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[ORORY ope s

Abstract

The alternating direction method of multipliers (ADMM) and its symmetric
version are efficient for minimizing two-block separable problems with linear
constraints. However, both ADMM and symmetric ADMM have limited versa-
tility across various fields due to the requirement that the gradients of differen-
tiable functions exhibit global Lipschitz continuity, a condition that is typically
challenging to satisfy in nonconvex optimization problems. Recently, a novel
Bregman ADMM that not only eliminates the need for global Lipschitz conti-
nuity of the gradient, but also ensures that Bregman ADMM can be degenerated
to the classical ADMM has been proposed for two-block nonconvex optimiza-
tion problems with linear constraints. Building on this, we propose a symmetric
Bregman alternating direction method of multipliers, which can be degenerated
into the symmetric ADMM and the Bregman ADMM, and thus further degen-
erated into the classical ADMM. Moreover, when solving separable nonconvex
optimization problems, it does not require the global Lipschitz continuity of the
gradients of differentiable functions. Furthermore, we demonstrate that under
the Kurdyka-Lojasiewicz inequality and certain conditions, the iterative se-
quence generated by our algorithm converges to a critical point of the problem.
In addition, we examine the convergence rate of the algorithm.

Keywords

Symmetric ADMM, Bregman ADMM, Nonconvex Optimization, Separable,
Kurdyka-Lojasiewicz Inequality

1. Introduction

In this paper, we consider the following two-block separable optimization prob-
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lem with linear constraint
min  f(x)+ ,
i 1 (x)+9(y)
st. Ax+y=h,

(1.1)

where f:R" — RuU{+w} isa proper lower semicontinuous function,

g:R™ - R isa continuous differentiable function, Ac R™" and beR".
Numerous valuable optimization problems can be expressed in the form (1), ren-
dering it widely applicable across diverse fields, such as machine learning [1]-[3],
image processing [4]-[6], and signal processing [7]-[10].

When both f and g are convex functions, a prominent approach for ad-
dressing problem (1) is the alternating direction method of multipliers (ADMM),
proposed by Gabay, Mercier, Glowinski and Marroco [11] [12] in 1970s. This
method fully harnesses the separable properties to their utmost potential, thus at-
tracting considerable attention across diverse domains in recent years. The itera-
tive scheme of the ADMM is as follows

X, € argxmin (L5 (% Y A )}
Ve €AGMIN{Ly (%1, ¥, 4}, (1.2)
A = A= B(AXy + Vi —b).

Here, L,(-) denotes the augmented Lagrangian function for (1.1), given by

Ly(xy,2)=f(x)+g(y)— (4 Ax+ y—b)+§||Ax+ y—b||2,

where A is the Lagrangian multiplier associated with the linear constraint, and
£ >0 isthe penalty parameter. The study of ADMM has a lengthy academic lin-
eage, its convergence and convergence rate are well-understood [13]-[16] for con-
vex objectives.

However, for scenarios where there is at least one nonconvex component in
the objective function, many studies primarily focus on proving the conver-
gence of the ADMM or its variant and analyzing problem scenarios under ad-
ditional conditions, such as Li and Pong [17] and Hong et al [18]. Particularly,
in 2017, Guo et al. [19] demonstrated that under conditions less stringent than
those outlined in [17] [18], the convergence and convergence rate of ADMM
for nonconvex problems can be established, contingent upon the augmented
Lagrangian function satisfying the Kurdyka-Lojasiewicz inequality. Motivated
by the insights provided in the aforementioned article, Wu et al [20] consid-
ered utilizing symmetric ADMM to address a two-block linearly constrained
separable nonconvex optimization, which can revert back to the classical ADMM,
and conducted an analysis on its convergence and convergence rate for the case
B=1 (1 istheidentity matrix with proper dimension). Note that it can nu-
merically accelerate ADMM with some values of « >0. Its iterative format is

as follows
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X, €arg min{L (% Yio &)}

/Ik+; = A — o (A%, + By, D),
2

(1.3)
Yy €Argmin AR ,/1
y

j’k+l = lk _ﬂ(AXkH + Byk+1 b

WL
2
The only difference from the classical ADMM lies in the addition of a relaxation
factor a e (—1, 1) in the update of the multiplier A1 between the iterative for-
mulas of X and Y. In particular, the algorithm returns to the classical ADMM
when « =0.Therefore, it presents the same limitations in certain areas [21]-[23].
Whether using the ADMM or the symmetric ADMM to tackle two-block separa-
ble nonconvex problems with linear constraints, both methods are constrained by
the assumption of Lipschitz continuity of differentiable functions.
To relax the Lipschitz continuity constraint on the gradient of the objective
function, Tan and Guo [24] introduced a novel version of Bregman ADMM,
which is distinguished from that proposed by Wang et al. [25] by its ability to

revert to the classical ADMM. Its iteration is as follows
X,y € argxmin {EZ (X Ve, A )} :
Yaor € AQMIN{L, (X Y1 20)}, (1.4)
A =2 = B(VR(AX; =b)=Vh(=Y,,1)),
where L} (-) denotes the Bregman augmented Lagrangian function for (1.1)
Ly (x,y,2)= f(x)+g(y)—(4, Ax+y—b)+BD, (-y, Ax—b), (1.5)

where A is the Lagrangian multiplier associated with the linear constraint, and

S >0 isthe penalty parameter. And the Bregman distance D, (~, ) is defined as
D, (x.y)=h(x)=h(y)=Vh(y)" (x-y).
When h = —|| || the Bregman ADMM (1.4) reduces to the classical ADMM

(1.2).

Drawing on the aforementioned concept, our aim is to alleviate the necessity
for Lipschitz continuity of the gradient of differentiable functions in the symmet-
ric ADMM while addressing two-block separable nonconvex problems with linear
constraints. In this paper, we propose an iteration for symmetric version of the

Bregman ADMM, whose iterative scheme is

Xy, € arg min{ﬁ},(x, yk,ﬂk)}, (1.6a)
A=k —apB(Vh(Ax., —b)—-Vh(-y,)), (1.6b)
2
Ve eargmin{cz(xm,y,ﬂk ]} (L6c)
y *s
A=A 4~ B(Vh(A%,, —b)=Vh(-Y,.1)), (1.6d)
2
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The symmetric Bregman ADMM (1.6) can transition to the symmetric ADMM

(1.3) by setting h(-)= %""2 , to the Bregman ADMM (1.4) by setting « =0, and

to the classic ADMM (1.2) by setting h(-) =%||||2 and «=0. In essence, the

ADMM framework investigated by Wu et al [20] and Tan and Guo [24] is a par-
ticular instance of the approach we introduce. Under the same assumption as
those in Tan and Guo [24], we can prove the convergence of the symmetric Breg-
man ADMM (1.6), providing that the associated function satisfies the Kurdyka-
Lojasiewicz inequality. Moreover, we demonstrate that the iterative sequence pro-
duced by the symmetric Bregman ADMM (1.6) converges to a critical point of the
problem (1.1), and we also analyze the convergence rate of the algorithm.

