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Abstract 
This paper presents a comprehensive machine learning approach for credit 
score classification, addressing key challenges in financial risk assessment. We 
propose an optimized CatBoost-based framework that integrates advanced fea-
ture engineering, systematic class imbalance handling, and robust evaluation 
metrics. Our methodology achieves strong classification performance, with 
AUC scores of 0.944, 0.858, and 0.928 for the Poor, Standard, and Good credit 
score classes, respectively. The system particularly excels in distinguishing high-
risk (Poor) and low-risk (Good) credit profiles, while the Standard class remains 
the most challenging due to its overlapping characteristics. Through extensive 
experimentation and analysis, we provide valuable insights into feature im-
portance and model behavior, offering practical implications for financial insti-
tutions and credit scoring systems. 
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1. Introduction 

The accurate assessment of creditworthiness remains a fundamental challenge in 
modern financial systems. Traditional credit scoring models, such as logistic re-
gression and rule-based methods, often struggle to capture the complexity of fi-
nancial behaviors and evolving regulatory requirements. These models typically 
rely on manually selected features and predefined rules, which may not fully re-
flect the nuanced relationships in credit risk assessment. 
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Machine learning has opened new possibilities for more accurate and adaptive 
credit risk assessment, demonstrating superior predictive capabilities compared 
to traditional approaches. However, several challenges persist:  

• Class imbalance: Credit scoring datasets often exhibit severe class imbalance, 
where high-risk individuals are significantly underrepresented, leading to biased 
models that favor the majority class. 

• High-dimensional feature space: Financial datasets contain a broad range of 
variables, from demographic details to transaction histories, requiring efficient 
feature selection and engineering to extract meaningful insights. 

• Model interpretability: While machine learning models can achieve high ac-
curacy, their black-box nature raises concerns about transparency, explainability, 
and regulatory compliance.  

To address these challenges, we propose a comprehensive machine learning-
based credit scoring framework that integrates advanced feature engineering, an 
optimized CatBoost classifier, and robust evaluation techniques. Our main con-
tributions are:  

1) A systematic feature engineering pipeline tailored for credit scoring, incor-
porating domain-specific transformations, interaction terms, and anomaly detec-
tion.  

2) An optimized CatBoost-based classification framework that effectively han-
dles class imbalance using SMOTE and hyperparameter optimization with Optuna.  

3) Extensive experimental results and analysis, including feature importance 
insights, model evaluation on different credit classes, and a detailed comparison 
with existing approaches.  

Our results demonstrate significant improvements over traditional models, 
particularly in handling the challenging Standard credit class while maintaining 
high accuracy for Poor and Good credit classes. The practical implications of this 
work extend to financial institutions, regulatory bodies, and consumers, providing 
a more accurate, fair, and interpretable credit assessment system. 

2. Related Work 
2.1. Traditional Credit Scoring Methods 

Credit scoring has been a cornerstone of financial risk assessment for decades, 
with traditional methods relying heavily on statistical techniques. The founda-
tion of modern credit scoring was laid by early statistical models such as logistic 
regression and discriminant analysis, which have been widely applied in finan-
cial risk evaluation [1] [2]. These models are valued for their interpretability and 
efficiency, making them widely adopted in financial decision-making. However, 
they struggle to capture nonlinear relationships and complex interactions in 
modern financial datasets, limiting their ability to model dynamic borrower be-
havior. 

One of the most widely adopted credit scoring systems is the FICO score, which 
was introduced to standardize creditworthiness assessment. The FICO score ag-
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gregates various financial indicators to assign a numerical score that represents an 
individual’s credit risk [3]. While FICO and similar scoring models have been suc-
cessful in providing structured risk assessment, they have been criticized for their 
reliance on a limited set of predefined financial indicators, making them suscep-
tible to bias and unable to fully adapt to evolving consumer behaviors [4]. Addi-
tionally, traditional credit scoring methods often do not account for alternative 
financial data sources, such as transactional histories and behavioral patterns, 
which could enhance predictive accuracy. 

Despite these limitations, traditional statistical credit scoring models remain 
widely used due to their regulatory acceptance, simplicity, and well-established 
theoretical foundations. However, as financial systems evolve and consumer be-
havior becomes more complex, there is an increasing need for more flexible and 
adaptive credit assessment methods. 

