
Journal of Software Engineering and Applications, 2025, 18(3), 113-138
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2025.183008 Mar. 27, 2025 113 Journal of Software Engineering and Applications

Software Architecture Evaluation of
Earth System Models

Wilhelm Hasselbring , Reiner Jung , Henning Schnoor

Department of Computer Science, Kiel University, Kiel, Germany

Abstract
Earth System Models (ESMs) play a vital role in understanding and assessing
climate change and other earth system-related issues. They are complex and
long-living software systems, mainly programmed in Fortran, that undergo
changes as science progresses. They have a myriad of variants that must be
maintained to support reproducing experiment results. In a research context,
often with contributions from scientists on non-tenured contracts and with-
out a formal software engineering education, this can lead to architecture ero-
sion, hampering further development and, therefore, scientific progress. Fur-
thermore, it harms code comprehension, introducing risks for the quality of
the earth system models. To address these challenges, our goal is to design and
study methods for improving the maintainability of ESMs implemented in
Fortran. In this paper, we assess two widely used earth system models—namely
UVic and MITgcm—combining dynamic software profiling with static code
analysis for reverse engineering. We introduce a new approach to module in-
terface discovery in Fortran systems. We provide a detailed analysis of the
ESMs’ architectures and report quantitative properties.

Keywords
Earth System Models, Software Architecture, Dynamic Analysis, Static
Analysis, Architecture Evaluation

1. Introduction

Earth System Models (ESMs) are complex software systems used to simulate the
Earth’s climate and understand its effects on, e.g., oceans, agriculture, and habi-
tats. They comprise different sub-models addressing specific aspects of the earth
system, such as ocean circulation. Their code is partly decades old. Such scientific
models can start as small software systems, which evolve into large, complex mod-

How to cite this paper: Hasselbring, W.,
Jung, R. and Schnoor, H. (2025) Software Ar-
chitecture Evaluation of Earth System Mod-
els. Journal of Software Engineering and Ap-
plications, 18, 113-138.
https://doi.org/10.4236/jsea.2025.183008

Received: March 4, 2025
Accepted: March 24, 2025
Published: March 27, 2025

Copyright © 2025 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2025.183008
http://www.scirp.org
https://www.scirp.org/
https://orcid.org/0000-0001-6625-4335
https://orcid.org/0000-0002-5464-8561
https://orcid.org/0000-0002-7148-9590
https://doi.org/10.4236/jsea.2025.183008
http://creativecommons.org/licenses/by/4.0/

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 114 Journal of Software Engineering and Applications

els or are integrated into other models. Software engineering for computational
science has specific characteristics [1] and involves dedicated roles such as model
developers and research software engineers [2].

The ESMs are continually modified and enhanced to provide new insights for
specific research questions. This leads to numerous variants and versions for an
ESM, which must be maintained as other scientists intend to base their research
on new features and reproduce results. Thus, ESMs are long-living software [3]
and face typical risks, e.g., blurring module boundaries and architectural erosion,
due to changes in functionality, hardware, and language features. The resulting
architectural debts can limit further research and may harm the validity of scien-
tific results. Furthermore, the lack of documentation and the loss of knowledge as
scientists move to other positions limit the maintainability of ESMs. Therefore,
the long-term development of ESMs faces unique challenges. Our goal is to sup-
port the model developers and research software engineers in program compre-
hension and to aid architectural decisions.

A note on the term ‘model’ in climate science: In software engineering and in-
formation systems research, modeling is also an essential activity. Conversely to
climate science, where climate models are the software systems to simulate the
Earth, in software engineering and in information systems research, models are
built as abstractions of the software systems themselves. A software architecture
description is an example of such a model in software engineering [4], not to be
confused with a (software) model of the Earth.

To ensure the maintainability of ESMs, an understanding of the software archi-
tecture is necessary. Documentation is usually rare in this domain. In particular,
architecture documentation is, if it exists at all, often outdated and incomplete.
Thus, rediscovering the architecture of ESMs is a key step to ensure their longev-
ity, as it allows for guiding architectural improvements and identifying areas that
should be restructured. Architectural analyses provide an overview of the ESM’s
structure and dependencies. They allow identifying interfaces that support devel-
opers in extending a model or adding alternative sub-models to an ESM. In addi-
tion, they help new scientists understand the implementation of the model. Fur-
thermore, based on structural optimizations, developers can improve the archi-
tecture over time to facilitate future developments.

Our goal is to support program comprehension and to evaluate how software
engineering tools and methods can assist in analyzing and improving the archi-
tecture of ESMs.

As contributions of this paper, we provide:
• Static and dynamic analysis of two ESMs, namely the University of Victoria

Earth System Climate Model (UVic) [5] and the MIT General Circulation Model
(MITgcm) [6], to recover and analyze their architecture. We compute their cou-
pling complexity and discuss their overall design to support future architecture
improvements.

• We introduce a new approach to module interface discovery and apply it to

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 115 Journal of Software Engineering and Applications

Fortran systems.
• We also report on the challenges when performing dynamic analyses of ESMs.

We chose UVic and MITgcm for our analysis, as they are used in many research
projects, such as SOLAS [7], PalMod [8] [9], CMIP6 [10], and the IPCC report
[11]. Both ESMs are implemented in Fortran and run on Unix workstations with-
out specific hardware requirements, and we collaborate with domain experts
working with both models as research software engineers. MITgcm is referred to
by the domain experts collaborating with us as a good example of a modern ESM,
while UVic is a representative of a more traditionally developed ESM whose de-
velopment began in the 1960s.

We describe our reverse engineering method in Section 2, followed by present-
ing the results of applying this method to our two case study ESMs in Section 3
(for UVic) and Section 4 (for MITgcm). We evaluate the results in Section 5 and
present related work in Section 6 before we conclude the paper in Section 7.

Replication and Data Packages We provide a replication package for our re-
verse engineering results [12]. This package contains detailed instructions on (a)
how to replicate our evaluation, (b) the exact setup used for the dynamic analysis,
(c) all scripts and the programs used to perform the static analysis, and (d) our
analysis and logging tools. A Docker file allows running the analyses without man-
ually installing the required software.

2. Our Reverse Engineering Method

We employ several methods and techniques to analyze and evaluate software archi-
tectures of Fortran-based ESMs. Our analysis process, depicted in Figure 1, consists
of eight tasks that allow us to recover an architecture model from static and

Figure 1. Our analysis process. First, we recover the architecture via reverse engineering with dynamic and static analysis. Then, we
combine the results of dynamic and static analysis, interface discovery, and architecture evaluation.

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 116 Journal of Software Engineering and Applications

dynamic information of a running scientific model. In addition to methods for
collecting execution traces at runtime and for measuring metrics-based software
quality (Section 2.1), we include dataflow analysis (Section 2.3) and interface re-
covery (Section 2.2) to enrich the recovered architectures.

