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Abstract 
Generalized robust systems-based theoretical kinematic inverse/regular wedge 
cam procedures which produce self-centering motion applicable to three-point 
clamping device design about cylindrical workpieces that vary within a pre-
scribed size range are presented. Within such presentment, various parametric 
(trigonometric, combined loop closure with vector projection/resolution, trans- 
formation) and rectangular form (Taylor series approximation, trigonometric 
substitution & transformation (TS&T), nonlinear ODE) equation methods 
along with related statics and dynamics are explored. In connection, a simu-
lated unified resultant amplitude method (URAM) is applied for generaliza-
tion purposes. Moreover, the theoretical framework is validated within the 
context of a computer-generated model of a mechanism design which demon-
strates self-centering over the prescribed design range with negligible to zero 
error. Furthermore, the static and dynamic analyses are verified through com-
puter-aided engineering simulation in conjunction with equilibrium equa-
tions and a consideration of various calculus principles. Consequently, the 
self-centering theoretical formulation coupled with static and dynamic anal-
yses provide for an accurate and generalized quantitative model couched 
within a holistic systems engineering framework which can be useful for 
providing state-of-the-art engineering and design optimization of various pa-
rameters for developing new and/or improved self-centering gripping devices 
of the inverse/regular wedge cam type. 
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1. Introduction 

In the development of self-centering devices which clamp around cylindrical 
workpieces, there are several different existing kinematic design configurations 
which produce the type of desired functionality in relation to the intended appli-
cation set forth by the designer. The various practical configurations of such de-
vices usually include anywhere from two to four points of contact. As a related 
example, self-centering steady rest products/utility patents used for gripping cy-
lindrical workpieces involved in CNC lathe machining processes revolve around 
three-point contact clamping devices [1]-[19]. Another similar clamping device 
design includes a patented oil & gas wrench involving similar, but different, three-
point contact self-centering motion serving as a method for gripping and posi-
tioning thin-walled cylinders [20]. Other comparable clamping device designs in-
clude a two-point pipe clamping chuck design in addition to a two-arm holding 
self-centering pipeline clamping device among others [21] [22]. 

In connection, and regarding diverse applicability of related gripping mecha-
nisms, Afandiyev and Nuriyev discuss the occurrence of clamping devices being 
widely used in various industries with constantly increasing needs, especially in 
relation to processing accuracy and the forces acting on the clamped part. The 
reliability of such devices in terms of their use on thin-walled cylinders, in partic-
ular drill pipes, is highlighted due to plastic deformations being highly prevalent 
in clamping zones as a result of current clamping devices creating uneven loading 
arrangements with associated contact pressure distributions/compressive stresses 
exceeding the pipe material yield strength. In an effort to remedy these issues in-
volving the state of the pipe and holding capacity of the clamping device, a concept 
of a pipe clamping chuck design with basic design detail is provided [21]. 

Additionally, Haixia, Liquan, Shiqing, and Xianchao discuss multifunctional 
pipeline repair machinery being used in the deep-sea arena along with the diffi-
culty of gripping pipelines while ensuring their concentricity between cutter heads 
and the pipeline during operation. In view of this, a new design involving a two-
arm holding self-centering pipeline clamping device is proposed which involves 
two groups of parallelogram double-rocker and cranking block mechanisms. The 
recommended design is extensive in presentment with schematic representations 
along with 3D modeling as well as detailed calculations coupled to CAE simula-
tion and being accompanied by the real clamping device prototype with satisfac-
tory testing results [22]. 

Furthermore, Mhamane, Bavadekar, Dhokale, Hogade, Patil, and Survase 
among others discuss the use of a self-centering steady rest for eliminating prob-
lems involving vibration and deflection on workpieces while machining. They also 
describe its facilitation regarding an increase in productivity by reducing cycle 
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time along with being able to obtain higher accuracy and good surface finish. Con-
sequently, a regular wedge cam design within the context of a self-centering steady 
rest is discussed for improving these characteristics with design aspects being pre-
sented based on a graphical incremental angle approach within the computer-
aided design environment [23]-[25]. Moreover, and expanding on self-centering 
steady rests and their inherent cam design due to the proposed research being 
centered around similar three-point clamping device design, existing related the-
ory explores analytical approaches to the development of the regular wedge cam 
path involving parametric equation formulation through trigonometric and ve-
locity techniques as well as approximating the cam contour using regression anal-
ysis and first-order iterative solver approximation procedures [26]-[35].  

