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ABSTRACT 

A Bayesian analysis of the minimal model was 
proposed where both glucose and insulin were 
analyzed simultaneously under the insulin-mo- 
dified intravenous glucose tolerance test (IVG- 
TT). The resulting model was implemented with 
a nonlinear mixed-effects modeling setup using 
ordinary differential equations (ODEs), which 
leads to precise estimation of population pa-
rameters by separating the inter- and intra-indi- 
vidual variability. The results indicated that the 
Bayesian method applied to the glucose-insulin 
minimal model provided a satisfactory solution 
with accurate parameter estimates which were 
numerically stable since the Bayesian method 
did not require approximation by linearization. 

Keywords: Minimal Model; Bayesian Analysis; 
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1. INTRODUCTION 

Mixed-effects models that include both fixed and random 
effects to account for the inter-individual variability are 
becoming increasingly popular for analysis of population 
pharmacokinetic/pharmacodynamic (PK/PD) data [1-8, 
among others]. In these models it is assumed that all 
responses follow a similar functional form, but that pa-
rameters vary among individuals. By separating the inter- 
and intra-individual variability, mixed-effects models will 
often lead to more precise estimation of population pa-
rameters. Continuous pharmacokinetic processes are 
often described by systems of ordinary differential equa-
tions (ODE) which generally lead to models that are 
nonlinear in the parameters complicating estimation. 
However, closed form solutions for systems of differen-
tial equations are not always possible therefore numerical 
solutions of differential equations are necessary in order 
to deal with many types of population PK/PD problems. 
The nlmeODE in R given by Tornoe et al. [9] and 

NLINMIX with ODE in SAS presented by Galecki et al. 
[10], which can handle the first-order ODE’s by com-
bining odesolve with the NLME and NLINMIX respec-
tively, are used for parameter estimation in nonlinear 
mixed-effects models. In addition, WBDiff (WinBUGS 
Differential Interface) given by Lunn [11] is a useful tool 
for dealing with pharmacokinetic models defined by 
ODEs in the Bayesian setting. The analysis based on 
ODEs may offer practical benefits in terms of easier 
PK/PD modeling, particularly when more complicated 
mechanistic models are used [12]. 

Diabetes is associated with a large number of abnor-
malities in insulin metabolism, ranging from an absolute 
deficiency to a combination of deficiency and resistance, 
causing an inability to dispose glucose from the blood 
stream. Three factors: Insulin sensitivity, Glucose effec-
tiveness, and Pancreatic responsiveness, referred to in 
Pacini and Bergman [13], play an important role for 
glucose disposal. Failure in any of these may lead to 
impaired glucose tolerance, or, if severe, diabetes. Quan-
titative assessment is possible by the minimal model [14], 
and may improve classification, prognosis and therapy of 
the disease. The minimal model is based on an intrave-
nous glucose tolerance test (IVGTT), where glucose and 
insulin concentrations in plasma are sampled after an 
intravenous glucose injection. In patients with impaired 
glucose tolerant (IGT), the insulin response to glucose 
may be partially or totally suppressed. Of course, without 
the insulin response, the glucose disappearance model 
cannot provide an estimate of the metabolic parameters, 
since there is no input to the model. The insulin modifi-
cation of IVGTT addressed the early problems with the 
minimal model ‘failures’ by insulin injection at 20 min-
utes after glucose injection is given at time zero. Tradi-
tionally, in the minimal model the glucose and insulin 
kinetics are described by two components, where the 
parameters traditionally have been estimated separately 
within each component by a nonlinear weighted least 
squares estimation technique in a two-step procedure [13]. 
The use of population analysis to extract all information, 
such as inter-subject variability, from experimental data 
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brings about an improvement in the estimates of popula-
tion and individual characteristics. Previous work with 
the IVGTT focused only on glucose kinetics where insu-
lin is treated as a known with no measurement errors for 
non-Bayesian analysis [10] and for Bayesian analysis 
[15]. However, the glucose-insulin system is an inte-
grated system and could be considered as a whole. An 
assumption of the minimal model is that glucose and 
insulin constitute a single dynamical system and impor-
tant information is lost in treating the insulin as known. 
For example, pancreatic responsiveness, one important 
factor of the individual metabolic portrait, cannot be 
estimated if insulin is treated as known. Therefore, a 
Bayesian analysis was adopted in combination with 
population mixed-effects modeling to estimate the four 
population and individual metabolic indices simultane-
ously with the minimal model of glucose and insulin 
kinetics using data collected during insulin-modified 
intravenous glucose tolerance test (IVGTT). No other 
published work was identified that analyzed both glucose 
and insulin simultaneously under the insulin-modified 
IVGTT. 