2.2. Machine Learning in Credit Scoring 

Machine learning has significantly improved credit scoring by handling complex, 
high-dimensional datasets with greater accuracy. Early applications focused on 
support vector machines (SVMs) and artificial neural networks (ANNs), which 
demonstrated superior predictive performance compared to traditional statistical 
models [5] [6]. These models excel at capturing nonlinear relationships but often 
suffer from interpretability issues, limiting their regulatory acceptance. 

More recently, ensemble learning techniques, such as Random Forests and Gra-
dient Boosting Machines (GBMs), have gained prominence due to their ability to 
combine multiple classifiers for improved accuracy [7] [8]. XGBoost, in particu-
lar, has been widely adopted for credit scoring due to its efficiency and ability to 
handle missing data [8]. 

A major challenge in applying machine learning models to credit scoring is en-
suring interpretability. Traditional credit scoring models, such as logistic regres-
sion, are favored by regulators because they offer transparency in decision-mak-
ing. In contrast, complex models like gradient boosting and deep learning require 
explainability techniques to gain regulatory trust. Methods such as SHAP (Shapley 
Additive Explanations) have been introduced to improve model interpretability 
and provide insights into credit decisions [7]. These techniques allow financial 
institutions to assess individual risk factors while maintaining the advantages of 
advanced machine learning algorithms. 

2.3. Handling Class Imbalance in Credit Scoring 

One of the major challenges in credit scoring is the class imbalance problem, where 
the number of high-risk borrowers is significantly smaller than low-risk borrowers. 
Traditional classification models tend to favor the majority class, leading to biased 
risk assessments [9]. Several techniques have been proposed to address this issue, 
including oversampling, undersampling, and cost-sensitive learning. 

The Synthetic Minority Over-sampling Technique (SMOTE) is widely adopted 
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for balancing imbalanced credit scoring datasets [9]. SMOTE generates synthetic 
minority class samples, improving classifier performance without altering the da-
taset’s overall distribution. More recently, hybrid approaches that integrate SMOTE 
with ensemble learning methods have shown promising results in addressing class 
imbalance [10]. 

2.4. Feature Engineering and Interpretability 

Feature engineering is critical in credit scoring, as high-quality features directly 
impact model performance. Traditional models rely on a predefined set of finan-
cial indicators such as income, debt, and repayment history [4]. However, with 
the rise of alternative data sources, including social media activity and transaction 
histories, machine learning models can leverage a much richer feature space for 
credit risk assessment [11]. 

A major concern with advanced machine learning models is their interpretabil-
ity. To ensure fairness and regulatory compliance, financial institutions require 
transparency in decision-making processes. Recent methods such as SHAP (Shap-
ley Additive Explanations) [7] and LIME (Local Interpretable Model-agnostic Ex-
planations) [12] have gained popularity for explaining credit scoring predictions. 
These methods provide insights into how individual features contribute to model 
decisions, improving trust and regulatory acceptance [13]. 

2.5. Recent Advances in Credit Scoring 

Recent research has explored the use of deep learning and transfer learning to 
enhance credit scoring models. Deep neural networks (DNNs) have demonstrated 
state-of-the-art performance in credit risk prediction by capturing intricate pat-
terns in high-dimensional financial data. For instance, recent studies have shown 
that neural network-based models can outperform traditional methods in captur-
ing nonlinear dependencies in credit risk prediction [14]. However, the black-box 
nature and high computational costs of deep learning models remain challenges 
for widespread adoption. 

Another promising advancement is the application of federated learning in 
credit scoring. This approach enables financial institutions to train machine 
learning models collaboratively without directly sharing sensitive data and ad-
dressing privacy concerns [15]. Federated learning has demonstrated strong po-
tential in maintaining data security while achieving high predictive accuracy in 
credit risk assessment. 

These advancements highlight the transformative impact of machine learning 
in credit scoring, addressing both technical and regulatory challenges to improve 
financial decision-making processes. 

3. Methodology 

Our methodology for credit score classification is designed to address key chal-
lenges in financial risk assessment, including class imbalance, high-dimensional 
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data, and the need for interpretability. The framework consists of four main com-
ponents: 1) data preprocessing, 2) feature engineering, 3) model architecture, and 
4) evaluation framework. 

