0

;

m

m

m iM
m m j

m j
j

m
m

j m j

m iM
m m i m j

i m j
j

m i
m

ij m j

m i m
m m

i tm

m I
I

a
I

b I
I

c
I

d

αα

α

αα

α

α αα
θ θ

Ω Ω Ω
= Ω

Ω

Ω Ω= Ω

Ω

Ω Ω

∂
= + −

∂

∂
=
∂

∂
= + −

∂

∂
=
∂

∂ ∂
= − = −

∂ ∂

∑

∑















 







 



              (69) 
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then, using (69) in (68), we can write (68) in more compact form. 

[ ]

( ) ( )

0 0

1 1 1 1

1

m m m m

m

M N N M
m m j m m i m m j m i

j i ij
j i i j

N
m m i m

i tm
i

m a I b c I

d θ θ α θ θ

Ω
= = = =

Ω Ω
=

= + + +

− − − −

∑ ∑ ∑∑

∑

m I I G G

G I

     

 

         (70) 

In this constitutive theory (70) for [ ]0m , the material coefficients are defined 
in (69). The material coefficients can be functions of ,ρ θ

Ω Ω
, and  

; 1,2, ,m j mI j M
Ω

= 



. This constitutive theory requires  

( ) ( )( ) ( )( )2 1m m m mN M N M+ + +  material coefficients. Simplified forms of the 
constitutive theories for [ ]0m  can be obtained from (70) by choosing only the 
desired generators and invariants. The most simplified, yet general constitutive 
theory for [ ]0m  is one in which [ ]0m  is a linear function of the components of 
the argument tensors. 

[ ]
[ ]( ) [ ]( ) [ ]( )

[ ]( ) ( )

0 0
0 0

1

1

2 tr 2

tr

c c c

c

n

i i
i

n
m

i tmi
i

m µ λ η

κ α θ θ

Θ Θ Θ

Ω
=

Θ
Ω

=

= + + +

+ − −

∑

∑

m I I

I I







 



ε ε ε

ε
         (71) 

in which µ


 and λ


 are similar to Lame’s coefficients and the terms containing 
these are causing distortion of the matter. ,i iη κ





 are damping coefficients corre-
sponding to the rate [ ]

c
i

Θε  for the thi  rate of the rotation gradients. 

6.3. Constitutive Theory for q 

Considering 

( ),θ=q q g                             (72) 

and following references [42] [43] we can derive the following constitutive theory 
for q  using representation theorem. 

( ) ( )1 2κ κ κ θ θ
Ω

= − − ⋅ − −q g g g g g                 (73) 

1,κ κ  and 2κ  are material coefficients. These can be functions of ( )
Ω

⋅g g  and 
θ

Ω
. ⋅g g  is invariant of argument tensor g . Simplified form of (73), the Fou-

rier heat conduction law is given by 

κ= −q g                              (74) 

7. Complete Mathematical Model 

In the following, we present complete mathematical model consisting of conser-
vation and balance laws of nonclassical continuum mechanics and the constitutive 
theories for finite deformation/finite strain nonlinear micropolar nonclassical 
continuum theory based on classical rotation cΘ  for thermoviscoelastic com-
pressible solid medium. The mathematical model consists of (41)-(47), (59), (71) 
and (74). We have the following (using non-reduced forms of first law of thermo-
dynamics and second law of thermodynamics) 
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( ) ( )0 ,J tρ ρ=x x                         (75) 

[ ]( )0 T
0 0 0bD

Dt
ρ ρ− − ⋅ ⋅ =

v F J∇ σ                  (76) 

[ ]( ) [ ]( )0 0T T
0: 0bρ⋅ ⋅ + ⋅ + =m J J m∇ σ                (77) 

( )0 0ijk ijm =                           (78) 

[ ]
[ ]

[ ]
[ ]

0 0
0 0 0: : 0c

s
De
Dt

ρ Θ+ ⋅ − − =q m ∇ σ ε ε               (79) 

[ ]
[ ]

[ ]
[ ]( ) ( )0 0

0 0: : 0 reduced formc
sθ

Θ⋅
− − ≤

q g m σ ε ε           (80) 

[ ] [ ]( ) [ ]