2.1. Dynamic and Static Analysis

For reverse engineering, we use both dynamic and static analysis techniques to
gain detailed insights into the software:

Dynamic Analysis: The upper-left pipeline part in Figure 1 shows that we in-
strument the Fortran code with monitoring probes. We execute the ESMs utilizing
configurations derived from climate science publications provided by our domain
experts. The dynamic analysis observes the software at runtime and collects mon-
itoring information about procedure calls. This approach detects which parts of
software are actually used and how they behave. To instrument the ESM, we em-
ploy the monitoring framework Kieker [13] [14] in combination with the ability
of the GNU Compiler Collection and Intel Fortran compilers to instrument func-
tions utilizing the -finstrument-functions option.1 Our dynamic architecture re-
covery tool dar2, then recovers the architecture from the monitoring data.

Static Analysis: The lower-left pipeline part in Figure 1 shows that to perform
the static analysis on Fortran code, we first pre-process the source code. To dis-
cover calls, dataflows, and accesses to common blocks from Fortran source code,
we developed our fxca3 tool to produce lists of procedure calls, procedure name-
to-file mappings, access to common blocks, and dataflows between procedures for
the static architecture recovery tool sar4, which generates the statically recovered
architecture model. fxca is an extension of fxtran5, which provides a concrete syn-
tax tree of Fortran code.

While both dynamic and static analyses usually recover similar architectures,
each one can identify certain aspects better than the other. The static analysis can
identify common blocks in Fortran, while the dynamic analysis can collect infor-
mation on procedures used from libraries, which the static analysis cannot pro-
vide with the same detail.

To take advantage of both analysis techniques, we then (optionally) merge the
results of the static and dynamic analyses into a combined architecture model and
discover module interfaces (right part of Figure 1).

2.2. Dataflow Analysis

In addition to control flow (i.e., the study of which operations are called from
which points in the code), we also study dataflow, i.e., the question of which parts
of the code communicate by accessing the same data. In Fortran, the default way

1https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html.
2https://github.com/cau-se/oceandsl-tools/tree/main/tools/dar.
3https://github.com/cau-se/oceandsl-tools/tree/main/tools/fxca.
4https://github.com/cau-se/oceandsl-tools/tree/main/tools/sar.
5https://github.com/pmarguinaud/fxtran.

https://doi.org/10.4236/jsea.2025.183008
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://github.com/cau-se/oceandsl-tools/tree/main/tools/dar
https://github.com/cau-se/oceandsl-tools/tree/main/tools/fxca
https://github.com/cau-se/oceandsl-tools/tree/main/tools/sar
https://github.com/pmarguinaud/fxtran

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 117 Journal of Software Engineering and Applications

of handling parameters in procedures is call-by-reference. This is used to pass data
into subroutines and get results back. This has a significant impact on the dataflow
analysis and the complexity of a system. In case a subroutine modifies call-by-
reference parameters, a developer must keep side effects in mind when changing
the program, while call-by-value operations have no side effects. A Fortran func-
tion is similar to a mathematical function, which takes parameter values as inputs
and returns a single output value. A Fortran subroutine is a block of code that
performs some operation on the input variables, and as a result of calling the sub-
routine, the input variables are modified (call-by-reference).6 When a distinction
between functions and subroutines is not required for our analysis, we will use the
term operation.

Since the question of whether data flows from one procedure to another via
any means of communication (e.g., writing/reading the same file or memory
location using array indexing or pointer arithmetic) is, in general, undecidable,
we focus on dataflow using global variables which in Fortran are expressed as
common blocks [15] and procedure calls. Procedure calls can have call-by-value
and call-be reference parameters. Call by value is interpreted as a dataflow from
the caller to the callee. For call-by reference, we check whether the reference is
used for read or write operations within the procedure. In case only read oper-
ations are used, the dataflow is from the caller to the callee. Write operations
result in a dataflow from the callee to the caller. In case both operations are used,
the architecture model contains a bidirectional dataflow edge, and the analysis
graphs provide two edges for each direction. In case there are multiple dataflows
between two procedures, they are merged following the same principle as with
calls for two reasons:

1) Developers have to consider the dependency between both procedures re-
gardless of the number of parameters.

2) Parameters can have basic or composed data types.
Compound data types can be replaced by a set of parameters with basic types.

Common blocks are seen as one single “piece of data,” and we do not distinguish
between access to different variables in the same block. The reason for this deci-
sion is that we assume that the common block is usually seen as a single entity by
the developers of the ESM, and therefore, two procedures that access the same
common block are conceptually coupled. Our analysis scripts could also be used
to analyze a more fine-grained view of the distinction between variables in the
same block.

2.3. Interface Discovery

Fortran 77 does not provide syntactical structures that describe interfaces to mod-
ules, and even code conforming to Fortran 90 and above does not use this lan-
guage feature in the two ESMs we analyzed. Thus, the recovered architecture, as
initially obtained with Kieker, does not contain interfaces. To support the under-

6https://fortranwiki.org/fortran/show/procedure.

https://doi.org/10.4236/jsea.2025.183008
https://fortranwiki.org/fortran/show/procedure

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 118 Journal of Software Engineering and Applications

standing of the architecture and the code, our second step infers interfaces based
on cross-module calls.

Interfaces help developers understand which (public) operations are used by
other modules and which (private) operations represent module-internal func-
tionality. Well-designed interfaces group operations together that address a spe-
cific concern, e.g., writing and modifying files.

Therefore, we discover interfaces based on calls crossing module boundaries,
i.e., calls that originate in one module and call operations in another module.
Solely based on these inter-module calls, it is possible to generate candidates for
interfaces in four different ways:

1) One large interface for each module pair, resulting in multiple interfaces for
one module that may contain the same or similar sets of operations.

2) One interface for all exposed, i.e., externally called operations, per module,
resulting in multiple other modules requiring the same interface. These interfaces
can become very large and mingle many concerns together.

3) One interface per exposed operation, resulting in many interfaces, making it
hard to group associated operations together.

4) Grouping operations together that have the same set of callers. This may still
lead to numerous interfaces, but if developers follow a pattern when using opera-
tions, this approach will reduce the number of interfaces in contrast to Option 3.

For this paper, we applied Option 4 and implemented four steps to compute
interfaces for an architecture description.

For the formal description of our interface discovery process, we use O as the
set of all operations in the ESM. The modules of the software are denoted 1M to

nM . These modules constitute a partition of O , i.e., 1 nO M M= ∪…∪ and

i jM M∩ =∅ for i j≠ . The function module returns the corresponding
module o for any given operation and is defined as:

() withi imodule o M o M= ∈

All calls between operations in the architecture model are represented by

allE O O⊆ × .
Step One: The first step creates a subset subE of all distinct calls allE in the

execution model where the caller ro and callee po of a call are not in the same
module:

() () () (){ }, | ,sub r p r p all r pE o o o o E module o module o= ∈ ∧ ≠

Step Two: In this step, we identify all provided operations of one module jM
in relation to a requiring module iM . This is realized by the following function
taking the respective indices i and j of the modules. This function

_provided ops returns the subset of jM representing the provided operations.
This resembles Option 1:

() (){ }_ , | ,j j i i i j subprovided ops i j o M o M o o E= ∈ ∃ ∈ ∃ ∈

Step Three: As the previous step creates one provided interface for each requiring

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 119 Journal of Software Engineering and Applications

module, in this step, we identify identical sets of provided operations and create
a set of tuples P that contain the module index j and the respective set of
operations:

()(){ }, _ , | 0P j provided ops i j i n= ∈

This step can be augmented by defining a similarity, allowing the merging of
sets of operations.