3.1. Data Preprocessing 

The preprocessing pipeline ensures the quality and consistency of input data by 
handling missing values, outliers, and normalizing numerical features. 

3.1.1. Handling Missing Values 
Missing values are imputed using different strategies based on the feature type: 

• Numeric Features: Missing values are replaced with the median, as it is robust 
to outliers.  

• Categorical Features: The most frequent category (mode) is used for impu-
tation.  

3.1.2. Outlier Detection and Treatment 
Outliers are detected and treated using the Interquartile Range (IQR) method:  

Lower Bound 1 3 IQR, Upper Bound 3 3 IQRQ Q= − × = + ×       (1) 

where 1Q  and 3Q  are the first and third quartiles, respectively. Outliers beyond 
these bounds are replaced with the nearest bound value. 

3.1.3. Data Normalization 
To ensure that all features contribute equally to model learning, numeric features 
are normalized using Min-Max Scaling:  

min
norm

max min

X XX
X X

−
=

−
                     (2) 

This transformation scales all features to the range [ ]0,1 . 

3.2. Feature Engineering 

Feature engineering is a critical step, as the quality of features directly impacts 
model performance. We focus on creating domain-specific features and encoding 
categorical variables. 

3.2.1. Impact of Feature Engineering on Model Performance 
Our feature engineering pipeline plays a crucial role in enhancing model perfor-
mance by transforming raw financial data into more meaningful representations. 
The improvements are driven by two key aspects: 

1) Handling Nonlinear Relationships: Traditional models assume linear rela-
tionships, which limits their effectiveness. To address this, we introduce Polyno-
mial features (squared values)—Log transformations for critical features such as 
interest rates and credit utilization. 

These transformations enable the model to detect complex dependencies be-
tween financial variables. 

2) Addressing Class Imbalance and Outliers: We apply SMOTE (Synthetic Mi-
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nority Over-sampling Technique) to generate synthetic samples for underrepre-
sented credit score categories, reducing bias toward majority classes. Outliers in 
features such as Monthly Balance and Changed Credit Limit are identified and 
handled using IQR-based winsorization, improving model stability. 

3) Impact on Model Performance: After applying advanced feature engineer-
ing, our model achieved a significant improvement in classification accuracy and 
ROC-AUC score. These engineered features enhance predictive power and gen-
eralization, allowing for more robust credit score classification. 

3.2.2. Domain-Specific Features 
Several financial ratios and interaction features are created to capture the under-
lying patterns in the data:  

• Debt-to-Income Ratio: Measures the proportion of a customer’s income used 
to service debt.  

• Credit Utilization Ratio: Indicates the percentage of available credit being 
used.  

• Payment-to-Balance Ratio: Reflects the relationship between monthly pay-
ments and outstanding balances.  

3.3. Ensuring Feature Independence and Managing Collinearity 

One key challenge in feature engineering is ensuring that newly introduced do-
main-specific features do not introduce multicollinearity, which can negatively 
impact model stability and interpretability. 

While our pipeline does not explicitly compute the Variance Inflation Factor 
(VIF), we mitigate collinearity through feature importance selection and prepro-
cessing strategies:  

• Feature Selection Based on Importance: We prioritize key financial indica-
tors such as Outstanding Debt, Interest Rate, and Credit History Age. Less in-
formative or redundant features are excluded during preprocessing.  

• Standardization for Stability: All numerical features are transformed using 
Standard Scaler to ensure consistent feature scaling, preventing numerical domi-
nance of highly correlated attributes.  

• Categorical Encoding Optimization: We apply label encoding to categorical 
variables while avoiding excessive feature expansion, which helps reduce redun-
dant feature interactions.  

Future work could incorporate explicit collinearity reduction techniques such 
as Variance Inflation Factor (VIF) filtering or Principal Component Analysis (PCA) 
to further enhance feature independence. 

Categorical Feature Encoding 
Categorical features, such as occupation and payment behavior, are encoded using 
Target Encoding, which replaces each category with the mean target value for 
that category. This approach captures relationships while avoiding the high di-
mensionality of one-hot encoding. 
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3.4. Model Architecture 

We employ CatBoost, a gradient boosting algorithm optimized for categorical 
data. CatBoost offers advantages, including built-in handling of categorical var-
iables, reduced overfitting, and efficient handling of imbalanced datasets. 