The remainder of this paper is organized as follows. In Section 2, we provide
some necessary preliminaries for our subsequent analysis. In Section 3, we present
the convergence analysis of the symmetric Bregman ADMM (1.6) and analyze its
convergence rate. Finally, in Section 4, we summarize our findings and draw con-

clusions.

2. Preliminaries

In this section, we recall some definitions and basic results that will be used for
further analysis.

Definition 2.1. [26] For an extended real-valued function f:R" — RuU {+oo} ,
the effective domain or just the domain is the set

dom(f)={xeR": f(x)<o0f.

Definition 2.2. [26] A function f:R" >R u{+oo} is called proper if there
exists at least one X € R" such that f(x)<oo.
Definition 2.3. [26] A function f:R" > RuU {+oo} is called lower semicon-

tinuous at XeR" if

f(x)< liminf f (%)

for any sequence {x <= R" for which X, — X as k —oo. Moreover, f(-)
is called lower semicontinuous if it is lower semicontinuous at each pointin R".

Definition 2.4. ([27], kernel generating distance) Let C be a nonempty, con-
vex, and open subset of R™ . Associated with C , a function h:R"™ — R U {+o}
is called a kernel generating distance if it satisfies the following

(i) h(-) is proper, lower semicontinuous, and convex, with dom(h)cC
and dom(oh)=C.

(i) h(-) is C" on int(dom(h))=C.

We denote the class of kernel generating distance by G(C).

Definition 2.5 ([27], L-smooth adaptable) Let he g(c), g:R" >R con-
tinuously differentiable on C = int(dom(h)). A pair (g, h) is called L-smooth
adaptable on C if there exists L >0 such that Lh—qg and Lh+g are con-

vexon C.
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Remark 2.1. Definition 2.5 serves as a natural extension and complement to
the definition of “A Lipschitz-like/Convexity Condition” as presented in reference
[21]. This extension enables the derivation of the following two-sided descent
lemma.

Lemma 2.1. ([27], extended descent lemma) The pair of functions (g, h) is L-
smooth adaptable on C ifand only if

|g(x)—g(y)—<Vg(y),x— y>| <LD,(x,y) Vxyeint(dom(h)). (2.1)

1
Remark 2.2. In particular, when the set C=R" and h(-)= E" 2 1) re-

duces to the classical descent lemma for function (, Le.,

[9(x-9(9)~(va(y).x-y)| sk vxyer

Definition 2.6. [27] Let g:R" > RuU {+oo} be a proper and lower semicon-
tinuous function. The gradient of ((-) is D-Lipschitz if there exists L >0 sat-
istying
D, (X, ¥)+D,(y,x)

Fat)vel= =0y

, x=y eint(dom(h)).

Remark 2.3. According to Cauchy-Schward inequality, we have
(Vo (x)-va(y).x-y) <[va (x)-Va (y)]l-y.
which combines with definition ??, we obtain that
‘(Vg(x)—Vg(y), X — y>‘ <L(D, (% Y)+D,(y.X)).
Using the conclusion in Lemma 2.4, the above inequality is equivalent to
<Vg(x)—Vg(y),x—y>£ L(D, (%.y)+ Dy (y.x))= L<Vh(x)—Vh(y),x—y>,
(Va(y)-Va(x),x=y)<L(D, (X y)+D, (v,X)) = L{Vh(x)=Vh(y),x-y).
Then,
<(LVh(x)—Vg (x))=(LVh(y)-Vg(y)).x- y> >0,
<(LVh(x)+Vg(x))—(LVh(y)+Vg(y)),x— y> >0. (2.2)

Based on inequality (2.2), it can be concluded that the functions Lh+g and
Lh—g exhibit convexity due to the monotonicity of their gradients on the set
C . Hence, ensuring the gradient of function g(-) satisfies the D-Lipschitz con-
tinuity condition is adequate for establishing the (g,h) function pair as L-
smooth adaptable. Considering the intricacy of the ADMM iterative procedure in
this study, we find it necessary to presuppose the D-Lipschitz continuity of func-
tion g(-).

Remark 2.4. Certainly, the D-Lipschitz continuity characteristic is essentially a
Lipschitz-like gradient property in the context of the Bregman distance for the
function () , and it becomes equivalent to the gradient Lipschitz continuity of
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1,2
a() when b()- 2.
Definition 2.7. [27] Let f:R" —»RuU{+w} be a proper lower semicontinu-
ous function.
(i) The Fréchet subdifferential, or regular subdifferential, of f () at
x e dom( ), written of (x), is the set of vectors X" € R" that satisfy
fly)=f(x)=(x",y—x
liminf ()= < 4 >

T b

When x¢dom(f), we set of (x)=92.
(ii) The limiting-subdifferential, or simply the subdifferential, of f(-) at
Xe dom( f ) , written Of (X) , is defined as follows:

of (x):{x* eR",3x, > X, f(x,) = f(x),x €df (x,) with x; —>x*}.

Remark 2.5. From above definition, we note that

(i) It implies of ()< of (x) for each xeR", where the first set is closed
convex while the second one is only closed.

(ii) Let (Xk , X:) e Graph of  be a sequence that converges to (X, X*) . By the
definition of of , if f(Xx/) «converges to f(x) as k—>+co , then
(%, x*) e Graph of , where Graphof ={(x,y)|yedf (x)}.

(iii) A necessary condition for X € R" to be a minimizer of f () is

0 e of (). (2.3)

) If f:R"—> Ru{+oo} is a proper lower semicontinuous function and
g:R" > R is continuous differentiable function, then
o(f+g)(x)=0f (x)+Vg(x) forany xedom(f).

A point that meets the condition of Equation (2.3) is referred to as a critical or
a stationary point. The critical points set of f is denoted by crit f .

Next, we recall an important property of subdifferential calculus.