In further review of various cam designs within related Mechanism and Ma-
chine Theory for exploring other potential analytical techniques which may be 
useful for advancing gripping mechanisms of this type, existing literature is rather 
extensive but largely devoted to plate cam design along with a discussion of the 
uncommon occurrence of wedge cam design in addition to covering a wide variety 
of other specialized cam mechanisms [36]-[38]. Several of the various related kin-
ematic cam formulations involve parameterization regarding the theory of enve-
lopes in addition to using cylindrical cam surface indexing for plate cam designs 
having mathematical content revolving around disk, cylindrical, camoid, glo-
boidal, and conical cam profiles [39] [40]. Other well-known plate cam profile 
creation techniques include the Polydyne approach and polynomial curve fitting 
for efficient, desired, and minimized vibrational cam profiles [41]. Additionally, 
spline curve methods are used for plate cams lacking in harmonic content with 
having concerns regarding accuracy and computational expensiveness when 
higher order curves are necessary for producing higher order derivative accuracy 
in relation to cam profile dynamics [42] [43]. Moreover, the Fourier series may be 
used as a local mathematical approximation for modeling plate cam follower dis-
placements along with minimizing residual cam vibrations among other cam dy-
namic characteristics [43]. 

Including examples of related self-centering mechanism and machine theory, 
general theoretical bar mechanisms, namely self-aligning systems, are constructed 
by manipulating the mechanism’s mobility via joint replacements [44]. In compar-
ison to self-aligning systems, the seven-bar mechanism supplies self-centering mo-
tion at the output for disc-brake systems which constructs a coupled solution for 
producing clamping action in conjunction with equalized force distribution [45]. 

As previously discussed, there is an increasing need for reliability involving 
clamping accuracy, force transmission, vibration minimization, material defor-
mation, productivity, and more. Improving these characteristics is not a trivial 
exercise due to manufacturing, quality, and engineering considerations whereby 
the design and analysis variables are rather numerous and complex therefore mak-
ing it difficult for combining and directing toward optimizing characteristics 
through typical manual type adjustments in a computer-aided design environ-
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ment or by analytical presentments that are lacking in robustness. Consequently, 
this can be better achieved through having a rigorous systems-based theoretical 
engineering model for incorporating robust design/robust design optimization 
techniques toward achieving world-class engineering and design intent. 

Nevertheless, and despite such expansiveness on cam and associated product 
design with related mechanism and machine theory, existing literature does not 
provide a holistic analytical approach to developing three-point clamping devices 
of its specific or similar kind and by which is required as part of providing a more 
rigorous, useful and properly structured quantitative model for incorporating ad-
vanced design and robust design optimization techniques as part of contemporary 
engineering efforts for meeting the high-quality demands of today. Additionally, 
existing related theory is not wholly generalized and only explores parametric 
equation development of the regular wedge cam type specific to self-centering 
steady rests with the workpiece radius as the independent variable and by which 
is unbounded and may lead to mathematical errors within the theory and accom-
panying designs [26]-[32]. 

However, the research entailed herein presents a more generalized and robust 
theoretical quantitative model/framework with taking a holistic systems engineer-
ing approach to designing accurate three-point self-centering mechanisms about 
a variable workpiece diameter of both the inverse and regular wedge cam types. 
This, more generalized and unified theoretical construction, is useful for extend-
ing the usage of such toward the design and development of three-point self-cen-
tering clamping devices of this type and by which may include designing devices 
similar to existing practical application within the manufacturing industry regard-
ing self-centering steady rests in addition to the oil & gas industry involving pipe 
handling and/or pipeline repair machinery as well as finding its way into other 
industries such as aerospace, construction equipment, precision medical, and 
many other potential industry applications whereby the efficiency and utility of 
such vigorously engineered and optimized product designs resulting from this ap-
plied mathematical modeling regarding mechanism and machine theory may be 
beneficial. Furthermore, and important to note, various aspects and approaches 
provided within the theory, such as the application of the unified resultant ampli-
tude method (URAM) among others, may also inspire research efforts and appli-
cation of such to other areas of engineering, physics, and mathematics. 