3.4.1. Class Imbalance Handling 
To address class imbalance, we use a combination of:  

• SMOTE (Synthetic Minority Over-sampling Technique): Generates syn-
thetic samples for minority classes.  

• Class Weighting: Assigns higher penalties for misclassified minority class in-
stances during training.  

3.4.2. Hyperparameter Optimization 
We optimize CatBoost using Optuna, an advanced hyperparameter tuning frame-
work. The following key hyperparameters are tuned:  

• Learning rate  
• Maximum depth of trees  
• Number of estimators  
• L2 regularization term  
The optimization process follows a Bayesian approach for efficient hyperpa-

rameter selection. 

3.5. Evaluation Framework 

To ensure a comprehensive assessment of model performance, we evaluate both 
predictive accuracy and interpretability. 

3.5.1. Performance Metrics 
The model is evaluated using:  

• ROC AUC: Measures the ability to distinguish between classes.  
• F1-Score: Balances precision and recall, crucial for imbalanced datasets.  
• Balanced Accuracy: Accounts for class imbalance by averaging recall across 

classes.  

3.5.2. Cross-Validation 
We use Stratified 5-Fold Cross-Validation to ensure robust performance estima-
tion while preserving the class distribution. 

3.6. Implementation Details 

The pipeline is implemented in Python using CatBoost, Scikit-learn, and Optuna. 
The modular code structure ensures reproducibility, and all experiments are con-
ducted on a high-performance computing cluster. 

3.7. Dataset Description 

We use the Credit Score Classification Dataset [16] from Kaggle, which provides 

https://doi.org/10.4236/jsea.2025.183007


C. Y. Yan et al. 
 

 

DOI: 10.4236/jsea.2025.183007 105 Journal of Software Engineering and Applications 
 

financial data for credit score prediction. The dataset consists of 100,000 instances 
and includes key financial attributes relevant to assessing creditworthiness. 

3.7.1. Features and Class Distribution 
The dataset contains 12 financial indicators, including:  

• Age: The applicant’s age.  
• Annual Income: Reported yearly income of the individual.  
• Monthly Debt: The total monthly financial obligations.  
• Years of Credit History: Duration of credit activity.  
• Number of Open Accounts: Active credit accounts.  
• Credit Utilization Ratio: The proportion of credit limit used.  
• Number of Credit Problems: Count of past credit issues.  
• Bankruptcies: Number of past bankruptcy filings.  
The target variable is the Credit Score, which falls into three categories:  
• Poor (Class 0)  
• Standard (Class 1)  
• Good (Class 2)  
This dataset is highly imbalanced, with the **Standard** credit score category 

being the most frequent, making it a suitable benchmark for evaluating models on 
class-imbalanced learning. 

3.7.2. Data Preprocessing 
Prior to model training, we performed the following preprocessing steps:  

• Handling Missing Values: Removed or imputed missing records based on 
median values.  

• Feature Scaling: Normalized numerical features using Min-Max scaling.  
• Encoding Categorical Features: Converted non-numeric fields to numerical 

representations.  
• Balancing Classes: Applied SMOTE [9] to mitigate class imbalance.  
The dataset is publicly available at:  

https://www.kaggle.com/datasets/parisrohan/credit-score-classification. 

4. Experimental 

Results In this section, we present the results of our experiments, focusing on 
model performance, feature importance, and error analysis. 

We use the Credit Score Classification Dataset from Kaggle [16], which includes 
a predefined training and test set. All experiments are conducted on the provided 
training set, with 5-fold cross-validation applied to ensure robust performance 
estimation. 

4.1. Performance Metrics 

The model’s performance is evaluated using multiple metrics to provide a com-
prehensive assessment of its predictive power and ability to handle class imbal-
ance. 
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4.2. Performance Metrics 

The model’s performance is evaluated using multiple metrics to provide a compre-
hensive assessment of its predictive power and ability to handle class imbalance. 
 
Table 1. Model performance metrics. 

Class Precision Recall F1-Score AUC Support 

Poor 0.92 0.89 0.90 0.944 3566 

Standard 0.85 0.82 0.83 0.858 12,057 

Good 0.91 0.93 0.92 0.928 5799 

 
As shown in Table 1, the model achieves strong performance across all classes, 

with particularly high AUC scores for the Poor (0.944) and Good (0.928) classes. 
The Standard class, while more challenging, still achieves a respectable AUC of 
0.858. The F1 scores indicate balanced precision and recall, demonstrating the 
model’s effectiveness in handling class imbalance. 