Lemma 2.2. [28] Suppose that F(x,y)= f(x)+g(X), where
f:R" 5> RU{+0} and g:R"™ - RuU{+w} are proper lower semicontinuous
functions. Then for all (x,y)e dom(F)=dom(f)xdom(g), we have

OF (x,y)=0,F(x,y)x0,F(x,y).

Definition 2.8. ([28], Kurdyka-Lojasiewicz inequality) Let f:R" — R U {+o0}
be a proper lower semicontinuous function. For —oo <n, <n, <+, set

[, < f <771]={X6R" iy < f(X)<772}.

We say that function f(-) has the KL property at X" e dom(of ) if there ex-
ist 77€(0,+],aneighbourhood U of X", and a continuous concave function
¢:[0,7) > R, , such that

i) ¢(0)=0;

(ii) ¢ is C* on (O, 77) and continuous at 0;

Gii) ¢'(x)>0, vxe(0,n);
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(iv) forall x in U m[ f (X*) <f<f (X*)+ 77] , the Kurdyka-Lojasiewicz ine-
quality holds

(p’( f(x)-f (x*))d (0,6f (x)) 21

where d(x,of (x))= Inf ||y x|, is the distance from x to of (x).

yeat (x

Remark 2.6. Denote @, be the set of all continuous functions go() which
satisty (1)-(iii).

Definition 2.9. ([29], Kurdyka-Lojasiewicz function) If function f () satisfies
the KL property at each point of dom(of ), then f(-) is called a KL function.

Lemma 2.3. ([30], Uniformized KL property) Let Q be a compact set and
f:R" > RU{+w} be a proper and lower semicontinuous function. Assume
that f () is constant on Q and satisfies the KL property at each point of Q .
Then, thereexist ¢ >0, n>0,and ¢ €®, suchthatforall XeQ and forall
X in the following intersection:

{XER” :d(x,Q)<g}m[f( )< f<f(x +77]

one has

go'(f (x)-f (7))d(0,6f (X))Zl
Lemma 2.4. [31] Let h:R" — RU{+w} . For any x,yeint(dom(h)) and
z edom(h), then

(i) Dy (xy)+D,(y,x) =<Vh(x)—Vh(y),x— y>.
(ii) Three points identity holds:

D, (z.x)-D,(z.y)- Dh(y,x)=<Vh(x)—Vh(y), y—z>. (2.4)

Definition 2.10. [32] Let he Q(C) . The Bregman distance
D, :dom(h)xint(dom(h)) — R* s defined by

D,(xy)= h(x)—h(y)—(Vh(y),x—y).

Since h(-) isconvex, Dy (x,y)>0,and D,(x,y)=0 ifonlyifwhen x=y.
Definition 2.11. We say that (X*, y, A ) Is a critical point of the Augmented
Lagrangian Function [y (-) (1.5) with Bregman distance if it satisfies

ATA e of (X)),
A =vg(y'),
AX +Yy =h.

Lemma 2.5. Let {Wk (xk Vi A )} be the sequence generated by the sym-
metric Bregman ADMM (1.6). Then, we have

Vh(Ax,,, ~b)~Vh(-y, ) =m(4 )t (V=) ~VR(-3,).
(Yk+1) A
Vh(Ax,, —b)=Vh(=y,.,)=

(a+ ) (lk Aia) = 1<Vh( yk+l)_Vh(_yk))'
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Proof. Combining (1.6b) and (1.6d), we get
As = A == (Vh(AX,, —b)=Vh(=y, )= B(Vh(AX,; —b)=Vh(=Y.,))
= —aB(Vh(Ax_, —b)-Vh(-y,))- B(Vh(Ax,, —b)-Vh(-y,))
+ B(Vh( A%, —b)=Vh(=y,))- B(Vh(Ax, —b)=Vh(-y,,))
= —(a+1) B(Vh(AX,; =b)=Vh(=y, ))+ B(Vh(~Y.:) - Vh(-¥,))

and thus

Vh(AXk+1 _b)_Vh(_yk ) = m(ﬂk _ﬂk+1)+ﬁ(Vh(_yk+l)_Vh(_yk ))

Similarly, we combine (1.6b) and (1.6d) again
A=A =—af(Vh (A, —b)=Vh(=y,))-B(Vh(AxX; —b)-Vh(-Y,.,))
= —af(Vh(Ax ., —b)-Vh(=y, ;)= B(Vh(AX ; —b)-Vh(-y,.;))
—aﬂ(Vh(—yk+1)—Vh(—yk ))
=—(a +1)ﬁ(Vh(AXk+1 —b)—Vh(—yk+1))—aﬂ(Vh(—yk+l)—Vh(—yk ))

thus, we obtain

Vh( A%, =0)=Vh(=Y1) = —— (A _/11(+1)_%(Vh(_yk+l)_Vh(_yk ))

1
(a + 1) Yij 1
From the optimality condition of (1.6¢), we have

0= Vg (yk+1)_ﬂ’k+l + ﬂ(Vh(Axk+l _b)_Vh(_yk+1))-
2

Substituting (1.6d) into the above equation yields
Vg (Yk+1) = /7'1<+1-

This completes the proof.

3. Convergence Analysis

In this section, we analyze the convergence of the symmetric Bregman ADMM
(1.6) and show that the sequence {Wk = (Xk Vi A )} generated by the symmetric
Bregman ADMM (1.6) converges to a critical point {W* = (x*, y*,/l* )} of
L, (-) under the following assumptions.

Assumption A. Let f:R" - Ru{+w} be a proper lower semicontinuous
function, g:R™ — R be a continuously differentiable function with Vg be-
ing D-Lipschitz continuous. Additionally, let he G(C) be a twice differentiable
functionon C =int (dom(h)) , which is 1-strong-convex, and whose Vh is Lip-
schitz continuous with L, on any bounded subset of R™. We assume that

, 2L —2aL L3 o
(1) ael|- R ﬂ>—L2,wh1ch implies
h

212 +1° l+a+2a

£, 20l +2apl +2allE 20 )
L, a+l (a+1)p
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- 1 2(1+a)LL; +2aLL; o
(i) ae|0,—5—|, B> 5 , which implies
2L -1 1+a-2al;

5= ﬁ_L_ZaLLh+2a,BLh+2aLLﬁ_ 2% 0.
L, a+l (a+1)/3

(iii)) A"A>MI for some M >0.
Next, we examine the optimality conditions of (1.6). Invoking the optimality

conditions, we have that
0edf (%)~ AT — BAT (V2h(Ax, ~b)) (~Ax., — ¥, +b),
Ay =X —ap(Vh(Ax_, —b)-Vh(-y,)).