[ ]( ) ( )

0
0 0

1

1

2 tr 2

tr

n
d
s i i

i
n

i tmi
i

I

I

σ µ λ η

κ α θ θ

Ω
=

Ω
=

= + + +

+ − −

∑

∑

I

I

σ ε ε ε

ε
             (81) 

[ ]
[ ]( ) [ ]( ) [ ]( )

[ ]( ) ( )

0 0
0 0

1

1

2 tr 2

tr

c c c

c

n

i i
i

n
m

i tmi
i

m µ λ η

κ α θ θ

Θ Θ Θ

Ω
=

Θ
Ω

=

= + + +

+ − −

∑

∑

m I I

I I







 



ε ε ε

ε
        (82) 

κ= −q g                                (83) 

in which 

[ ] ( )T
0

1
2

= ⋅ −J J Iε                           (84) 

[ ] [ ] [ ]
T T

1 1 1= ⋅ + ⋅J J J Jε                          (85) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
T T T

2 2 1 1 1 1 1 2= ⋅ + ⋅ + ⋅ + ⋅J J J J J J J Jε              (86) 

[ ] [ ]( ) [ ]( ); 1,2, ,c
s s a ai i i i nΘ Θ Θ= ⋅ − ⋅ =J J J J 



ε             (87) 

θ= ⋅g ∇                              (88) 

D
Dt

=
uv                               (89) 

in which [ ]0
c c
s s
Θ Θ=J J  and [ ]0

c c
a a
Θ Θ=J J . The mathematical model (75)-(89) 

consists of 22 equations: balance of linear momenta(3), balance of angular mo-
menta(3), first law of thermodynamics(1), constitutive theories for [ ] ( )0 6d

sσ , 
[ ] ( )0 6m , ( )3q  in twenty two variables: ( )3u , [ ] ( )0 6d

sσ , [ ] ( )0 3aσ , [ ] ( )0 6m , 
( )1θ  and ( )3q . Thus, this mathematical model consisting of conservation and 

balance laws for nonlinear micropolar nonclassical continuum theory and consti-
tutive theories for compressible thermoviscoelastic solid without memory has clo-
sure. 

8. Summary and Conclusions 

We have presented a finite deformation/finite strain nonlinear micropolar non-
classical continuum theory for compressible thermoviscoelastic solid continua 
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without rheology based on classical rotations cΘ  of the microconstituents. This 
theory consists of conservation and balance laws including balance of moment of 
moments, which is a new necessary balance law in all 3M nonclassical continuum 
theories. The constitutive theories are derived using representation theorem. A 
summary of the work presented in the paper and some conclusions drawn from it 
are given below. 

(1) Finite deformation/finite strain measures have been utilized in the deriva-
tion of the theory based on the conjugate pairs in the entropy inequality. 

(2) We distinguish between the strain measures and the rigid rotations in the 
derivation of the constitutive theories. In micropolar theories, the microconstitu-
ents can only experience rigid rotations. These rotations cannot be added to the 
strain measures as done in ref. [8]. This approach leads to incorrect definitions of 
strain tensor and consequently, erroneous constitutive theories that are based on 
this measure. 

(3) The importance of additive stress decompositions: [ ] [ ] [ ]0 0 0
s a= +σ σ σ ;  

[ ] [ ] [ ]0 0 0e d
s s s= +σ σ σ  are necessary to ensure that [ ]0

aσ  is not part of constitutive 
tensors and to ensure that mutually exclusive volumetric and distortional defor-
mations are addressed correctly in the constitutive theories. 

(4) In micropolar theories, rigid rotations of the microconstituents must be in-
corporated in the development of the theory. We must keep in mind that classical 
rotations cΘ  already exist at the material and constitute a free field in the ab-
sence of microconstituents. In the presence of microconstituents, classical rota-
tions in fact are the rotations of the microconstituents. Thus, cΘ  is a measure of 
rigid rotations of the microconstituents. This theory allows rigid rotations of mi-
croconstituents without considering α Θ  as additional unknown rotations of the 
microconstituents at the material points. The micropolar theory that uses un-
known α Θ  at the material points is thermodynamically and mathematically 
consistent and the mathematical model lacks closure. (b) The linear micropolar 
theories based on rotations ( c α+Θ Θ ) at the material points and the linear mi-
cropolar theories based on α Θ  at the material point (ignoring cΘ ) have been 
shown to be thermodynamically and mathematically inconsistent and suffer from 
lack of closure. 