4.3. Feature Importance 

Analysis Feature importance is analyzed using SHAP values, which provide in-
sights into the contribution of each feature to the model’s predictions. Figure 1 
shows the top 10 most important features. 
 

 
Figure 1. Top 10 most important features based on SHAP values. 
 

The results indicate that financial behavior features, such as Outstanding Debt 
and Interest Rate, are the most influential in predicting credit scores. Demo-
graphic features, while less significant, still contribute to the model’s predictions. 

4.4. Confusion Matrix Analysis 

The confusion matrices for the training and test sets are shown in Figure 2 and 
Figure 3. These matrices provide insights into the model’s classification behavior 
and highlight areas for improvement. 
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Figure 2. Confusion matrix for the training set. 
 

 
Figure 3. Confusion matrix for the test set. 
 

The confusion matrices reveal that the model performs well in the Poor and 
Good classes, with minimal misclassifications. However, there is some confusion 
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between the Standard and Good classes, indicating that these classes share similar 
feature patterns. 

4.5. ROC Curve Analysis 

The ROC curves for each class are shown in Figure 4. These curves demonstrate 
the model’s ability to distinguish between classes at various threshold levels. 
 

 
Figure 4. ROC curves for each class. 

 
The model achieves high AUC values for the Poor (0.944) and Good (0.928) 

classes, with slightly lower performance for the Standard class (0.858). The ROC 
curves confirm the model’s strong performance, particularly for the Poor and 
Good classes. The Standard class, while more challenging, still achieves a respect-
able AUC of 0.858. 

4.6. Error Analysis 

To better understand the model’s limitations, we analyze the misclassifications in 
the test set. The primary source of error is confusion between the Standard and 
Good classes, which share similar feature patterns. Future work could focus on 
developing specialized features or ensemble methods to better distinguish these 
classes. 

4.7. Computational Efficiency 

The model achieves a training time of approximately 15 minutes on a high-per-
formance computing cluster, with inference times of less than 1 second per sam-
ple. This makes the model suitable for real-time credit scoring applications. 
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5. Discussion 

The experimental results confirm the effectiveness of our approach in credit score 
classification, particularly in handling class imbalance and extracting meaningful 
feature interactions. This section discusses the key findings, their implications, 
and potential limitations. 

5.1. Key Findings 

Our model achieves strong predictive performance across all classes, with high 
AUC scores for the Poor (0.944) and Good (0.928) categories, as shown in Figure 
4. These results indicate that the model is highly effective at identifying both high-
risk and low-risk borrowers. The Standard class, which represents intermediate 
credit risk, remains more challenging, with an AUC of 0.858, highlighting poten-
tial areas for improvement. 

Feature importance analysis (Figure 1) reveals that financial behavior varia-
bles, such as Outstanding Debt, Interest Rate, and Delay from Due Date, play 
the most significant role in credit risk prediction. This aligns with financial in-
dustry knowledge, reinforcing the necessity of including domain-specific varia-
bles in credit scoring models. 

5.2. Strengths of the Proposed 

Approach The observed performance gains stem from the following factors: 
• Advanced Feature Engineering: The introduction of financial ratios, such as 

Debt-to-Income Ratio and Credit Utilization Ratio, enhances predictive power by 
capturing critical borrower behaviors.  

• Effective Class Imbalance Handling: The integration of SMOTE and class 
weighting mitigates biases against minority classes, ensuring better predictive per-
formance for high-risk groups.  

• Hyperparameter Optimization: Optuna-based Bayesian optimization fine-
tunes key parameters, maximizing model efficiency and robustness.  

5.3. Performance Comparison with Previous Methods 

To evaluate the effectiveness of our approach, we implemented a logistic regres-
sion model as a baseline for comparison. The logistic regression model exhibited 
a lower classification performance, with an accuracy of approximately 72.4% and 
an ROC-AUC score of 0.79. In contrast, our CatBoost-based model achieved a 
significantly improved accuracy of 85.3% and an ROC-AUC score of 0.92. 