k+=
2

(3.1)
0= Vg (yk+1)_ﬂdk+E +ﬂ(vh(AXk+l _b)_Vh(_yk+l))’

Aa=4 4 _ﬁ(Vh(AXkﬂ _b)_Vh(_yk‘fl))'

k+=
2

Lemma 3.1. Let {Wk = (Xk Vi A )} be the sequence generated by the symmet-
ric Bregman ADMM (1.6), which is assumed to be bounded. Then we have

ﬁ;(wkﬂ)sﬁ;(wk)_é"Dh(yk1yk+1)' (3.2)
Proof. From the definition of E; in (1.5), it follows that

EZ (Xm: Yk v%ﬁl}‘ﬁhﬂ (ka yk+1’/1k+1J

2 2

2

= g()’k)_</1k+11 AXy 1 + Vi _b>+ﬁDh (_yklAXk+1 _b)

~9(Yiur) +</1 1 A%+ Vi — b>_ﬂDh (= Ve A%y —b) (33)

k+=
2

= g(Yk)—g(yk+1)+<Zk+1aYk+1_yk>+ﬂDh(_ykvAXk+l_b)
2

- D, (_yk+1’ AXyyq — b)'
Since the gradient of the function @ is D-Lipschitz continuous on int (dom (h)) ,
it follows that the function pair (g, h) is L-smooth adaptable. Then, according

to Lemma 2.1, we can obtain
9(¥e) =9 (Vi) <Vg (Vion) Vi = Yk+1>_ LD, (Vi» Yiur)- (3.4)

By substituting inequality (3.4) into relation (3.3), we obtain

£2 [Xk-Hl’ yk ,lk.;.lJ_E; (Xk+1l yk+1ylk+lj

2 2
10 Y — Yk
*2

+ D, (_Yk s Ay _b)_ﬁDh (_ka A%y 4 _b)

= <A1<+1 _lkﬁ’ Y — yk+l>_ LD, (Vis Yis1)
2

k

> (V9 (Vi) Vi = Vi)~ LD, (yk,yk+1)+</1
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+ 8D, (—Yir A% —b) = BDy (= Yiur, A% —b)
= <ﬂm Ak yk+1>— LD, (Vi Yieea )+ B0y (=Yir=Yin)
+ B(Dy (~Yir A%y —b) = Dy (=Y =Yier ) = D (~ Vi A%y — b))
= <ﬂm A yk+1>— LD, (Vi Vi) + BD4 (=Yior=Yin)
+/:’<Vh(Axk+l —b)=Vh(=Yi1) Vi — yk+1>

= <2k+1 _Aki’ Yi = yk+l>_ LD, (yk ' yk+1)+ﬁDh (_yk '_yk+1)
2

+</1k+1 A Vi = yk+l>
2

= D, (_yk'_yk+1)_ LD, (ykvyk+1)'

where the first and the third equalities follow from Lemma (2.5) and the three
points identity (2.4) respectively.
Based on the 1-strong convexity and L, -smoothness of the function h(-), we

can obtain the following two inequalities respectively

(Yk:Yk+1) (Yk) (Yk+1) <Vh(yk+1) Yy yk+l> 2||Yk Yk+1||

( Y= yk+1) ( yk) ( yk+l) <Vh( yk+l) Y — yk> |yk yk+1||

Combining the above two inequalities, we get
Dy (=Y =Yieur) 2 || Ve =Yl 277Dy (e Vi),

thus, we can obtain

L, [Xkﬂ’ yk,lk+1J—£?, [ka Yk+1”1k+lJ Z(Lﬁ_ L) Dy (Vi Yiur)- (35
2 2

h

Next, by using (1.6b) and (1.5), we have

EZ (Xk+1: yk7ﬂ’k)_£,|;}[xk+1v yk’/lk+1)+£?? (Xkﬂl Yk+1:lk+1]_£2 (Xk+1’ yk+1’/1k+1)
2 2

= </1k+1 = Ao Ay Y — b>+</11<+1 _}“Hy AXa + Vi _b>
2

= <—oc/3(Vh(Axk+1 ~b)—=Vh(=y,)), AX; + Y, —b>
+<lk+1 _Ak +aﬂ(Vh(AXk+l _b)_Vh(_yk ))' AXk+l + yk+1 _b>
= <a/’7(Vh(AXk+1 _b)_Vh(_yk )), Vi — Yk>+</11<+1 = A Axr + Vi —b>,

where the second equality follows from (1.6b). Then, according to Lemma 2.5

Vh(AX, —b)—Vh(—ym) = a-i-ll)ﬂ(ﬂk _ﬂ’k+l)_ﬁ(Vh(_yk+1)_Vh(_yk))'
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Vh(Ax,, —b)-Vh(-y, )=

1 1
(a+1)ﬂ(ﬂk _lk+l)+m(Vh(_yk+l)_Vh(_yk))!

and, since h(-) is I-strong-convex, we have
||Vh (_yk+1 ) —Vh ( Axk+1 - b)” 2 ||AXk+1 Y~ b"
Now, we discuss the two cases based on the range of « .

(1) ace [—#1,0} , combining the above formulas
+
h

‘C; (Xk+1! Yk:ﬂk)_ﬁg (ka Ykl/lhlJ"‘E; [ka Yk+1’/lk+1J_£; (Xk+1! Yk+1J~k+1)
2 2

(a+1)p

[ Aeis = A A%ca + Vi =]

Z< & (ﬂk %‘*1) ﬂl( h(_yk+1)_Vh(_yk))’yk+1_yk>
<a+1ﬂk Aa)* ﬁl( h(_ykﬂ)_Vh(_yk))!ym_yk>

||)'k+l )‘k||||Vh yk+1) Vh(AXkJrl b)"

ﬂﬂ( //l'k+1 fl( h(_yk+l)_Vh(_yk))!yk+1_yk>
N zkn[ R LSRN |

>m"ﬂ'k ’11<+1"||Yk+1 yk||+m"Vh(_yk+1)_Vh(_yk)||||yk+1_yk"

(6‘( +1 "ﬂkﬂ ]’k" +1||ﬂ~k+1—lk""Vh(—ym)—Vh(—yk )" (3‘6)

Subsequently, we claim that
"Vg (Yk+1)_ Vg (Yk )" <LL, '||Yk+1 = Y ” (3.7)