The presented formulation also includes important design considerations such 
as clearances and contact angles for broadening practical design aspects as well as 
for being required as part of applying advanced robust design optimization tech-
niques to critical characteristics related to force balancing and vibration minimi-
zation among others. Additionally, coordinate points are used for specifying crit-
ical design locations and related lengths which are also more useful for design 
optimization in terms of developing the limits of the design optimization space as 
well as for use in generalization of the theoretical framework. Furthermore, the 
independent variable is the angle of cam rotation rather than the workpiece radius 
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which is required for generalizing the backward kinematic cam rotation equation 
due to the bounded nature of the rotation angle. 

Moreover, and considering generalization and robustness, all related kinemat-
ics of the self-centering arrangement that factor into the development of the par-
ametric equations are explored through various approaches including trigono-
metric, a generalized combined double loop-closure with vector projection/reso-
lution method, and finally through a consideration of transformation equations 
required for rectangular form conversion. Parametric equations are then extended 
into direct rectangular form conversion using both approximation (Taylor series 
and nonlinear ODE) and exact (trigonometric substitution & transformation 
(TS&T) and nonlinear ODE) methods which may be useful for robotics & controls 
theory application among other theoretically applied uses in design and optimi-
zation. In conjunction, a simulated unified resultant amplitude method is uniquely 
applied toward dynamics and the generalization of the theoretical framework. Ad-
ditional aspects incorporated for providing a holistic systems engineering meth-
odology including robust design optimization application requirements involve 
normalization of the cam path, providing generalized statics with taking a systems 
approach required for determining various contact and reaction forces along with 
related machine design and application engineering considerations, as well as in-
cluding related dynamics with direct application of the cam rotation equation de-
velopment utilizing the simulated unified resultant amplitude method. 

2. Nomenclature 

2.1. Specified/Driving Analysis Variables 

θ : Independent Cam Rotation Variable; 

wminR : Minimum Actual Workpiece Radius; 

wmaxR : Maximum Actual Workpiece Radius; 
r : Gripper Roller Radius; 

lrxC : Horizontal Clearance; 

oϕ : Initial Contact Angle; 

1x : Horizontal Coordinate from Origin 1O  to Pivot Point 2O ; 

1y : Vertical Coordinate from Origin 1O  to Pivot Point 2O ; 

2x : Horizontal Coordinate from Origin 1O  to Roller Follower Starting Point 
D ; 

2y : Vertical Coordinate from Origin 1O  to Roller Follower Starting Point 
D ; 

1mx : Horizontal Coordinate from Origin 1O  to Normal (Friction Related) 
Force on the Upper End of the Translational Gripper; 

1my : Vertical Coordinate from Origin 1O  to Normal (Friction Related) Force 
on the Upper End of the Translational Gripper; 

2mx : Horizontal Coordinate from Origin 1O  to Normal (Friction Related) 
Force on the Lower End of the Translational Gripper/Actuator; 
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2my : Vertical Coordinate from Origin 1O  to Normal (Friction Related) Force 
on the Lower End of the Translational Gripper/Actuator; 

sµ : Static Friction Coefficient; 

aF : Activation Force; 

wpxF : Total External Horizontal Reaction Force on the Workpiece; 

wpyF : Total External Vertical Reaction Force on the Workpiece; 

extxM : Total External Moment About x -axis; 

extyM : Total External Moment About y -axis; 

extzM : Total External Moment About z -axis; 

cP : Constant Power Source 

2.2. Calculated/Driven Fixed Analysis Variables 

twmaxR : Maximum Theoretical Workpiece Radius; 

1L : Rotational Gripper Length from Pivot Point 2O  (or 3O ) to Point B  (or 
C ); 