These improvements highlight the advantages of our approach, particularly in 
handling complex feature interactions and class imbalances. Unlike logistic re-
gression, which relies on linear decision boundaries, our model captures nonlin-
ear relationships in the data, leading to enhanced classification performance. Ad-
ditionally, our advanced feature engineering, including credit-specific ratio calcu-
lations and interaction terms, contributed to better feature representation and 
model generalization. 
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Furthermore, our model effectively reduces misclassifications, particularly in 
distinguishing borderline cases between credit score categories. This confirms that 
leveraging ensemble learning methods with appropriate feature transformations 
significantly enhances credit score classification accuracy. 

5.4. Limitations 

Despite its strong performance, our approach has certain limitations:  
• Class Overlap Issues: The model exhibits some confusion between Standard 

and Good classes (Figures 2-3), likely due to shared feature distributions. Specif-
ically, many individuals in these two categories exhibit similar debt-to-income ra-
tios, credit utilization, and credit history lengths, leading to classification ambigu-
ity. Although our feature engineering process introduces new interaction features, 
the overlap in core financial indicators remains a challenge. 

To address this, we considered additional techniques such as unsupervised clus-
tering (e.g., k-means, hierarchical clustering) to identify more distinguishable 
subgroups within these credit categories. However, initial experiments showed 
limited improvement, likely due to the continuous nature of the feature space. 
Future work could explore more advanced cluster-aware learning strategies or hy-
brid ensemble models that explicitly incorporate clustering outputs to refine de-
cision boundaries. 

• Model Interpretability: While SHAP values provide insights into feature im-
portance, complex interactions in gradient boosting trees still pose challenges for 
non-technical stakeholders. Simplifying feature interactions or employing more 
explainable models in high-stakes financial settings remains an area for future re-
search. 

• Computational Overhead: Training requires high-performance hardware 
(15 minutes for training), making real-time retraining costly. However, the infer-
ence is efficient (sub-second latency), making it suitable for deployment.  

5.5. Practical Implications 

The results hold significant implications for financial institutions and regulators: 
• Improved Credit Risk Assessment: The model’s enhanced accuracy in iden-

tifying high-risk borrowers can assist banks in reducing default rates while ex-
panding credit access to reliable customers.  

• Regulatory Compliance and Transparency: SHAP values ensure that credit 
decisions remain explainable, aligning with fairness requirements in financial reg-
ulations.  

• Deployment Readiness: With efficient inference time, the model is suitable 
for batch predictions and can be deployed as a real-time credit scoring API.  

6. Conclusions 

In this paper, we presented a comprehensive machine learning framework for 
credit score classification, addressing key challenges such as class imbalance, high-
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dimensional data, and model interpretability. Our approach integrates domain-
specific feature engineering, an optimized CatBoost model, and a robust evalua-
tion framework to enhance predictive performance and transparency in credit risk 
assessment. 

6.1. Summary of Contributions 

The key contributions of this work include:  
• A systematic feature engineering pipeline that captures domain-specific pat-

terns in credit data, improving model generalization.  
• An optimized CatBoost classification model that effectively handles class im-

balance and high-dimensional data, outperforming traditional credit scoring meth-
ods.  

• A comprehensive evaluation framework incorporating multiple performance 
metrics, including ROC AUC, F1-score, confusion matrices, and SHAP-based in-
terpretability, ensuring transparency in model decision-making.  

6.2. Future Work 

Future research directions include:  
• Enhanced Feature Representation: Developing specialized features to im-

prove the distinction between the Standard and Good classes, mitigating classifi-
cation overlap.  

• Ensemble Methods: Exploring hybrid models that integrate CatBoost with 
other machine learning techniques, such as deep learning or meta-learning, to 
further improve classification accuracy.  

• Federated Learning: Investigating privacy-preserving techniques such as fed-
erated learning, enabling financial institutions to collaboratively train models while 
maintaining data confidentiality.  

• Real-Time Deployment: Optimizing the model for real-time credit scoring 
applications by reducing computational overhead and ensuring seamless integra-
tion into financial systems.  

Our findings demonstrate the potential of machine learning to enhance credit 
scoring, benefiting financial institutions, regulators, and consumers alike. By ad-
dressing the identified limitations and exploring future directions, we aim to con-
tribute to the development of more accurate, fair, and transparent credit risk as-
sessment systems. 
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