To prove (3.7), we consider two cases. When y, =Y, ,, (3.7) holds obviously.
Next, we assume Y, ,, # Y, . Since Vg(:) is D -Lipschitz, we obtain

Dh(yk+1!YI<)+ D, (Yk'Yk+1)

[va (V) -Va(yi)| <L

Ve =il
(TN R(e) s )
. Vi = il
N \LIC7 S G780y | N
||yk+l Yk”
h||yk yk+1"2

=+ wll Ve =il
k

|||| yk+1

where the second inequality is a consequence of Vh is Lipschitz continuous
with L, (L, >1) onanybounded subset of R", that is
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||Vh<yk+1)_Vh(yk )"S L, ||yk+1 _yk”' (3.8)
Since 4,3 =V9(Yiu1)» (3.7) becomes
”ﬂka-l — A " < LL, ||Yk+1 =¥ " (3.9)

Moreover, accordmg to h( ) is 1-strong-convex, we get

Dy (Y Vi) 2 ||Yk yk+1|| s Le,
1% = Vel <24 (Vi Yiews)- (3.10)

Substituting (3.8), (3.9) and (3.10) into (3.6), we conclude that

ﬁ; (Xk+1: ykvﬁ«)_EZ(ka yk’lkﬂj—i_[:; (ka yk“’l'lkfj_ﬁ?’ (Xk+1: yk+1:/11<+1)
2 2

2aLL 2L
1 "D, (yk,yk+1)+%Dh(yk,yk+1)
21212 2aLL?
- - Dh(yklyk+l)+

D (yk’ yk+l)

(a+1)p a+1
2oL, +2afL, +2all? 2702
= . R " " Dh(yk1yk+l)'
a+l (a +1)ﬁ
(3.11)
Then, combining (3.5) and (3.11), we obtain that
EZ’ (Xk+ll yk ’ﬂ”k )_EZ' (Xk+1' yk+1'/1k+1)
(3.12)

2aLL, +2afL +2all®? 21312
2 p L+ all, +2apl, + 2o h— " Dh(ykvyk+1)-
L, a+l (a+1)B

Consequently, according to (1.6a), we have
L5 (X Yier A ) = L (Xeans Vi A ) 2 0. (3.13)
Finally, summing the inequality (3.12) and (3.13), we conclude that
Lhﬂ (Wk )_ ;C; (Wk+1)
2aLL, +2apL, +2all? 21212
ﬁ_LJF " ZE! h— "— 1D, (Yior Yier)-
L, a+l (a+1)p

>

This completes the discussion for case (i), we now proceed to discuss case (ii).

(i) ae Oﬁj , combining the same formulas
L h

Ly (X, yk,ﬂk)—EZ[xk+l, yk,/lk+1j+£; (XM, yk+1,/1k+1j—£; (X1 Yirns )
2 2

2<(0{+1) (ﬂ'k ﬂku) ﬁl(Vh( yk+l)_Vh(_yk))’yk+l_yk>
s = A [A%s + Vi =B
<a+1(ﬂk j'k+1) ap ( ( Yk+1) Vh(_yk ))’ Y — yk>
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_"2'1(4-1 Ak”"Vh yk+1 Vh Axk+1 ||

<a+1(ﬂ"< ﬂkﬂ) ﬁ( ( yk+1) Vh(_yk))'yk+1_yk>

T o Y B LSRR T | R

(a+1)p

>_m"j« /11<+1""yk+1 yk" "Vh yk+1) Vh yk ||||yk+1 Yk”

(M A=l - +1||Ak+1—Ak||||Vh(—yk+1)—Vh(—yk)||-

Similarly, substituting (3.8), (3.9) and (3.10) into (3.14), we conclude that

L; (Xk+1’ yk'ﬂk)_‘CZ(Xkﬂv Yk’/lk+1j+£,g (ka yk”'ﬂhlj_ﬁz (Xk+1: yk+1:/11<+1)
2 2

2oLl 2081
=" a+l D (yk!yk+l)_ gf- : Dh(yk'yk+1)
21212 2all?
_ D ,
(a—i—l)ﬂ h(yk yk+1) a+1
2aLL, +2apL, +2aLl}  2U°L:
=| - - Dy (Yi» :
{ 1 (a+1)/7’ h(yk yk+1)

D (yklyk+1)

(3.15)
Then, combining (3.5) and (3.15), we obtain that

ﬁz(xk+1’yk’ﬂk)_[';(xkﬂ!ykﬂ'ﬂk-*—l)
2aLL. +2afL, +2all? 2122 (3.16)
Z[E_L_ ; o - " ]Dh( ko Vi

L, a+l (a+1)p
Consequently, according to (1.6a), we have
L (X Yier A ) = L (Xeans Vi A ) 2 0. (3.17)

Finally, summing the inequality (3.16) and (3.17), we conclude that

£ (W) 2 (w)
B 2aLL, +2apL, +2all2 21212
> L- - D , .
[Lh a+l (a+1)p (Yo Yien)

This completes the discussion for case (ii), and with this, the proof is complete.o

Remark 3.1. Since & >0, Lemma 3.1 implies that {EZ (Wk )} is monoton-

ically nonincreasing. Note that when a =0, we have f>2LL’ . This corresponds

to the requirement in Tan and Guo [24]. Furthermore, when

? wehave a=0 and L, =1, thus B >2L . This corresponds to the

requirement in Guo et al. [19].

Lemma 3.2. Let { W, = (Xk Vi A )} be the sequence generated by the symmet-
ric Bregman ADMM (1.6), which is assumed to be bounded. Then we have
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R 2
kZ||Wk+1 — W, |” < +oo.
=0

Proof: Considering that {w,} is bounded, it has at least one limit point. Let
W be a limit point of {w,} and let {ij} be the subsequence converging to

it, ie. w, — W’ . Given that E; (*) is alower semicontinuous function, we can
deduce that

Ly (w')< liminf Ly (wk )

Consequently, {L; (ij )} is bounded from below. Besides, the fact that
E; (Wk) is nonincreasing implies that ﬁﬁ; W, )} is convergent. Moreover,
E;', (w, )} is convergent, and E;g (W)= ; (W ) Based on the Equation (3.2),

we can obtain

Dh (yklyk+1) < L; (Wk)_ﬁ; (Wk+1)'

Summing up the above inequality from k=0 to n, we conclude that
n
> 5D, (Yier Vi) < £ (Wo) = £ (Wi ) < £ (Wo ) = L (W) < o0,
k=0