Step Four: Identifies the use of provided interfaces and creates matching required
interfaces to the required modules. For this purpose, we define the function

_requiring modules that returns the set of indices of all requiring modules for a
given provided interface pI , where pI represents the second element of a tuple
of P :

() (){ }_ | , _ ,p prequiring modules I i j provided ops i j I= ∃ =

After this discovery, the architecture model is enriched by adding interface
declarations to modules that provide these interfaces. Similarly, each module that
requires an interface of another module obtains a required interface declaration
(_requiring modules) that contains a reference to the corresponding provided
interface (_provided ops). Thus, the previously discovered architecture model
obtains interface declarations and usage information.

As an example, the results of our interface discovery applied to UVic are
presented in fig:uvic-experiment.

2.4. Architecture Evaluation

Software engineering aims to modularize software in a way that cohesion is high
while coupling among modules is low, and the overall complexity does not increase
more than the size of a software project. These direct metrics can be used to measure
the maintainability and comprehensibility of large software projects [16]. Quality
metrics help us to evaluate the quality of architectural designs. They provide insights
into the structural quality of architectures or parts of them.

Our architecture evaluation uses complexity, coupling, and cohesion metrics
based on connections between Fortran procedures grouped by files or directories.
Specifically, we used two sets of metrics based on counting and information
theory. Both metrics work on a coupling graph of the software system, where
nodes represent procedures and edges reflect the relationships between these
nodes. A relationship can be a call or multiple calls, which both result in one edge,
and dataflows, which result in one or two edges, depending on their directionality.
Unidirectional dataflow results in an edge representing the flow direction, and
bidirectional dataflow results in two edges. Sections 0.0.1 and 0.0.2 present our
architecture evaluation via counting metrics and information theory metrics,
respectively.

2.4.1. Counting Metrics
Counting metrics compute the number of incoming and outgoing edges for each

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 120 Journal of Software Engineering and Applications

node. They work on the coupling graph introduced above. These metrics provide
us with values for each procedure and cumulative values for the whole system.

Many different software quality metrics have been studied in the literature. For
our study, we chose metrics that have been used in the context of software opti-
mization previously:
• Structural coupling (StrCoup) is defined as the average in/out-degree of com-

ponents,
• Lack of structural cohesion (LStrCoh) is defined as the average number of pairs

of unrelated units in a component.
These metrics have been used in [17] for software automatization.

2.4.2. Information Theory Metrics
Allen proposed information theory-based metrics for size, complexity, and cohe-
sion [18]. These metrics are designed to provide a language-independent way of
measuring the size, complexity, coupling, and cohesion of software architectures.
This metric is used to represent the mental load of a software developer and can,
therefore, be used to indicate architecture degradation between versions or the
improvement of the software architecture.

These information theory metrics work with unidirectional graphs. The size
metric computes the information content of the graph representing the system.
The complexity metric is a sum over subgraphs for each node with edges, i.e.,
for each node, a subgraph is generated containing only those nodes of the system
that are directly connected. Finally, the coupling metric operates on the sub-
graph only containing inter-module edges and computes the complexity of this
subgraph.

The size usually grows with the number of nodes (procedures) and edges. The
complexity depicts the interconnectedness of the graph. If the complexity in-
creases faster than the size, it is an indicator of architectural degradation. Another
indicator of architecture degradation is a faster growth of the coupling metric,
which focuses on inter-module connections.

3. Reverse Engineering of UVic

The UVic ESM [5] includes code on which the development started in the 1960s.
Our interface discovery (Section 2.3) identified all procedures called from other
components and grouped them by use.

In the Energy-Moisture Balance Model (EMBM) component, we discovered
a central facade [19] for calling procedures handling access to most parts of the
model. The EMBM facilitates two sub-components, setembm and embm, which
provide the facade for the model. They are used to set model variables and con-
trol the model during execution. Calls to the model IO are handled by two sep-
arate parts, which are interdependent but also duplicate features in other com-
ponents of the ESM. They are accessible by the facade but are also accessed
directly from the outside. Also, some facade calls directly invoke external in-

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 121 Journal of Software Engineering and Applications

terfaces. These generate unnecessary coupling between the caller of the facade,
the EMBM component, and the component called by the facade. Furthermore,
certain facade features are bypassed, and procedures inside the component are
directly called.

Figure 2 shows the resulting UVic architecture. The colored boxes represent
portions of the model which reside in the same source directory. The white boxes
indicate interfaces provided by a component, and the gray boxes indicate requir-
ing or using an interface.

Figure 2. The module structure of the UVic setup. Interfaces are described via ports, with
incoming (white) and outgoing (gray) dependencies. Generated with the Kieker architecture
visualization Eclipse plugin [20].

All procedures are omitted in Figure 2 to show the overall structure and the

inter-dependencies among modules. UVic consists of a central module “modular
ocean model” (mom), coupled to an atmospheric energy-moisture balance model
(embm), a dynamic-thermodynamic sea ice model (ice), a moses-triffid land model
(mtlm), a sediment model (sed), and further shared modules. The code is grouped
in multiple source directories that relate to sub-models, common functionality,
and library support. It also provides a set of model configuration examples. Each
module contains at least setup, IO, restart, and dedicated output procedures. An
additional common module contains shared procedures. netcdf is a library used
to serialize model output in ESMs, and this module contains procedures to serial-
ize UVic’s model state.

The analysis of UVic’s reverse-engineered architecture shows an indication of
architectural degradation. We illustrate this via some examples of cross-compo-
nent calls and independent/shared procedures.

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 122 Journal of Software Engineering and Applications

Cross-component calls Figure 3 shows that the procedure embmout located
in the embm component calls unloadland located in the mtlm component. This
indicates either low cohesion since the caller and callee are in different compo-
nents, or tight coupling since the component embm depends on mtlm as a result
of the call.

Figure 3. The reverse-engineered module structure of the UVic model Version 2.9.2 shows
a call from the procedure embmout() of the embm module to the procedure unloadland()
located in the mtlm module. The visualization utilized the Kieker trace analysis with the
dot layout tool. Zoom-outs are added by hand for better readability.

Independent Procedures: The procedure glsbc for boundary conditions of the
mtlm component bypasses and does not directly depend on the facade of the com-
ponent. Other components contain similar procedures.