(5) Use of balance of moment of moments balance law (Yang et al. [25], Surana 
et al. [26] [27] [41]) is shown to be essential in linear micropolar theories. This is 
also true in the case of nonlinear micropolar theories. In the absence of this bal-
ance law, the nonlinear micropolar theories are also nonphysical and the mathe-
matical model suffers from lack of closure. 

(6) In the derivation of the conservation and balance laws, *σ , J , and *m , 
cΘJ , are used for simplicity. However, in the final form of the conservation and 
balance laws, as well as in the constitutive theories, these are substituted in terms 
of [ ]0σ , [ ]0ε  and [ ]0m , [ ]0

cΘε  as they are the true measures for finite defor-
mation/finite strain. *σ  and [ ]0m  and their conjugates are supported by theory 
of isotropic tensors. Determination of these conjugate pairs is an important aspect 

https://doi.org/10.4236/am.2025.163012


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2025.163012 256 Applied Mathematics 
 

of the work presented in the paper. 
(7) All constitutive theories are derived using representation theorem to ensure 

that they are mathematically consistent. 
(8) The nonlinear micropolar nonclassical continuum theory for thermovisco-

elastic solid presented here incorporates two nonlinear mechanisms of dissipa-
tion, micro dissipation and macro dissipation. Both mechanisms use ordered rates 
of work conjugate quantities that appear in the entropy inequality. This is also an 
important and unique aspect of the work presented in this paper.  

(i) The first viscous dissipation mechanism is due to [ ]0d
sσ  and Green’s strain 

rates [ ]; 1,2, ,i i n= ε , standard nonlinear viscous drag forces between the mate-
rial particles. 

(ii) The second mechanism of nonlinear viscous dissipation mechanism is due 
to rotation rates of the microconstituents in the viscous medium, hence due to 
viscous drag forces between the microconstituents and the viscous medium. This 
mechanism depends upon the rotation rates of the gradients of microconstituent 
rotations cΘ  up to order n , hence is also an ordered rate mechanism. Both 
nonlinear dissipation mechanisms reduce to linear dissipation for linear micropo-
lar theories in which ≈J I  and 1J ≈ . 

(iii) The linear micropolar theory for small deformation, small strain physics 
for thermoviscoelastic solid is a complete subset of the nonlinear micropolar the-
ory for thermoviscoelastic solid matter presented in this paper. 

(iv) Model problem studies using this nonlinear micropolar theories and com-
parison with finite deformation/finite strain classical continuum theory will be 
presented in a follow up paper. 

Acknowledgements 

First author is grateful for his endowed professorships and the department of me-
chanical engineering of the University of Kansas for providing financial support 
to the second author. The computational facilities provided by the Computational 
Mechanics Laboratory of the mechanical engineering departments are also acknowl-
edged. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this paper. 

References 
[1] Surana, K.S. and Mathi, S.S.C. (2025) Nonlinear Deformation/Strains for 3 m Con-

tinua and Consistency of Linear Micropolar Theories. Journal of Applied Mathemat-
ics and Physics.  

[2] Surana, K.S. and Mathi, S.S.C. (2025) Finite Deformation, Finite Strain Nonlinear 
Micropolar NCCT for Thermoviscoelastic Solids with Rheology. Applied Mathemat-
ics, 16, 143-168. https://doi.org/10.4236/am.2025.161006 

[3] Eringen, A.C. (1964) Simple Microfluids. International Journal of Engineering Sci-
ence, 2, 205-217. https://doi.org/10.1016/0020-7225(64)90005-9 

https://doi.org/10.4236/am.2025.163012
https://doi.org/10.4236/am.2025.161006
https://doi.org/10.1016/0020-7225(64)90005-9


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2025.163012 257 Applied Mathematics 
 

[4] Eringen, A.C. (1964) Mechanics of Micromorphic Materials. In: Gortler, H., Ed., Pro-
ceeding of 11th International Congress of Applied Mechanics, Springer, 131-138. 
https://doi.org/10.1007/978-3-662-29364-5_12 