2. METHODS 

2.1. Bayesian Computational Algorithm for 
WBDiff 

Bayesian inference in WBDiff, which allows the nu-
merical solution of arbitrary systems of ODEs within 
WinBUGS nonlinear mixed models, can be described 
based on the following hierarchical modeling. 

1) Suppose a chemical or pharmacokinetic model is 
given by the systems of first-order ODE’s with the form  

),,(/),(  txgdttdx  , , , (1) )(),( 00  xtx  0t t

where x is an k-dimensional dependent variable vector, g 
is the structural model while   is a q-dimensional vector 

of unknown model parameters.  
2) In nonlinear mixed-effects modeling, the within- 

group variability describing the difference between the 
observed response value and the predicted value can be 
modeled as  

2 1~ [ ( ) ( , , ); ]ij ij ij i ijy N E y f x t         (2) 

where i=1, m subjects and j=1, ni time points;  is the 

solution of Eq.1 and the relationship between the ob-
served response y and the predicted variable x is desig-
nated by a nonlinear function f. 

ijx

3) The between-subject variability can be constructed 
by defining the subject-specific random effects as 

),(~  pi MVN                   (3) 

where  is a vector of mean population pharmacokinetic 
parameters and  is the variance-covariance matrix of 
between-subject random variability. 

4) In addition, hierarchical modeling in a Bayesian 
setting comprises the prior specification, where prior 
distributions are assigned to , , and . For instance, 

~MVNq(, ), -1~Wishartp(R, ), ~Gamma(a, b) (4) 

The Bayesian inference is based on the following 
principle: posterior  prior x likelihood. That is, the 
so-called “likelihood function” is used to update “prior 
beliefs” about some unknown parameters of interest to 
“posterior beliefs” in the light of observed data. To obtain 
the posterior estimators, using Monte Carlo approxima-
tion we simulate values from the joint posterior distribu-
tion of all the model parameters given the observed data, 
more specifically, the full conditional distribution. For 
example, the logarithm of the full conditional distribution 
for the random effect i can be constructed as follows: 
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where the dot notation in denotes the distribution 

of i conditional upon everything else in the model. The 
term 

)|( if 

),|(log if  refers to the logarithm of the prior 

distribution for i and this is specified to be a multivariate 
normal distribution with mean vector θ and variance 
-covariance matrix . The term ),|(log iijyf

,( iijxf

 refers to 

the log-likelihood of the jth observation for subject i under 
the model, and the concentration yij was assumed to fol-
low a normal distribution with mean ), ijt  and 

variance -1. Since we do not have a closed form for xij 
from Eq.1, the numerical solution xij has to be obtained 
from Eq.1 by fixing all the conditioning parameters so 
that the Gibbs sampler can generate a new value, say i

(1) 
from the full conditional distribution (Eq.5) given the 
initial values to each unknown parameters (0), (0), and 
(0). After n such iterations, the algorithm yields a joint 
sample i

(n), which can be used for statistical inference in 
WBDiff. The full conditional distributions for the other 
model parameters can be constructed in a similar manner. 

2.2. Population Analysis on Glucose-Insulin 
Minimal Model 

In this section, Bayesian analysis in combination with 
population mixed-effects modeling was used to simulta-
neously estimate the four population and individual 
metabolic indices: insulin sensitivity (SI), glucose effec-
tiveness (SG) and pancreatic responsiveness (1 and 2), 
based on the integrated glucose-insulin minimal model 
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using data collected during the insulin-modified intra-
venous glucose tolerance test (IVGTT). 