Shared Procedures: The getst procedure located in the common component
depends on the getrow procedure located in the mom component. Other compo-
nents contain procedures to extend the setup of components, e.g., procedures for
grid usages are located in the embm component.

4. Reverse Engineering of MITgcm

MITgcm [6] can be used to simulate the atmosphere, the ocean, and the complete
Earth’s climate system. The model follows a modularization scheme and is
shipped with a list of pre-configured model variants that also serve as regression
tests for the model. Several tutorial configurations are included. We use the model
variants provided by the MITgcm designers for our architectural analysis. Each
variant has its own setup instructions, but follows a general scheme of assembling
source files, resolving dependencies, compilation, and execution [12] [21].

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 123 Journal of Software Engineering and Applications

MITgcm comes with a wide variety of configurations for different experiments.
For the analysis, we collected general architectural properties on file-based, direc-
tory-based, and combined modularizations.

MITgcm uses a modular concept to organize its files, which may be combined
to create specific model variants. The whole project uses base code located in the
directories model and eesupp, as well as one directory per module in the pkg di-
rectory. In Figure 4, the reverse-engineered architecture of the MITgcm model is
shown [21].

Figure 4. The reverse-engineered module structure of the MITgcm model [21]. The visualization
uses the Kieker architecture visualization [20].

Based on this two-level modularization, we are able to identify different kinds

of modules. There are modules with only one provided interface, like dic and seaice,
or just two, like gchem, which are called either by the main source or by one other
module. This pattern applies to most modules categorized by the documentation
as specialized and general-purpose modules. There are a few exceptions, e.g., the
Open Boundary Conditions for Regional Modeling obcs module, which has four
groups of procedures that are reflected in the interfaces: (a) access by the main
model controlling parameters, initialization, and information exchange, (b) spe-
cial features that can be turned on (e.g., sponge), (c) code for Orlanski boundary
and radiation conditions feature, and (d) diagnosis.

In Figure 5, the architecture of the model variant for the Southern Ocean box
with Biochemistry so_box_biogeo is depicted as an example. We highlight two
areas with a high coupling degree (light gray boxes) that we zoom into. On the left
is the component model, and on the right is the components eesupp and optim.
All three components are part of the foundational code base [6], providing core,
supplemental, and offline optimization features, respectively. All other compo-
nents have a low coupling degree.

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 124 Journal of Software Engineering and Applications

Figure 5. The module structure of the MITgcm model variant so_box_biogeo. White boxes
indicate the module structure based on static and dynamic data. Dark gray boxes are
derived solely from dynamic data. Light gray areas mark enhanced views. The visualization
utilized the Kieker trace analysis with the dot layout tool. Zoom-outs are created by hand
for better readability.

In contrast to the domain-specific parts of the model, there exists infrastructure
and library functionality, e.g., the diagnostics module that provides logging for all
modules and thus is required by many other modules. However, the requiring
modules use different subsets of the diagnostics API, resulting in multiple single
procedure interfaces. While most modules follow a common pattern for their
composition, this is different for the base infrastructure. Here, functions are put
together in one directory to address different concerns, e.g., printing messages.

5. Architecture Evaluation of UVic and MITgcm

In this section, we present the results obtained by applying the analysis techniques
introduced earlier to the ESMs UVic and MITgcm. Firstly, we give an overview of
the evaluation of different analysis methods in Section 5.1, followed by a detailed
discussion of UVic and MITgcm in Section 5.2 and Section 5.3.

5.1. Overview

Since we have static and dynamic analyses available, and in the case of static anal-
ysis, we can choose between analyzing only call relationships, only dataflow rela-
tionships, or both, we have six different analysis methods, displayed in Figure 6.
The containedness relationships between the analysis methods refer to the identi-
fied coupling relationships. As an example, the analysis method combined/call is
obtained by simply merging the results of the methods dynamic/call and static/call.
To keep this presentation succinct, in the sequel, we mainly focus on the two anal-
ysis methods, dynamic/call and combined/both.

To explain the different kinds of software analyses techniques and their rela-
tionships, we first apply the two software quality metrics, StrCoup and LStrCoh,
to our ESMs.

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 125 Journal of Software Engineering and Applications

Figure 6. Hierarchy of analysis methods. At the bottom, we analyze dynamic and static call
relationships, and static dataflows. Then, we combine the call and static methods. At the
top, all methods are combined.

Figure 7 depicts our software quality metrics for the ESMs that we study in
this section (namely Global Ocean cs32 × 15, Barotropic Gyre, and Global Oce
Biogeo) and for UVic. For each of these four variants, we present the results of
the six analysis methods from Figure 6. Hence, we have 24 analysis results in
Figure 7. We use shapes to specify the analysis types and colors to specify the
specific ESM variants. As an example, circles represent static/callanalyses, and the
color red describes MITgcm cs 32 × 15. Therefore, the red circle specifies the val-
ues for the tatic/callanalysis of MITgcm cs 32 × 15, with a LStrCoh value of 4204
and a StrCoup value of 39.

Figure 7. Coupling and cohesion metrics of three MITgcm variants and UVic were
obtained by our six analysis methods.

Note that there are significant differences between the analysis results in Figure
6. In particular, the coupling metrics are significantly higher for the analyses in-
cluding dataflow than for the ones only considering control-flow calls: Each value
for analysis including dataflow is higher than each value for each analysis not in-

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 126 Journal of Software Engineering and Applications

cluding dataflow. Further, the dynamic-only analyses metrics report much smaller
values for both metrics than the analyses, which also include static analysis data.

In order to study the differences between the different analysis results, we next
take a closer look at the analyses and consider the components, their size, and
connections in the following subsection.

We emphasize again that the metrics given here always measure the existing
structure of the software. Therefore, the differences come from applying the dif-
ferent analysis techniques (see Figure 6), not from any difference in software
quality. This highlights that metrics like StrCoup or LStrCoh are performed on
abstractions, like in our case, coupling graphs, and their results greatly depend on
how these abstractions are obtained from the original software.

5.2. Evaluation of UVic
5.2.1. Counting Metrics
We now take a closer look at two analysis results of UVic, namely the dynamic/call
analysis in Table 1 and the combined/call in Table 2. For each component of these
analyses, we list its size (i.e., the number of its units), as well as its number of
independent pairs and its fan-out. The second-to-last line in each table contains
the sum of the component sizes (i.e., the number of units found by the corre-
sponding analysis), as well as the average values of the columns indPairs and fan-
Out—i.e., LStrCoh and StrCoup, respectively.

There are some notable differences between these analysis results. Obviously,
the purely dynamic analysis (Table 1) has the lowest coverage with a size of 305
units, whereas the static analysis (table omitted here) identifies a size of 439 units.
The combination of both architecture models of UVic (Table 2) measures 456
units, indicating that there are calls that are not detectable by the static analysis,
like library calls, that are covered by the dynamic analysis. The static dataflow
analysis has a higher size yet, as often data flows in both directions along calls and
access to common blocks, i.e., shared global variables, are also incorporated in the
analysis graph. This most complex graph is produced when combining dynamic
calls, static calls, and dataflows, resulting in 477.