[5] Eringen, A.C. (1966) Theory of Micropolar Fluids. Journal of Mathematics and Me-
chanics, 16, 1-18. https://doi.org/10.1512/iumj.1967.16.16001 

[6] Eringen, A.C. (1968) Mechanics of Micromorphic Continua. In: Kroner, E., Ed., Me-
chanics of Generalized Continua, Springer, 18-35.  
https://doi.org/10.1007/978-3-662-30257-6_2  

[7] Eringen, A.C. (1967) Linear Theory of Micropolar Viscoelasticity. International Jour-
nal of Engineering Science, 5, 191-204.  
https://doi.org/10.1016/0020-7225(67)90004-3 

[8] Eringen, A.C. (1968) Theory of Micropolar Elasticity. In: Liebowitz, H., Ed., Fracture, 
Academic Press, 621-729. 

[9] Eringen, A.C. (1969) Micropolar Fluids with Stretch. International Journal of Engi-
neering Science, 7, 115-127. https://doi.org/10.1016/0020-7225(69)90026-3 

[10] Bringen, A.C. (1970) Balance Laws of Micromorphic Mechanics. International Jour-
nal of Engineering Science, 8, 819-828.  
https://doi.org/10.1016/0020-7225(70)90084-4 

[11] Eringen, A.C. (1972) Theory of Thermomicrofluids. Journal of Mathematical Analy-
sis and Applications, 38, 480-496.  
https://doi.org/10.1016/0022-247X(72)90106-0 

[12] Eringen, A.C. (1978) Micropolar Theory of Liquid Crystals. In: Johnson, J.F. and Por-
ter, R.S., Eds., Liquid Crystals and Ordered Fluids, Springer, 443-473.  
https://doi.org/10.1007/978-1-4615-8888-7_30 

[13] Eringen, A.C. (1990) Theory of Thermo-Microstretch Fluids and Bubbly Liquids. In-
ternational Journal of Engineering Science, 28, 133-143.  
https://doi.org/10.1016/0020-7225(90)90063-O 

[14] Eringen, A.C. (1992) Balance Laws of Micromorphic Continua Revisited. Interna-
tional Journal of Engineering Science, 30, 805-810.  
https://doi.org/10.1016/0020-7225(92)90109-T 

[15] Eringen, A.C. (1992) Continuum Theory of Microstretch Liquid Crystals. Journal of 
Mathematical Physics, 33, 4078-4086. https://doi.org/10.1063/1.529859 

[16] Eringen, A.C. (1966) A Unified Theory of Thermomechanical Materials. Interna-
tional Journal of Engineering Science, 4, 179-202.  
https://doi.org/10.1016/0020-7225(66)90022-X 

[17] Eringen, A.C. (1972) Theory of Micromorphic Materials with Memory. International 
Journal of Engineering Science, 10, 623-641.  
https://doi.org/10.1016/0020-7225(72)90089-4 

[18] Eringen, A.C. (1999) Microcontinuum Field Theories I. Foundations and Solids. 
Springer. https://doi.org/10.1007/978-1-4612-0555-5 

[19] Eringen, A.C. (2001) Microcontinuum Field Theories II: Fluent Media. Applied Me-
chanics Reviews, 55, B15. https://doi.org/10.1115/1.1445333 

[20] Toupin, R.A. (1962) Elastic Materials with Couple-Stresses. Archive for Rational Me-
chanics and Analysis, 11, 385-414. https://doi.org/10.1007/BF00253945 