_Owingto & >0, we have > Dy (Vi Yiu1) < +o0 , which implies
Z" Vi — Vi ||2 < +o0, Conseqﬁ(e:%tly, according to (3.9), we get that
k=0

o0
> ~ A < e,

Recall Lemma 2.5, we have
Aa = A = B (@+1) (VN (A% ;=) = VN (=Y, )) = (VN (=Yea) - VN (=¥,)) ],
A = Ay = Bl (@+1)(Vh (A% ~b)=Vh(=y, ;) =(Vh(=y, )~ Vh(-¥, 1)) |
Combining the two equalities, we obtain
(a+1) B(Vh(Ax,, —b)—-Vh(Ax b))
= (= 241) = (A = A) =B (VN (=Yia) = VN (-¥,)
~B(Vh(=¥)~Vh(~Y,.1))-
Then, we use the 1-strong-convex of h(-) and Assumption A(iii), we can follow
M X1 =X [* <[ A% = Ax [ < ||Vh(Axk+l ~Vh(Ax, - ||
Thus, combining the above two formulas, we obtain that
(a +1)2 BIM|X 1 — X, ||2
<(a+1) B2 | A%y — A% [ < (a+1) 57 |[Vh(AX,,; ~b) - Vh(Ax —b)[
< 4(||z,k W N PR N Ly TGN B T (3.18)
+ 2 [Vh(=%) - Vh(~¥i..) 2)

< 4("}% _11«1"2 +||2'k+1 _ﬂ'k ”2 +a2:32 I—ﬁ "yk - yk—1||2 +ﬂ2 Lﬁ ||yk+1 - yk”Z),
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where M >0. Then, the last inequality implies > [X,,, — Xk||2 <+00.
k=0

Thus, i"wm - W, ||2 < 400 . This completes the proof.o
k=0

Lemma 3.3. Let {Wk = (Xk Vi A )} be the sequence generated by the symmet-
ric Bregman ADMM (1.6), which is supposed to be bounded, and given that As-
sumption A holds. For any positive integer K , we define

X:+l = ATﬂ’k - ATAkJrl + ﬂAT <Vh2 (AXk+l - b)’ yk+1 - yk >'
y;+1 = ﬂm; — A
2

Ay = =A% = Vi +D.
Then, (X;A, Vit /11:+1) € Gﬁz (W,,,) and there exists &>0 such that
d (O’ oL, (Wk+1)) <Y Y.
Proof: By definition of function L} (-), we can obtain that
0,L0 (W) = 8f (Xei1) = AT A,y = BAT (VPh(AX,; —b),—AX, s = Yy s +D),
0,L% (W) = VI (Vi) = A + B(V (A%, =b)=Vh(=y,.1)), (3.19)
61@ (Wit ) = = (A%ea + Vi —b).

Combining the optimality condition (3.1) with equation (3.19), we get

ATﬂ'k - AT/lk+l +ﬁAT <Vh2 (AXk+l _b)’ Yia — yk> € axd;? (Wk+1)’
1 ~ A € ayﬁg‘ (Wk+l)l
2

~AXy = Vi +b €0, L5 (W, ).

Then, according to Lemma 2.2, we obtain that (X:+l, Veonr A +1) € Gﬁz (W, +1) .
Furthermore,

<Vh2 (Axm _b)« Yier — Yk > < "th (Axk+1 _b)"" Vi — Yk " <L, ||yk+1 =Y "

In addition,

||Axk+1 Y~ b" < ||Vh AXk+l - b) - (_yk+l)

"ﬂ’k ﬂ’k+1" ||Vh yk+1) Vh( yk )"
S(a+l +%”Yk_)’ku"-
On the other hand,
A 1 _ﬂ'k+1 = ||ﬂ(Vh(AXk+1 _b)_Vh(_yk+l))||
<= Al + L |V (-y,.0) - V(3|
ﬁ
a+1||lk /1k+l ;. | yk+1_yk||'
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Based on the above relationship, we know that there exist &,&, >0 such that
“(X:w y:+1! 11;1) ‘ < ‘fl " Yirr — Y " + 52 "ﬂwl - ﬂ'k "
Defining &:=¢ +¢&,LL, and using (3.9), we obtain

40,065 (e )) < (6 Ve A )| €Dt =il

This completes the proof.

Lemma 3.4. Let {Wk = (Xk Vi A )} be the sequence generated by the symmet-
ric Bregman ADMM (1.6), which is supposed to be bounded. Let S (WO) denote
the set of its l[imit points. Then

(i S (WO) is a nonempty compact set, and

d(w,S(w,))—>0,as k—+o0;

(ii) S(w,)<crit £}, where crit £ denotes the set of all stationary points of
h

o
(iii) £} (-) is finite and constant on S (W, ), which equals to

inf £ (w )= lim £ (w,).

Proof:

(i) The proposition is immediately derived from the definition of limit points.

(ii) We assume that (X*,y*,/l*)eS(WO), then there exists a subsequence

{(xkj Vi o )} that converges to (X*, y*,l*) . Note that Lemma 3.2, we have
Wi, —w, | = 0. (3.20)

Consequently, we deduce that {(ij Vi A 1 )} also converges to

(X*, y*,l*). Given that X, is the minimizer of L} (X,Y,,4,) concerning the

variable X, we have
[’Z(Xkﬂ’yk’ﬂk)gE;(X*’yk,ﬂk)- (321)

On one hand, according to (3.20), (3.21) and the continuity of E} (-) with re-
spectto Yy and A, we get

limsup £, (xkj+1, Vi, g )= limsup £, (ij+1v ykj+1,/1kj+l) <L (x*, y*,l*). (3.22)

jo+oo jo+oo

On the other hand, using the lower semicontinuity of L} (-), we have

msup £ (X, 00 Vi g1 ) 2 3 (XY 27): (3.23)

jo+o

The above two relations (3.22) and (3.23) imply that

lim f(xkjﬂ): £(x).

]+

Taking the limit in the optimality conditions (3.1) along the subsequence
{(xkj a Y ﬂ,ﬂkﬁl )} , and utilizing (3.20) yields
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AL eof (X)),
A =vg(y'),
Vh(AX" ~b)-Vh(-y")=0,

Thus, (X*, y, 1*) is a critical point of (5), which implies that w" ecrit £}, .
(iii) For any point (X*, Y, ﬂ,*) €S (WO) , there exists a subsequence
{(xkj Yy ,/ij )} that converges to (X*, y*,/l*) as j — +oo. By merging equa-
tions (22) and (23) with the observation that the sequence {EZ, (Wk )} is nonin-

creasing, we have
klirpwﬁz (% Vi A ) = L5 (x*, y*,/l*).