In general, such differences between dynamic and static analyses are not sur-
prising: While static analysis, by design, takes the entire software into account,
dynamic analysis only records information about the parts of the program used
in the studied run of the system. However, the dynamic analysis allows us to iden-
tify the portions of the ESM that were actually used. Difference graphs can be
generated to indicate deviations that might lead to the removal of unused code
and refine interfaces.

In UVic, the normalized StrCoup values range from 0.06 to 0.07 for the call-
only analyses and from 0.14 to 0.15 for the analysis, including dataflow.

Similarly, the normalized values for LStrCoh are also very close to each other:
With the exception of the dynamic/call analysis (which is an outlier as it is based
on a relatively small set of call data, as discussed above), the resulting values for
UVic, these are between 0.0121 and 0.0129. In contrast to StrCoup, adding data-

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 127 Journal of Software Engineering and Applications

flow does not make a big difference here. The reason is that here, we count the
number of independent pairs of units, so whether edges are bidirectional or uni-
directional does not make a difference.

These normalizations also serve as an indicator that MITgcm’s internal struc-
ture is, in fact, better than that of UVic, as the normalized StrCoup metrics are
approximately half of the corresponding value for UVic for all of our analysis
techniques.

Table 1. UVic analyzed with dynamic/call.

 COMPONENT NAME SIZE INDPAIRS FAN-OUT

1 common 114 6237 30

2 embm 35 558 25

3 ice 11 45 2

4 mom 72 2477 32

5 mtlm 29 373 19

6 netcdf 18 134 0

7 sed 26 293 15

 ∑/LStrCoh/StrCoup 305 1445.29 17.57

 normalized 0.0155 0.06

Table 2. UVic analyzed with combined/call.

 COMPONENT NAME SIZE INDPAIRS FAN-OUT

1 ??<runtime> 32 496 0

2 common 154 11513 64

3 embm 39 701 49

4 ice 12 56 11

5 mom 115 6428 63

6 mtlm 33 487 40

7 netcdf 28 341 8

8 sed 43 841 37

 ∑/LStrCoh/StrCoup 456 2607.88 34.00

 normalized 0.0125 0.07

5.2.2. Information Theory Metrics
As shown in Table 3, we computed for UVic Versions 2.6 to 2.9.2 their size and
complexity utilizing the Allen metrics [18].

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 128 Journal of Software Engineering and Applications

Table 3. Allen complexity and size metric results for Versions 2.6 to 2.9.2 of UVic.

Version Complexity Size Ratio LOC

2.6 1948.92 2133.95 0.913 49,869

2.7 2372.68 2522.46 0.941 55,188

2.7.1 2372.68 2522.46 0.941 55,213

2.7.2 2372.68 2522.46 0.941 55,218

2.7.3 2376.63 2541.88 0.935 55,922

2.7.4 2830.96 2776.33 1.020 58,719

2.7.5 2800.76 2805.82 0.998 58,995

2.8 2899.16 2727.28 1.063 57,348

2.9 3678.48 3185.78 1.155 60,340

2.9.1 3678.48 3185.78 1.155 60,457

2.9.2 3678.48 3185.78 1.155 60,706

As Table 3 shows, the complexity increases faster, especially from Version 2.8

to Version 2.9, indicating increasing inter-dependencies and, therefore, architec-
ture degradation. In our interviews, the model developers referred to the code as
‘spaghetti code.’ Between Versions 2.7.5 and 2.8, we can see that the complexity
increases while the lines of code decrease, indicating growing interconnections.

5.3. Evaluation of MITgcm Global Ocean

Out of the three MITgcm variants mentioned in Figure 7, we focus on Global
Ocean cs32 × 15 since this is the largest of the three. The results and takeaways
are comparable for these three variants.

5.3.1. Counting Metrics
In the same way, as for UVic above, we now take a closer look at three analysis
results of MITgcm Global ocean cs32 × 15, namely the dynamic/call, combinedPlain-
CallMap, and ombined/both analyses (see Tables 4-6).

As expected, the absolute values of these metrics differ significantly between the
different analyses. One reason for this is that, as discussed before, the size of the
models resulting from the analyses is quite different (this is apparent from the
“size” column in Table 4, Table 5).

To allow for more meaningful comparisons of the metric values that account
for the size differences, we also consider normalized values of LStrCoh and
StrCoup in the last line of each table. These values are obtained by dividing the
metric values by (for StrCoup), the number of units discovered by the analysis,
and (for LStrCoh) the squared number of units. We treat these two differently
since StrCoup counts connections to units and, therefore, is a linear measure,
while LStrCoh counts pairs of units and is therefore, quadratic.

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 129 Journal of Software Engineering and Applications

Table 4. MITgcm analyzed with dynamic/call.

 COMPONENT NAME SIZE INDPAIRS FAN-OUT

1 no-file 2 0 0

2 unknown-component 1 0 1

3 mnc_create_dir 1 0 0

4 bulk_force 1 0 1

5 cal 1 0 1

6 diagnostics 3 2 7

7 eesupp 1 0 0

8 exch2 11 45 3

9 exf 1 0 1

10 ggl90 1 0 1

11 gmredi 1 0 3

12 mdsio 1 0 3

13 mnc 10 37 5

14 monitor 3 1 4

15 openad 1 0 1

16 rw 4 6 0

17 seaice 1 0 1

18 src 51 1201 21

19 thsice 1 0 1

 ∑/LStrCoh/StrCoup 96 68.00 2.84

 normalized 0.0074 0.03

Table 5. MITgcm analyzed with combined/call.

 COMPONENT NAME SIZE INDPAIRS FAN-OUT

1 ++no-file++ 2 0 0

2 ++... 1 0 1

3 ??/home/... 1 0 0

4 ??(runtime) 47 1081 0

5 bulk_force 11 50 23

6 cal 30 382 16

7 debug 13 73 14

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 130 Journal of Software Engineering and Applications

Continued

8 diagnostics 66 2073 57

9 eesupp 1 0 0

10 exch2 111 5999 19

11 exf 42 826 58

12 generic_advdiff 98 4631 37

13 ggl90 16 114 34

14 gmredi 22 223 48

15 mdsio 28 329 19

16 mnc 93 4096 15

17 mom_common 27 348 12

18 mom_fluxform 20 171 20

19 mom_vecinv 12 55 33

20 monitor 27 315 26

21 openad 2 1 12

22 rw 53 1376 22

23 seaice 60 1695 100

24 src 372 68353 221

25 thsice 35 567 68

26 timeave 16 109 17

 ∑/LStrCoh/StrCoup 1206 3571.81 33.54

 normalized 0.0025 0.03

Table 6. MITgcm analyzed with combined/both.