[21] Eremeyev, V.A. and Pietraszkiewicz, W. (2016) Material Symmetry Group and Con-
stitutive Equations of Micropolar Anisotropic Elastic Solids. Mathematics and Me-
chanics of Solids, 21, 210-221. https://doi.org/10.1177/1081286515582862 

https://doi.org/10.4236/am.2025.163012
https://doi.org/10.1007/978-3-662-29364-5_12
https://doi.org/10.1512/iumj.1967.16.16001
https://doi.org/10.1007/978-3-662-30257-6_2
https://doi.org/10.1016/0020-7225(67)90004-3
https://doi.org/10.1016/0020-7225(69)90026-3
https://doi.org/10.1016/0020-7225(70)90084-4
https://doi.org/10.1016/0022-247X(72)90106-0
https://doi.org/10.1007/978-1-4615-8888-7_30
https://doi.org/10.1016/0020-7225(90)90063-O
https://doi.org/10.1016/0020-7225(92)90109-T
https://doi.org/10.1063/1.529859
https://doi.org/10.1016/0020-7225(66)90022-X
https://doi.org/10.1016/0020-7225(72)90089-4
https://doi.org/10.1007/978-1-4612-0555-5
https://doi.org/10.1115/1.1445333
https://doi.org/10.1007/BF00253945
https://doi.org/10.1177/1081286515582862


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2025.163012 258 Applied Mathematics 
 

[22] Eremeyev, V.A., Lebedev, L.P. and Altenbach, H. (2013) Foundations of Micropolar 
Mechanics. Springer. https://doi.org/10.1007/978-3-642-28353-6 

[23] Koiter, W.T. (1964) Couple Stresses in the Theory of Elasticity, I and II. Philosophical 
Transactions of the Royal Society of London B, 67, 17-44. 

[24] Pietraszkiewicz, W. and Eremeyev, V.A. (2009) On Natural Strain Measures of the 
Non-Linear Micropolar Continuum. International Journal of Solids and Structures, 
46, 774-787. https://doi.org/10.1016/j.ijsolstr.2008.09.027 

[25] Yang, F. and Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002) Couple Stress Based 
Strain Gradient Theory for Elasticity. International Journal of Solids and Structures, 
39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X 

[26] Surana, K.S., Shanbhag, R.S. and Reddy, J.N. (2018) Necessity of Law of Balance of 
Moment of Moments in Non-Classical Continuum Theories for Solid Continua. 
Meccanica, 53, 2939-2972. https://doi.org/10.1007/s11012-018-0851-1 

[27] Surana, K.S., Long, S.W. and Reddy, J.N. (2018) Necessity of Law of Balance/Equilib-
rium of Moment of Moments in Non-Classical Continuum Theories for Fluent Con-
tinua. Acta Mechanica, 229, 2801-283.  
https://doi.org/10.1007/s00707-018-2143-1 

[28] Smith, G.F. (1965) On Isentropic Integrity Bases. Archive for Rational Mechanics and 
Analysis, 18, 282-292. https://doi.org/10.1007/BF00251667 

[29] Smith, G.F. (1970) On a Fundamental Error in Two Papers of C.C. Wang, ‘On Rep-
resentations for Isotropic Functions, Part I and Part II’. Archive for Rational Mechan-
ics and Analysis, 36, 161-165. https://doi.org/10.1007/BF00272240 

[30] Smith, G.F. (1971) On Isotropic Functions of Symmetric Tensors, Skew-Symmetric 
Tensors and Vectors. International Journal of Engineering Science, 9, 899-916.  
https://doi.org/10.1016/0020-7225(71)90023-1 

[31] Spencer, A.J.M. (1971) Theory of Invariants. In: Eringen, A.C., Ed., Mathematics, 
Academic Press, 239-353. https://doi.org/10.1016/B978-0-12-240801-4.50008-X 

[32] Spencer, A.J.M. and Rivlin, R.S. (1958) The Theory of Matrix Polynomials and Its 
Application to the Mechanics of Isotropic Continua. Archive for Rational Mechanics 
and Analysis, 2, 309-336. https://doi.org/10.1007/BF00277933 

[33] Spencer, A.J.M. and Rivlin, R.S. (1959) Further Results in the Theory of Matrix Pol-
ynomials. Archive for Rational Mechanics and Analysis, 4, 214-230.  
https://doi.org/10.1007/BF00281388 

[34] Wang, C.C. (1969) On Representations for Isotropic Functions. Part I. Isotropic 
Functions of Symmetric Tensors and Vectors. Archive for Rational Mechanics and 
Analysis, 33, 249-267. https://doi.org/10.1007/BF00281278 

[35] Wang, C.C. (1969) On Representations for Isotropic Functions. Part II. Isotropic 
Functions of Skew-Symmetric Tensors, Symmetric Tensors, and Vectors. Archive for 
Rational Mechanics and Analysis, 33, 268-287. https://doi.org/10.1007/BF00281279 