Therefore, L} (-) isconstanton S (W, ). Furthermore, we also have
inf £ (W)= lim £ ().

Hence, we have complete the proof.

Now we present the main convergence result for the symmetric Bregman
ADMM (1).

Theorem 3.1. Let {Wk = (Xk Yo A )} be the sequence generated by the sym-
metric Bregman ADMM (1.6), which is assumed to be bounded. Suppose that
Ly (+) isaKL function, then {W, | has finite length, that is

+o0
kZ||Wk+1 —w, || < +oo,
=0

and as a consequence, {W,} converges to a critical point of

£0).
Proof: Based on the proof of Lemma 3.4, it implies that EE,(Wk ) - E; (W*)
forall W eS(w,). Next, we will consider two cases.
(i) If there exists an integer Kk, for which E';; (Wk0 ) = E; (W*) . Then according
to Remark 3.1 and (2), we have

§Dh(yk!yk+1)S£;(Wk)_‘C; (Wk+l)§£2 (Wko)_LZ (W*):O’

for any k >k, . Consequently, we conclude that y,,, =Yy, for any k>Kk,.
Combining (9) and (18), we further deduce that 4, =4, and X, =X, for
any k >k, +1,whichimplies that w,,, =W, . As aresult, the assertion is substan-
tiated.

(i) If £ (w)>L; (W*) for all k. Considering that d (Wk,S(WO)) -0,
there exists k, >0, such that d (Wk /S (W, )) <& (V&>0) forany k>Kk . Fur-
thermore, with E; (W) — EZ (W*) , it follows that there exists k, >0, such that
Ly (wk)<£’;(w*)+77 (vn>0) forany k>Kk,.

Thus, when k >k =max{k;,k,} forall &7 >0, we derive the following con-

clusions
d(w,S(w))<e L(w)<L)(w)<Ly(w)+n.

Since L;, (-) is constanton S(w,) and S(W,) isa nonempty compact set,
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we use Lemma 2.3 with Q=S(W,) to derive that for any k > k,
o' (L5 (W)~ (w))d (0,05 (w))21. (3.24)

Relying on the fact that
E; (w)- ﬁ; (Wey1) = ﬁ; (w)- EZ (W*)— (ﬁ; (Wt ) — E; (W*)) , and the concavity
of ¢(-), it follows that

o (L5 (w) =5 (W) =0 ( L5 (W) = 25 (w'))
> ¢/ ()= 55 (W) (65 (w.) = £ (Whes)).

Combining d (0, oLy (w, )) <&||Y, — Yia| with the above inequality,
#(£ ()~ L5 (w'))>0 and inequality (3.24), we can obtain

(1 (W)~ 5 (W)~ (£ (W)~ £ ()

o' (w)- 25 (W)
<d(0,0L) (w, ))[go(ﬁ; (w )= 25 (W)= (£) (W) - £ (w))} (3.25)
<&y~ vel[ (2 ()= 25 (W)= (25 (we) - 25 (w)) |

For convenience, for all p,qe N, we define

By = (L (w,) =5 (W)= 0( £ ()= 5 (w)).

Hence, (3.25) can be simplified as

‘CZ (Wk )_d/]; (Wk+1) < é:”yk - yk—1||Ak,k+1' (3.26)

Combining inequality (3.26) with Lemma 2, we get that for all k >k,

E;, (Wk)_ﬁg (W) <

o
E”yk - Yk+1||2 <oDb, (yk1 yk+1) < §||Yk - yk—1||Ak,k+1'

Then,
1Y = Yicu| < fAk ket [ Y ™ yk_1||]/2.
Applying the fact that 2\/a8 <+ /3, we obtain
2l =Yool 135 Yol + 2 Ay (3.27)

Summing up (3.27) over for Kk = IZ+1 --+,M, we have

2 Z Vi =il < Z Ivi - yk_1||+ A mar

k=k+1 K=k +1

Note that ¢>(£; (Wm+l)—£; (W )) >0 from Definition 2.8. Taking m — +oo,

we have

ki::l"ykﬂ_yk B ylZ+1_yE||+ o (L (Wey )~ L5 (w)): (3.28)

Therefore,
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Z||yk+1 — Yk ” < oo (3.29)
k=0

Combining (3.9) and (3.29), we get
3 s~ A <+ (3.30)
k=0

Using (3.18), we obtain

2 2 2
< m("ﬂk il s = Ad

1
+ & BNy = vl + B L e - il )

/Ik+l _ﬂ'k"

||Xk+l - Xk”

2
Sm(ﬂﬂ« — A+
+apl, ||Yk - yk—l||+ﬂ|-h ||yk+1 - yk”)'

Combining above inequality with (3.29) and (3.30), we have

+o0
2
k=0

Xeap =X || < +o0. (3.31)

Furthermore, we note that

12
||Wk+1 - W " = (||Xk+1 = X "2 + ||yk+1 — Yk ”2 + "ﬂml - A ”2)
< ||Xk+1 = X " + ||Yk+1 = Y " + "ﬂkﬂ - A ”
Using (3.29), (3.30) and (3.31), it follows that

+90
;)"WM —W, || < 400,

which implies that {w,} is a Cauchy sequence and thus convergent. The asser-
tion follows from Lemma 3.4 immediately.o

Next, we provide the essential sufficient conditions to establish that the se-
quence { W, = (Xk Vi A )} generated by the symmetric Bregman ADMM (1.6) is
bounded.

Lemma 3.5. Let { W, = (Xk Vi A )} be the sequence generated by the symmet-
ric Bregman ADMM (1.6). Suppose that

int {g ) wa } S
If at least one of the following statements is true:
(i) IHianinf f(x)=+0.

(i) inf f(x)>—o0 and IHIanlnfg( y)=+o.

Then, the sequence {Wk = (Xk Yo A )} is bounded.
Proof. Suppose that condition (i) holds. From Lemma 3.1, we have
Ly (X Yoo A) < L (%0 Y &)

which implies
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s 5 (YA ) = F(x)+9(v)- (Ak,Axk+yk—b)+ﬁDh (=Y, A% —b).  (3.32)

Using the 1-strong convexity of the function h(-) and the definition of
D, (~, ) , we have

Dy (=i A% =b) =h(=y, ) =h(Ax, _b)_<Vh(AXk —b),—y, - Ax, _b>

1 (3.33)
> E”Axk +Y, — b||2 .