2.2.1. Bergman’s Modified Minimal Model 
In an IVGTT study a dose of glucose was administered 
intravenously over a 60 seconds period to overnight- 
fasted subjects, 20 min after the glucose bolus, insulin 
was injected over 1-2 min either into the portal vein or 
into the femoral vein, and subsequently the glucose and 
insulin concentrations in plasma were frequently sampled 
(usually 30 times) over a period of 180 minutes. Profiles 
of the 10 patients are displayed in Figure 1 [10]. 

Based on Figure 1, the intravenous glucose dose im-
mediately elevates the glucose concentration in the 
plasma forcing the pancreatic β-cells to secrete insulin. 
The insulin in the plasma is hereby increased, and the 
glucose uptake in muscles, liver and tissue is raised by the 
remote insulin in action. This lowers the glucose con-
centration in plasma, implying the β-cells to secrete less 
insulin, from which a feedback effect arises [16]. The 
integrated glucose-insulin system can be described by the 
following non-linearly coupled system of differential 
equations, but this approach is not exactly the same model 
as used in [17]. Here I1 is introduced to account for the 
injection of insulin at t1 after the glucose bolus during the 
IVGTT: 

1
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where t=0 is the glucose injection time, + denotes posi-
tive reflection, namely, 
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and the model parameters are as explained in [13]. 

2.2.2. Bayesian Analysis of Bergman’s Modified 
Minimal Model Using WBDiff 

A Bayesian framework for modeling the time-varying 
glucose and insulin profiles during the IVGTT and in-
ter-individual variability requires a three-stage hierar-
chical model. At the first stage, glucose values G(tj,θi) 
and insulin values I(tj,θi) in subject i at time tj were ob-
tained as the solutions to Eq.6. The model we consider 
assumes Gij = G(tj,θi) + εij1 and Iij = I(tj,θi) + εij2,  where 
εijk is a mean zero normally and independently distributed 
error term. An additional assumption about within-  
subject errors will be forthcoming in due course. Stacking 
the two response variables Gij and Iij into a single re-
sponse vector, an indicator variable for the two responses 
can be used to construct the model function. By combin- 

ing G() and I(), we obtain 
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 and 

θi is a vector of parameters of this model 

for subject i denoted by  
1 2( , ) .T

ijij ij 

1 2 3 0 0 1 1( , , , , , , , , , ) .T
i i i i i i i i i i ip p p G n h I t I   

Here it is further assumed that the time when insulin 
injection occurs after glucose injection at time zero is also 
an unknown parameter denoted as t1 which must be es-
timated. To account for correlation between the two re-
sponse variables measured on the same occasion, we may 
assume the elements of εij are correlated, with vari-
ance-covariance matrix τ-12. Here for simplicity it is 
assumed that 2=I2, since the intent in this paper is to 
introduce the random effects to account for in-
ter-individual variability rather than define a vari-
ance-covariance structure for random errors to address 
intra-individual variability. However, the variance func-
tion fk

2(tj, ) and the weight wj are specified for hetero-
geneous within-subject error (εijk) variance for two rea-
sons: 1) the glucose and insulin concentration points 
before 8 minutes can then be zero-weighted to account for 
the time taken by the injected glucose to diffuse in its 
distribution space, which can be achieved by setting wj=0 
at any time points before 8 minutes and wj=1 for others; 2) 
it is commonly recognized that intra-subject variation of 
this kind tends to increase with plasma concentration 
level. That is, the higher the concentration level, the lar-
ger the variation so that less weight should be assigned. 
Thus, we assume the following covariance matrix for the 
within-subject errors εijk.  
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The second stage is characterized by making assump-
tions about individual parameters. In particular, it was 
assumed that the individual parameters were drawn from 
a multivariate log-normal distribution guaranteeing non- 
negativity of parameters 