[36] Wang, C.C. (1970) A New Representation Theorem for Isotropic Functions: An An-
swer to Professor G. F. Smith’s Criticism of My Papers on Representations for Iso-
tropic Functions. Archive for Rational Mechanics and Analysis, 36, 166-197.  
https://doi.org/10.1007/BF00272241 

[37] Wang, C.C. (1971) Corrigendum to My Recent Papers on “Representations for Iso-
tropic Functions”. Archive for Rational Mechanics and Analysis, 43, 392-395.  
https://doi.org/10.1007/BF00252004 

[38] Zheng, Q.S. (1993) On the Representations for Isotropic Vector-Valued, Symmetric 
Tensor-Valued and Skew-Symmetric Tensor-Valued Functions. International Jour-

https://doi.org/10.4236/am.2025.163012
https://doi.org/10.1007/978-3-642-28353-6
https://doi.org/10.1016/j.ijsolstr.2008.09.027
https://doi.org/10.1016/S0020-7683(02)00152-X
https://doi.org/10.1007/s11012-018-0851-1
https://doi.org/10.1007/s00707-018-2143-1
https://doi.org/10.1007/BF00251667
https://doi.org/10.1007/BF00272240
https://doi.org/10.1016/0020-7225(71)90023-1
https://doi.org/10.1016/B978-0-12-240801-4.50008-X
https://doi.org/10.1007/BF00277933
https://doi.org/10.1007/BF00281388
https://doi.org/10.1007/BF00281278
https://doi.org/10.1007/BF00281279
https://doi.org/10.1007/BF00272241
https://doi.org/10.1007/BF00252004


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2025.163012 259 Applied Mathematics 
 

nal of Engineering Science, 31, 1013-1024.  
https://doi.org/10.1016/0020-7225(93)90109-8 

[39] Zheng, Q.S. (1993) On Transversely Isotropic, Orthotropic and Relative Isotropic 
Functions of Symmetric Tensors, Skew-Symmetric Tensors and Vectors. Part I: Two 
Dimensional Orthotropic and Relative Isotropic Functions and Three Dimensional 
Relative Isotropic Functions. International Journal of Engineering Science, 31, 1399-
1453. https://doi.org/10.1016/0020-7225(93)90005-F 

[40] Surana, K.S. and Carranza, C.H. (2023) Nonclassical Continuum Theories for Fluent 
Media Incorporating Rotation Rates and Their Thermodynamic Consistency. 
ZAMM-Journal of Applied Mathematics and Mechanics, 103, e202200079.  
https://doi.org/10.1002/zamm.202200079 

[41] Surana, K.S. and Mathi, S.S.C. (2023) Thermodynamic Consistency of Nonclassical 
Continuum Theories for Solid Continua Incorporating Rotations. Continuum Me-
chanics and Thermodynamics, 35, 17-59.  
https://doi.org/10.1007/s00161-022-01163-y 

[42] Surana, K.S. (2015) Advanced Mechanics of Continua. CRC Press.  
https://doi.org/10.1201/b17959 

[43] Surana, K.S. (2021) Classical Continuum Mechanics. 2nd Edition, CRC Press. 

[44] Surana, K.S., Joy, A.D. and Reddy, J.N. (2016) A Non-Classical Internal Polar Con-
tinuum Theory for Finite Deformation of Solids Using First Piola-Kirchhoff Stress 
Tensor. Journal of Pure and Applied Mathematics: Advances and Applications, 16, 
1-41. https://doi.org/10.18642/jpamaa_7100121677 

[45] Surana, K.S., Joy, A.D. and Reddy, J.N. (2016) A Non-Classical Internal Polar Con-
tinuum Theory for Finite Deformation and Finite Strain in Solids. International Jour-
nal of Pure and Applied Mathematics, 4, 59-97. 

[46] Surana, K.S., Joy, A.D. and Reddy, J.N. (2017) A Finite Deformation, Finite Strain 
Nonclassical Internal Polar Continuum Theory for Solids. Mechanics of Advanced 
Materials and Structures, 26, 381-393. 