Combining (3.32) with (3.33) and using the fact 4, =Vg (yk ) , we get
£ (Y e) 2 £ (4)+ 0 ()~ (o + 3, =)+ 2o 4y, —bf

2

AX, + Y, —b—iﬂk

=100+ a(n) -5 Al +5

- tx)+( o)~ 2 v )+ (z—glnﬂ«" o9

2
1
+§ AXk + Yy —b—Eﬂq

2

1
f(xk)+g+(z_ﬁj"lk" +=|AX +y, — b—ﬂﬂk

2
n

Note that (i) implies that inf f (X) >-—c0. When «e (—;1,0} , we have

2LL —2alLL;
—a2 2L, besides, when « € 0,2; , we have
1+a+2alj h—1
2(1+a)LL; +2aLL; ,
£ > 1 i > 2L . Therefore, we can derive that {x,}, {4} and
+a-2al;

’

and hence {w,} isbounded.

1
AX + Y, _b_zﬂk

2
} are bounded. Consequently, {y,} isalso bounded,

Next, suppose condition (ii) holds. Using A, € g (yk) and (3.34), we get that

2

Ly (%Y A) = f (%) + (s ——||’7«||

_ f(xk)%g(yk)+(19(Vk)‘_uvg(yk)nzj

1
Axk +Y, — b—zﬂk

Note that IIHITHI inf g (y) =+ implies that infg (y) > —00 , When
y
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2LLE —2aLl}
l+a+2al?
2(1+a)LL; +2aLL}
l+a-2al;

ae —2#,0 , we have f> > 2L, besides, when
212 +1

> 2L . Therefore, we con-

2
are

bounded. Then, from (3.18), it follows that {Xk} is also bounded, and as a con-

ael|0, 21 , we have [ >
214 -1

1
AX, + Yy _b_Eﬂk

clude that the sequences {y,}, {4} and {g

sequence, {Wk} is bounded. This completes the proof.

Theorem 3.2. (Convergence rate) Let {Wk = (X, Yior A )} be the sequence gen-
erated by the symmetric Bregman ADMM (1.6) and converge to
{W* = (X*, YA )} . Assuming that L (-) has the KL property at (X*, y*,/i*)
with go(s) =cs'’, Qe [0,1) , €>0. Then, the following results hold

(i) If =0, then the sequence {Wk = (Xk Vi A )} converges in a finite num-
ber of steps.

1
() If e (O,E} , then there exists ¢, >0 and 7€[0,1) such that

(e

(iii) If O e (%,1} , then there exists ¢, >0 such that

“(Xk Vi A )—(x*, Vi )H < e KV,

Proof: Firstly, consider the case that =0, we have ¢(s)=cs and
¢'(s)=c. Proof by contradiction, suppose that {Wk = (xk,yk,/lk)} does not
converge in a finite number of steps, and then, the KL property at (X*, y*,l*)
yields c-d (0, 8£; (W, )) >1 for any sufficiently large Kk, which is contrary to

Lemma 3.1.

Secondly, consider that >0 and set A, = Z"yi+l -V || for k>0. By the
i=k

triangle inequality, we derive that A, 2 ”yk - y*" , and hence it is able to estimate

A, . With these notations, it follows from (3.28) that

2 *
Mgy SA =4, +§¢’<£; (Wer) =25 (W ))

Invoking the KL property of £} (-) at (X*, Y, /1*) , we conclude that
¢’(£; (WR+1) B LZ (W*))d (O, 6£;f (WE+1)) 2L

This can be taken to imply

(25 (. ) -2 (w)) <c-(1-0)d (0,00 (w, ) (335)
According to Lemma 3.1, we get
d (0"%4/13 (WE+1)> < &) —Ye| =& (A -4, (3.36)
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Combining (3.35) and (3.36), it follows that there exists y >0 such that
* 10 B
w(cg <WE+1) _L’r/} (W )) =¢ (LZ (WIZ+1)_£2’ (W )) < y(AE _A|E+l )(1 e .

Therefore,

)u—e)/e |

k+l = Tk k+1

28
A, <A-—AR+1+?;/(AK—A~

Sequences satisfying such inequalities have been studied in [33]. It is shown that

1
o If He (O,E} , then there exists ¢, >0 and 7 €[0,1), such that
lve-y|<e (3.37)
1 .
o If e (E,lj , then there exists ¢, > 0, such that

[y, -y < cokee, (3.38)
Recalling that
[ =A< Ll i = ¥l
consequently,
||zk —,1*|| <LL, ||yk - y|| (3.39)
Furthermore, from the relations
A = Ay —aB(Vh(Ax —b)-Vh(-y,,))- B(Vh(Ax —b)-Vh(-y,)),
and
Vh(AX"~b)-Vh(-y")=0,
it follows that
(a+1) B(Vh(Ax —b)-Vh(AX ~b))
= A(V(=3) = (=Y )+ (A =27)+(4 - 4)
+aB(Vh(-y,..)-Vh(-y")).
Le.,
(Vh(Ax, —b)-Vh(AX -b))

= () ) e )

(2 -4, )+ﬁ(vh(—yk_1)—vh(—y*)).

(a+1)p

Subsequently, combining the 1-strong-convexity of h(-) and above equality,
it follows that
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||xk - x|| < %”Vh(Axk ~b)-Vh(AX —b)”

1 1

‘@t s

+ Loy, ) - Iy ) o) (- y)j
1 1 .

il Tl
+—||Y|< a—Lh"yk—l_y* J
(a+1)p (a+1),3
1

alah G o
+—||Yk a—Lh"yk—l_y* J
(a+1)p (a+1)p
1((1+L)L . L)L .

The desired inequalities follow from (3.37)-(3.40) immediately.o

4. Conclusions

In this paper, we proposed a symmetric Bregman ADMM, which can return to
the symmetric ADMM, the Bregman ADMM and classical ADMM while circum-
venting the requirement for global Lipschitz continuity of the gradient when min-
imizing a linearly constrained nonconvex minimization problem whose objective
function is the sum of two separable nonconvex functions. Moreover, we analyze
its convergence, under certain assumptions and when the associated function sat-
isties the Kurdyka-Lojasiewicz inequality, we prove that the iterative sequence
generated by the symmetric Bregman ADMM converges to a critical point of the
problem. Finally, we establish the convergence rate of the algorithm.
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