1 2 3 0 0 1 1 10 10( , , , , , , , , , ) ~ ( , ),T
i i i i i i i i i i xp p p G n h I t I Lnormal    

where  is an unknown population mean vector and  
is an unknown covariance matrix. At the third stage, prior 
distributions for population parameters , , and τ were 
specified. These prior distributions were vague repre-
senting a ‘lack’ of prior knowledge with: 
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Figure 1. Individual glucose and insulin profiles for 10 patients. 
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In order to allow the experimental data to drive the esti-
mation process, the above prior distributions specified 
virtually ‘flat’ distributions, i.e. they indicated that all 
values occurred with nearly the same probability, al-
though informative prior distributions could be used as 
there is a wealth of information about parameters of the 
minimal model in various populations. A general discus-
sion about the form of vague prior distribution can be 
found in [18]. Note that the priors specified above im-
plements the common assumption that population pa-
rameters are not correlated, but allows the posterior es-
timates to demonstrate correlation. 

3. RESULTS 

For the calculations, we employed WBDiff which in-
corporates the numerical solution of ODEs into the 
WinBUGS program. The WinBUGS program adopted the 
Metropolis-Hastings algorithm to calculate a single chain 
with 15,000 samples, from which the first 5,000 samples 
were discarded and the remaining 10,000 samples were 
used in a further analysis. The Bayesian analysis provided 

the following population parameter estimates and the 
posterior distribution of the parameters  in log scale, , 
and τ summarized by the median, the mean and the 95% 
credible interval respectively presented in Table 1. 

The chain history was stable, showing the classic 
“fuzzy caterpillar” shape, with minimal evidence of auto- 
correlation in the samples generated from the posterior 
distribution. After observing the fitted plots (Figure 2), 
the fitted model sufficiently explained the kinetics of glu- 
cose and insulin, since the observed and predicted values 
matched reasonably well except for several observations 
ignored since during the first eight minutes after injection, 
at the early time points. Those early data points were the 
pattern of plasma glucose and insulin is dominated by ex- 
tra cellular mixing. The estimates of the fixed-effects 
parameters were also satisfactory with an acceptable 
precision (range of coefficient of variation 1.29-8.78%) 
and within the normal range. For example, the time at 
which the insulin is injected should be between 20 and 
22min, and our estimate t1 is exp(3.031)=20.72min. It was 
also possible to determine the individual estimates of 
parameters by examining the behavior of 

Table 1. Bayesian parameter estimates and 95% credible intervals. 

Node Mean SD MC error 2.50% Median 97.50% Sample 

p1 -3.714 0.185 0.016 -4.095 -3.693 -3.399 10000 

p2 -5.096 0.448 0.043 -5.878 -5.081 -4.315 10000 

p3 -12.24 0.171 0.015 -12.53 -12.26 -11.87 10000 

n -2.026 0.102 0.007 -2.244 -2.021 -1.837 10000 

γ -7.08 0.166 0.013 -7.427 -7.071 -6.778 10000 

h 4.264 0.07 0.003 4.138 4.26 4.413 10000 

G0 5.529 0.072 0.003 5.389 5.53 5.672 10000 

I0 4.804 0.109 0.007 4.574 4.808 5.01 10000 

I1 4.958 0.108 0.006 4.743 4.961 5.162 10000 

t1 3.031 0.059 0.002 2.906 3.033 3.141 10000 

σp1
2 0.211 0.177 0.008 0.05 0.164 0.65 10000 

σp2
2 0.136 0.117 0.006 0.027 0.104 0.439 10000 

σp3
2 0.241 0.322 0.022 0.026 0.124 1.132 10000 

σn
2 0.067 0.079 0.005 0.008 0.044 0.28 10000 

σγ
2 0.03 0.036 0.002 0.002 0.02 0.117 10000 

σh
2 0.012 0.015 0.001 0.001 0.007 0.051 10000 

σG0
2 0.089 0.082 0.003 0.017 0.067 0.295 10000 

σI0
2 0.059 0.045 0.002 0.013 0.047 0.177 10000 

σI1
2 0.297 0.262 0.015 0.068 0.22 0.981 10000 

σt1
2 0.867 0.907 0.054 0.131 0.615 3.137 10000 

τ-1 0.018 0.001 0 0.015 0.018 0.02 10000 
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Figure 2. Model fit plots between predicted (Pred) and observed 
(Obs) concentrations under WBDiff. The upper plot describes 
the fit of glucose kinetics and the lower plot described the fit of 
insulin kinetics. 
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for each subject i. It was also possible to calculate the 
group and individual profiles based on the above pa-
rameter estimates. Specifically, the population charac- 
teristics of the minimal model for the data set used here 
were: Insulin sensitivity: 