 COMPONENT NAME SIZE INDPAIRS FAN-OUT

1 no-file 2 0 0

2 unknown-component 1 0 1

3 mnc_create_dir.c 1 0 0

4 <runtime> 47 1054 434

5 bulk_force 11 50 30

6 cal 32 443 33

7 debug 13 73 48

8 diagnostics 67 2139 126

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 131 Journal of Software Engineering and Applications

Continued

9 eesupp 1 0 0

10 exch2 111 5999 69

11 exf 42 826 65

12 generic_advdiff 98 4631 48

13 gg190 16 114 43

14 gmredi 22 223 59

15 mdsio 34 512 68

16 mnc 93 4096 49

17 mom_common 27 348 18

18 Mom_fluxform 20 171 21

19 mom_vecinv 12 55 34

20 monitor 27 315 35

21 openad 4 6 13

22 rw 54 1429 72

23 seaice 60 1695 109

24 src 393 76374 439

25 thsice 37 638 78

26 timeave 16 109 33

 ∑/LStrCoh/StrCoup 1241 3896.15 33.54

 normalized 0.0025 0.06

From our results, we can also observe the above-mentioned difference between

analyses including dataflow and those using only call data (comparing the anal-
yses combined/call from Table 5 and ombined/both from Table 6):

While the number of detected units is pretty close (the analysis including data-
flow adds a further 35 units; these are most likely Fortran common blocks), the
average fan-out of the components (i.e., StrCoup) is more than doubled by adding
dataflow analysis. This is because dataflow usually exists in both directions be-
tween two operations, if data flows at all (e.g., with parameters in one direction
and return values in the other direction), while call relationships often only exist
in one direction. Therefore, the number of directed edges is much larger for a
dataflow analysis.

Note also that the normalized values of StrCoup are very close to each other:
For the variant Global Ocean cs32 × 15 shown in the tables, the normalized values
of StrCoup range from 0.03 to 0.07 (compared to the original ranges 2.84 to 87.32
for MITgcm). More interestingly, the thus-normalized StrCoup is 0.03 for all

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 132 Journal of Software Engineering and Applications

MITgcm analyses, including only call relationships (Table 3 and Table 5, and the
analysis results found in the supplementary material), and is 0.06 or 0.07 for the
MITgcm analyses that include dataflow relationships. Hence, the normalizations
indicate that the increased coverage of the analysis methods explains some of the
differences observed in the metrics. This also shows that normalization captures
the difference between analyses including dataflow and those omitting it better
than the original metrics.

Similarly, the normalized values for LStrCoh are also very close to each other:
With the exception of the dynamic/call analysis (which is an outlier as it is based
on a relatively small set of call data, as discussed above), the resulting values for
MITgcm are all between 0.0025 and 0.0031. These measurements are only a 1/4 of
UVic measurements, which are between 0.0121 and 0.0129, indicating that the
overall architecture of MITgcm is in better shape.

In contrast to StrCoup, adding dataflow does not make a big difference here.
This is because here, we count the number of independent pairs of units, so
whether edges are bidirectional or unidirectional does not make a difference.

5.3.2. Information Theory Metrics
For MITgcm, we computed complexity and size with the Allen metrics and esti-
mated the coupling degree for different variants and versions. Due to the large
number of variants, we display the results as a histogram in Figure 8. It shows that
most variants range from 6000 to 7000, and more complex variants are less fre-
quent.

Figure 8. Architecture complexity for all MITgcm model variants.

We compared the size and complexity based on the Allen metrics, see Figure 9.
The data suggests that complexity grows faster than size. The fitted curve describes
the relationship of the complexity to the size as logarithmic.

There is a group of outliers of 3 ESM variants between 5000 and 6500 bits of
complexity that have exceptionally high values. These variants use the fizhi mod-
ule that addresses atmosphere physics. This indicates that this module introduces
a lot of procedures, but fewer calls than in the remaining model.

As shown in Figure 9, the largest and most complex ESM variant is Global
Ocean cs32 × 15. Thus, we picked this variant to compute the Allen metrics [18]
for all versions of the ESM.

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 133 Journal of Software Engineering and Applications

Figure 9. Architecture complexity to size relationship for all selected MITgcm variants.

In Table 7, we depict major versions of MITgcm, whereas in fig:mitgcm:allen,
we show the measurements for all versions from checkpoint54 to checkpoint69a.

We omit the lines of code measurements (LOC), as due to the build system of
MITgcm, we could not safely detect whuch parts of the code are actually used for
a model variant, and we could not extract this information from the Fortran parser
used to collect calls and dataflows.

Table 7. Allen complexity and size metric results for Versions checkpoint54 to checkpoint69a
(key versions only).

Version Complexity Size Ratio

checkpoint54 32085.59 12445.79 2.578

checkpoint55 32085.59 12445.79 2.578

checkpoint57 32085.59 12445.79 2.578

checkpoint58 32085.59 12445.79 2.578

checkpoint59a 33065.04 13361.10 2.475

checkpoint60 33357.39 13537.92 2.464

checkpoint61 33357.39 13537.92 2.464

checkpoint62 33357.39 13537.92 2.464

checkpoint63 31161.24 13465.16 2.314

checkpoint64 32759.68 13476.95 2.431

checkpoint65 32602.79 13406.23 2.432

checkpoint66a 32492.55 13382.66 2.428

checkpoint67 33092.39 13443.58 2.462

checkpoint68a 34743.43 13644.12 2.546

checkpoint69a 34751.12 13608.71 2.556

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 134 Journal of Software Engineering and Applications

As the table suggests complexity and size increase over time with some excep-
tions indicating major architectural changes. As MITgcm has the aim to be a mod-
ular ESM that can be used for a wide variety of experiments, such efforts are nec-
essary to be able to be used in that manor. The ratio between complexity and size
show that the ESM improves over time, but in the recent version, the ratio in-
creased again.

In Figure 10, we can see a sudden jump in size around checkpoint59a, which
also increased the complexity, while at the same time, efforts were made to reduce
the coupling of modules in MITgcm, effectively improving the architecture. An-
other effort to reduce coupling was made between checkpoint62f and check-
point62g, resulting in less complex major release checkpoint63. After that, the
complexity started to increase again without an impact on the overall size and
with no relevant impact on the coupling. This shows that functionality inside
modules was added or improved. Only in more recent versions did new function-
ality arrive and cause a large increase in coupling and complexity.

Figure 10. Allen complexity, size, and coupling metric results of Global Ocean cs32 × 15
for all Versions from checkpoint54 to checkpoint69a.

6. Related Work

Alexander and Easterbrook [22] analyzed climate model software architectures by
considering the model source code. The focus was on analyzing the modulariza-
tion based on the relative sizes of software components, as well as data flow be-
tween components and design decisions. They visualized the software architec-
ture, including the dependencies between the components. The code analysis was
performed on preprocessed code with external software. They used a predefined
scenario to make the analyses of different models comparable. The developers
were contacted for information on design decisions. Different from this work, we
conduct a more fine-grained, tool-based architecture analysis employing a com-
bination of static and dynamic analysis.