 
 
 
 
 
 
  

https://doi.org/10.4236/am.2025.163012
https://doi.org/10.1016/0020-7225(93)90109-8
https://doi.org/10.1016/0020-7225(93)90005-F
https://doi.org/10.1002/zamm.202200079
https://doi.org/10.1007/s00161-022-01163-y
https://doi.org/10.1201/b17959
https://doi.org/10.18642/jpamaa_7100121677


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2025.163012 260 Applied Mathematics 
 

Appendix 

Nomenclature 

x , ix , { }x  deformed Coordinates 

x , ix , { }x  undeformed Coordinates 

0ρ  reference density 

ρ  density in Lagrangian description 

ρ  density in Eulerian description 

η  specific entropy in Lagrangian description 

η  specific entropy in Eulerian description 

e  specific internal energy in Lagrangian description 

e  specific internal energy in Eulerian description 

cΘ , c iΘ , { }cΘ  internal or classical rotations in Lagrangian description 

α Θ , iα Θ , { }aΘ  rigid rotations of the microconstituents 

tΘ , t iΘ , { }tΘ  total rotations in Lagrangian description 

J  deformation gradient tensor in Lagrangian description 

s J  
symmetric part of deformation gradient tensor in  
Lagrangian description 

a J  
skew-symmetric part of deformation gradient tensor in  
Lagrangian description 

d J  displacement gradient tensor in Lagrangian description 

d
s J  

symmetric part of displacement gradient tensor in  
Lagrangian description 

d
a J  

skew-symmetric part of displacement gradient tensor in  
Lagrangian description 

ΘJ  rotation gradient tensor in Lagrangian description 

c
s
ΘJ  

symmetric part of classical rotation gradient tensor in  
Lagrangian description 

c
a
ΘJ  

skew-symmetric part of classical rotation gradient tensor 
in Lagrangian description 

r
c

s
ΘJ  

symmetric part of gradient of classical rotation rate tensor 
in Eulerian description 

c
s
Θ J  

rate of symmetric part of gradient of classical rotation  
tensor in Lagrangian description 

r
cΘ  classical rotation rate tensor in Eulerian description 

c
Θ  classical rotation rate tensor in Lagrangian description 

q , iq , heat vector in Lagrangian description 

q , iq , { }q  heat vector in Eulerian description 

v , iv , { }v  velocities in Lagrangian description 

v , iv , { }v  velocities in Eulerian description 

u , iu , { }u  displacements in Lagrangian description 
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u , iu , { }u  displacements in Eulerian description 

P  
average stress in Lagrangian description on the oblique 
plane of elementary tetrahedron 

P  
average stress in Eulerian description on the oblique plane 
of elementary tetrahedron 

M  
average moment in Lagrangian description on the oblique 
plane of elementary tetrahedron 

M  
average moment in Eulerian description on the oblique 
plane of elementary tetrahedron 

( )0σ , ( )0
ijσ , ( )0σ 

   
Contravariant Cauchy stress tensor in Lagrangian descrip-
tion 

( )0σ , ( )0
ijσ , ( )0σ 

   Contravariant Cauchy stress tensor in Eulerian description 

( )0
sσ  

symmetric part of Contravariant Cauchy stress tensor  
tensor 

( )0
aσ  

anti-symmetric part of Contravariant Cauchy stress tensor 
tensor 

( )0d
sσ  

deviatoric part of the symmetric Contravariant Cauchy  
stress tensor tensor 

( )0e
sσ  

equilibrium part of the symmetric Contravariant Cauchy  
stress tensor tensor 

θ  temperature in Lagrangian description 

θ  temperature in Eulerian description 

k  thermal conductivity in Lagrangian 

p  
thermodynamic or Mechanical Pressure in Lagrangian  
description 

p  
thermodynamic or Mechanical Pressure in Eulerian  
description 

g , ig , { }g  temperature gradient tensor in Lagrangian description 

g , ig , { }g  temperature gradient tensor in Eulerian description 

L  velocity gradient tensor in Eulerian description 

D  
symmetric part of the velocity gradient tensor in Eulerian 
description 

W  
Skew symmetric part of the velocity gradient tensor in  
Eulerian description 
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