SI=p3/p2=exp(-12.24)/exp(-5.096)=7.9x10-4; 

Glucose effectiveness: SG=p1=2.44x10-2; Pancreatic 
responsiveness: 2=γx104=8.42 where 1 can be calcu-
lated for each subject. 

4. DISCUSSIONS 

With the traditional minimal model, the kinetic parame- 
ters of the two components, glucose and insulin, are es-
timated separately using weighted nonlinear least squares 
within each component. In this work, the two components 
are combined to obtain a unified, integrated glucose- 
insulin system so that four metabolic indices: SI, SG, 1 
and 2, which represent an integrated metabolic portrait 
of a single individual, can be estimated simultaneously 
during the insulin-modified IVGTT. The integrated 

analysis can be directly applied to the protocols without 
insulin modification. Under insulin-modified IVGTT, not 
only the glucose kinetics but also the insulin kinetics can 
be fitted in a satisfactory way based on the Bayesian 
hierarchical analysis by introducing I1 and t1 in the 
minimal model and estimating them together with other 
model parameters. This approach constitutes an attractive 
option for minimal model analyses, since in most of the 
literature, the converse model of pancreatic secretion 
cannot be fitted to the observed data with the use of 
pharmacologic agents, resulting in the focus of most 
previous work on the glucose kinetics regarding insulin as 
the input to the system [10,13,15]. 

In addition, it is important to note that the non- 
Bayesian population analysis with the required lineariza-
tion approximation cannot be applied to the insulin sys-
tem alone and glucose-insulin kinetics in the proper way, 
since linearization itself restricts its application with this 
particular PK/PD model. In the minimal model Eq.6, 
max(G(t)-h,0) is not differentiable with respect to h at the 
time points when G(t)=h. In order to make the integrand 

function ( )I t

h




  well defined, the non-differentiable 

points must be specified as intermediate points, and then 
( )I t

h





 must be defined over the subintervals with 

non-differentiable points as endpoints, so that the nu-
merical solution of I

h




 can be solved from ‘ode’ 

module. But, the question remains as to where the 
non-differentiable time points are located in addition to 
the fact that for different subjects they do not necessarily 
coincide and may vary from iteration to iteration due to 
the change of the estimate of h during optimization. These 
appear to be serious problems that cannot be overcome 
when using a non-Bayesian approach with the required 
linearization. Another potential limitation of linearization 
is revealed when nonlinearity curvature in the parameter 
effects is severe due to the complexity of Eq.6. One naive 
approach is to solve the problem with non-differentiable 
sensitivity by replacing max(G(t)-h,0) by G(t)-h in the 
minimal model equations. We fitted this modified model 
to the data, however, not too many improvements have 
been obtained when compared with non-Bayesian me- 
thod applied to Eq.6. In fact, it is sensible to specify 
max(G(t)-h,0) in Eq.6, since insulin enters the plasma 
with zero rate when glucose in plasma is below the 
threshold amount. 

Overall, for the glucose-insulin minimal model, the 
Bayesian approach appears to be the preferred since the 
algorithm behind the Bayesian approach is applicable and 
effective to the structure of minimal model, and sensi-
tivities are not needed in the estimation process as with 
the non-Bayesian approach. Another advantage of Bay- 
esian analysis is that individual estimates of model pa-
rameters can be simultaneously calculated under the 
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Bayesian process. Therefore, Bayesian appro ach should 
be considered as an additional tool for data analysis, since 
it enables the analysis of systems of ODEs by nonlinear 
mixed-effects modeling and provide precise parameter 
estimates, make them useful tools for population PK/PD 
analysis of complicated systems of ODEs with and with- 
out an explicit form solution. 
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