Simm et al. [23] interviewed model developers and environmental scientists
about their approaches to engineering computer-based environmental models. At
the architectural level, they found that models are often monolithic and utilize
specific coupling interfaces to link to other models. This observation is confirmed
by our tool-based architecture analysis.

Basic architectural diagrams are often created manually for individual models
[24]-[26]. These descriptions only show a general software architecture based on

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 135 Journal of Software Engineering and Applications

the functionality of the models and their components. The actual climate model’s
architecture can differ from these architectural diagrams, due to variant configu-
rations. Compared to these works, we combine static and dynamic analysis to re-
verse engineer fine-grained architecture information of earth system models.

Riva and Rodríguez [27] also use a combination of static and dynamic analysis
for architecture reconstruction, but they used a simulation technique, while the
monitoring tools we use can be run on a production system and, therefore, take
runtime information into account.

7. Conclusions and Future Work

We analyzed the two ESMs, UVic and MITgcm, to recover their architecture and
understand the key properties of their software structure. In both cases, we could
not find large portions of unused code. This was expected to be the case for
MITgcm, as it emphasizes its modular approach. Based on previous interviews
with climate scientists [28], we expected that this would be an issue with UVic.
However, there were only minor differences between the static and dynamic anal-
ysis regarding the ESM structure. Some differences can be attributed to the use of
data handling libraries, which were not detected by the static analysis. Parts only
visible in the static analysis were, e.g., debug and logging code, which can be
switched on and off at the start time of the model. In the UVic architecture, we
found that the major modules heavily rely on each other, which is observable in
the directory and file-based modularization scheme.

Since our data shows that the results of dynamic and static analyses are similar
to each other, for some analyses, it might be enough to perform only the (cheaper)
static analysis, which is an interesting difference to, for example, interactive web-
based systems. Note, however, that there are many types of analyses that simply
cannot be done in a static way, such as profiling analyses with the goal of runtime
optimizations.

Additionally, our findings confirm our expectations that the architecture of an
ESM differs significantly from that of, e.g., web-based systems, where the differ-
ences between dynamic and static analyses are much more significant [29]. A pos-
sible reason for this is that the design of an ESM can anticipate the way the code
will execute much better than the design of an event-based system, where much
of the actual behavior depends on events that cannot be predicted at design time.

With the UVic log, we have also shown that our logging and analysis tools are
capable of creating and processing huge logs, which is essential in going forward
to analyze even larger community ESMs.

ESMs process big datasets. The coupling of sub-models is, therefore, also based
on data. In our current analysis, we considered dataflow using Fortran common
blocks, but did not analyze, e.g., data flow resulting from writing and reading the
same files. Based on a more complete picture of control and data flow analyses,
we will revisit model coupling issues, which we identified in the ESMs.

We provided a new approach to discover interfaces based on usage patterns

https://doi.org/10.4236/jsea.2025.183008

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 136 Journal of Software Engineering and Applications

between modules. To potentially increase the quality of these interfaces, one could
merge and split these interfaces based on shared use of data types, textual similar-
ity, e.g., identical prefixes and suffixes, substring similarity or distance functions,
such as Levenshtein distance [30], which we will address in future work.

Funding

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) (Grant No. HA 2038/8-1-425916241).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Johanson, A. and Hasselbring, W. (2018) Software Engineering for Computational

Science: Past, Present, Future. Computing in Science & Engineering, 20, 90-109.
https://doi.org/10.1109/mcse.2018.021651343

[2] Jung, R., Gundlach, S. and Hasselbring, W. (2022) Software Development Processes
in Ocean System Modeling. International Journal of Modeling, Simulation, and Sci-
entific Computing, 13, Article ID: 2230002.
https://doi.org/10.1142/s1793962322300023

[3] Reussner, R., Goedicke, M., Hasselbring, W., Vogel-Heuser, B., Keim, J. and Märtin, L.
(2019) Managed Software Evolution. Springer.
https://link.springer.com/book/10.1007/978-3-030-13499-0

[4] Hasselbring, W. (2018) Software Architecture: Past, Present, Future. In: Gruhn, V. and
Striemer, R., Eds., The Essence of Software Engineering, Springer International Pub-
lishing, 169-184. https://doi.org/10.1007/978-3-319-73897-0_10

[5] Weaver, A.J., Eby, M., Wiebe, E.C., Bitz, C.M., Duffy, P.B., Ewen, T.L., et al. (2001)
The Uvic Earth System Climate Model: Model Description, Climatology, and Appli-
cations to Past, Present and Future Climates. Atmosphere-Ocean, 39, 361-428.
https://doi.org/10.1080/07055900.2001.9649686

[6] Artale, V., Calmanti, S., Carillo, A., Dell’Aquila, A., Herrmann, M., Pisacane, G., et al.
(2009) An Atmosphere-Ocean Regional Climate Model for the Mediterranean Area:
Assessment of a Present Climate Simulation. Climate Dynamics, 35, 721-740.
https://doi.org/10.1007/s00382-009-0691-8

[7] Brévière, E.H.G., Bakker, D.C.E., Bange, H.W., Bates, T.S., Bell, T.G., Boyd, P.W., et al.
(2015) Surface Ocean-Lower Atmosphere Study: Scientific Synthesis and Contribu-
tion to Earth System Science. Anthropocene, 12, 54-68.
https://doi.org/10.1016/j.ancene.2015.11.001

[8] Pahlow, M., Chien, C., Arteaga, L.A. and Oschlies, A. (2020) Optimality-Based Non-
Redfield Plankton-Ecosystem Model (OPEM V1.1) in Uvic-ESCM 2.9—Part 1: Im-
plementation and Model Behaviour. Geoscientific Model Development, 13, 4663-
4690. https://doi.org/10.5194/gmd-13-4663-2020

[9] Chien, C., Pahlow, M., Schartau, M. and Oschlies, A. (2020) Optimality-Based Non-
Redfield Plankton-Ecosystem Model (OPEM V1.1) in UVic-ESCM 2.9—Part 2: Sen-
sitivity Analysis and Model Calibration. Geoscientific Model Development, 13, 4691-
4712. https://doi.org/10.5194/gmd-13-4691-2020

[10] Mengis, N., Keller, D.P., MacDougall, A.H., Eby, M., Wright, N., Meissner, K.J., et al.

https://doi.org/10.4236/jsea.2025.183008
https://doi.org/10.1109/mcse.2018.021651343
https://doi.org/10.1142/s1793962322300023
https://link.springer.com/book/10.1007/978-3-030-13499-0
https://doi.org/10.1007/978-3-319-73897-0_10
https://doi.org/10.1080/07055900.2001.9649686
https://doi.org/10.1007/s00382-009-0691-8
https://doi.org/10.1016/j.ancene.2015.11.001
https://doi.org/10.5194/gmd-13-4663-2020
https://doi.org/10.5194/gmd-13-4691-2020

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 137 Journal of Software Engineering and Applications

(2020) Evaluation of the University of Victoria Earth System Climate Model Version
2.10 (UVic ESCM 2.10). Geoscientific Model Development, 13, 4183-4204.
https://doi.org/10.5194/gmd-13-4183-2020

[11] Stocker, T.F., et al. (2014) Climate Change 2013—The Physical Science Basis: Work-
ing Group I Contribution to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press.

[12] Jung, R., Schnoor, H. and Hasselbring, W. (2024) Replication Package for: Software
Architecture Evaluation of Earth System Models.
https://zenodo.org/records/11371816

[13] van Hoorn, A., Waller, J. and Hasselbring, W. (2012) Kieker: A Framework for Ap-
plication Performance Monitoring and Dynamic Software Analysis. Proceedings of
the 3rd ACM/SPEC International Conference on Performance Engineering, Boston,
22-25 April 2012, 247-248. https://doi.org/10.1145/2188286.2188326

[14] Hasselbring, W. and van Hoorn, A. (2020) Kieker: A Monitoring Framework for Soft-
ware Engineering Research. Software Impacts, 5, Article ID: 100019.
https://doi.org/10.1016/j.simpa.2020.100019

[15] Overbey, J.L., Negara, S. and Johnson, R.E. (2009) Refactoring and the Evolution of
Fortran. 2009 ICSE Workshop on Software Engineering for Computational Science
and Engineering, Vancouver, 23 May 2009, 28-34.
https://doi.org/10.1109/secse.2009.5069159

[16] Bogner, J., Wagner, S. and Zimmermann, A. (2017) Automatically Measuring the Main-
tainability of Service- and Microservice-Based Systems. Proceedings of the 27th Interna-
tional Workshop on Software Measurement and 12th International Conference on Soft-
ware Process and Product Measurement, Gothenburg, 25-27 October 2017, 107-115.
https://doi.org/10.1145/3143434.3143443

[17] Candela, I., Bavota, G., Russo, B. and Oliveto, R. (2016) Using Cohesion and Cou-
pling for Software Remodularization: Is It Enough? ACM Transactions on Software
Engineering and Methodology, 25, 1-28. https://doi.org/10.1145/2928268

[18] Allen, E.B. (2002) Measuring Graph Abstractions of Software: An Information-The-
ory Approach. Proceedings 8th IEEE Symposium on Software Metrics, Ottawa, 4-7
June 2002, 182-193. https://doi.org/10.1109/metric.2002.1011337

[19] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1996) Design Patterns—Elements
of Reusable Object-Oriented Software. Addison-Wesley.

[20] Kieker Project (2021) Kieker Development Tools.

[21] Adcroft, A., et al. (2022) MITgcm’s User Manual.

[22] Alexander, K. and Easterbrook, S.M. (2015) The Software Architecture of Climate
Models: A Graphical Comparison of CMIP5 and EMICAR5 Configurations. Geosci-
entific Model Development, 8, 1221-1232. https://doi.org/10.5194/gmd-8-1221-2015

[23] Simm, W.A., Samreen, F., Bassett, R., et al. (2018) SE in ES: Opportunities for Soft-
ware Engineering and Cloud Computing in Environmental Science. Proceedings of
the 40th International Conference on Software Engineering: Software Engineering in
Society, Gothenburg, 27 May-3 June 2018, 61-70.
https://dl.acm.org/doi/10.1145/3183428.3183430

[24] Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T.,
et al. (2011) Development and Evaluation of an Earth-System Model-HadGEM2. Ge-
oscientific Model Development, 4, 1051-1075.
https://doi.org/10.5194/gmd-4-1051-2011

[25] Giorgetta, M.A., Jungclaus, J., Reick, C.H., Legutke, S., Bader, J., Böttinger, M., et al.

https://doi.org/10.4236/jsea.2025.183008
https://doi.org/10.5194/gmd-13-4183-2020
https://zenodo.org/records/11371816
https://doi.org/10.1145/2188286.2188326
https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/10.1109/secse.2009.5069159
https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1145/2928268
https://doi.org/10.1109/metric.2002.1011337
https://doi.org/10.5194/gmd-8-1221-2015
https://dl.acm.org/doi/10.1145/3183428.3183430
https://doi.org/10.5194/gmd-4-1051-2011

W. Hasselbring et al.

DOI: 10.4236/jsea.2025.183008 138 Journal of Software Engineering and Applications

(2013) Climate and Carbon Cycle Changes from 1850 to 2100 in MPI‐ESM Simula-
tions for the Coupled Model Intercomparison Project Phase 5. Journal of Advances
in Modeling Earth Systems, 5, 572-597. https://doi.org/10.1002/jame.20038

[26] Hurrell, J.W., Holland, M.M., Gent, P.R., Ghan, S., Kay, J.E., Kushner, P.J., et al.
(2013) The Community Earth System Model: A Framework for Collaborative Re-
search. Bulletin of the American Meteorological Society, 94, 1339-1360.
https://doi.org/10.1175/bams-d-12-00121.1

[27] Riva, C. and Rodríguez, J.V. (2002) Combining Static and Dynamic Views for Archi-
tecture Reconstruction. 6th European Conference on Software Maintenance and Reen-
gineering (CSMR 2002), Budapest, 11-13 March 2002, 47.
https://ieeexplore.ieee.org/document/995789

[28] Jung, R., Gundlach, S. and Hasselbring, W. (2022) Thematic Domain Analysis for
Ocean Modeling. Environmental Modelling & Software, 150, Article ID: 105323.
https://doi.org/10.1016/j.envsoft.2022.105323

[29] Schnoor, H. and Hasselbring, W. (2020) Comparing Static and Dynamic Weighted
Software Coupling Metrics. Computers, 9, Article No. 24.
https://doi.org/10.3390/computers9020024

[30] Levenshtein, V.I. (1966) Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady, 10, 707-710.

https://doi.org/10.4236/jsea.2025.183008
https://doi.org/10.1002/jame.20038
https://doi.org/10.1175/bams-d-12-00121.1
https://ieeexplore.ieee.org/document/995789
https://doi.org/10.1016/j.envsoft.2022.105323
https://doi.org/10.3390/computers9020024

	Software Architecture Evaluation of Earth System Models
	Abstract
	Keywords
	1. Introduction
	2. Our Reverse Engineering Method
	2.1. Dynamic and Static Analysis
	2.2. Dataflow Analysis
	2.3. Interface Discovery
	2.4. Architecture Evaluation
	2.4.1. Counting Metrics
	2.4.2. Information Theory Metrics

	3. Reverse Engineering of UVic
	4. Reverse Engineering of MITgcm
	5. Architecture Evaluation of UVic and MITgcm
	5.1. Overview
	5.2. Evaluation of UVic
	5.2.1. Counting Metrics
	5.2.2. Information Theory Metrics

	5.3. Evaluation of MITgcm Global Ocean
	5.3.1. Counting Metrics
	5.3.2. Information Theory Metrics

	6. Related Work
	7. Conclusions and Future Work
	Funding
	Conflicts of Interest
	References