2L : Length from Pivot Point 2O  (or 3O ) to Cam Roller Follower Starting 
Point D  (or E ); 

3L : Theoretical Length from Origin 1O  to Pivot Point 2O  (or 3O ); 
η : Starting Angle from Negative (or Positive) x -axis to Length 1L  [Relative 

to a Coordinate System at Pivot Point 2O  (or 3O )]; 
δ : Counterclockwise (or Clockwise) Angle from Length 1L  to Length 2L  

[Relative to a Coordinate System at Pivot Point 2O  (or 3O )]; 
β : Angle from Negative (or Positive) x -axis to Length 3L  [Relative to a Co-

ordinate System at Pivot Point 2O  (or 3O )]; 

2.3. Calculated/Driven Variable Equations/Analysis Functions 

µ : Angle of Rotation from the Negative (or Positive) x -axis to the Line from 
Pivot Point 2O  (or 3O ) to Point 2D  (or 2 )E  [Relative to a Coordinate Sys-
tem at Pivot Point 2O  (or 3O )]; 
 : Supplementary Angle of Rotation Corresponding to the Angle of Rotation 
µ  [Relative to a Coordinate System at Pivot Point 2O  (or 3O )]; 

twR : Theoretical Workpiece Radius (Congruent to the Actual Workpiece when 

wmin tw wmaxR R R≤ ≤  is Satisfied); 

3x : Horizontal Coordinate from Origin 1O  to Rotational Gripper Roller Cen-
ter Point B  (or C ); 

3y : Vertical Coordinate from Origin 1O  to Rotational Gripper Roller Center 
Point B  (or C ); 

4x : Horizontal Coordinate from Origin 1O  to Translational Gripper Roller 
Center Point A ; 

4y : Vertical Coordinate from Origin 1O  to Translational Gripper Roller Cen-
ter Point A ; 

5x : Horizontal Coordinate from Origin 1O  to Roller Follower Starting Point 
D ; 
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5y : Vertical Coordinate from Origin 1O  to Roller Follower Point 1D  (or 1E ); 

6x : Horizontal Coordinate from Origin 1O  to Point 2D  (or 2E ); 

6y : Vertical Coordinate from Origin 1O  to Point 2D  (or 2E ); 

ch : Length from Point 2D  (or 2E ) to Roller Follower Point 1D  (or 1E ); 
ω : Angle of Rotation from Positive (or Negative) x -axis to Length ch  [Rel-

ative to a Coordinate System at Cam Roller Follower Point 1D  (or 1E )]; 
λ : Angle of Rotation from Positive (or Negative) x′ -axis to Length ch  [Rel-

ative to a Coordinate System at Cam Roller Follower Point 1D  (or 1E )]; 

cx : Horizontal Component of the Wedge Cam Path; 

cy : Vertical Component of the Wedge Cam Path; 
ζ : Angle of Rotation from the Negative (or Positive) y -axis to Length from 

Pivot Point 2O  (or 3O ) to Point 2D  (or 2E ) (Relative to a Coordinate System 
at Pivot Point 2O  (or 3O )]; 

γ : Angle of Rotation from the Negative (or Positive) x -axis to Length from 
Pivot Point 2O  (or 3O ) to Point 2D  (or 2E ) (Relative to a Coordinate System 
at Pivot Point 2O  (or 3O )]; 

ϕ : Contact Angle; 

 head tailR : Link Lengths for Loop-Closure Equations; 

headθ : Angles of Rotation for Loop-Closure Equations; 
c : Polynomial Coefficients, Dependent Summation Wave Variable, Instanta-

neous Constant ODE Parameter; 
Θ : Trigonometric Numerator Parameter; 
Γ : Trigonometric Denominator Parameter; 
a : Cosine Wave Amplitude; 
b : Sine Wave Amplitude; 
m : N-Ary Product Index, Multiple of π ; 
q : Quadrant Location of Wave Summation; 
R̂ : Resultant Amplitude Combination-Wave Fluctuation; 
∅̂ : Phase Angle Combination-Wave Fluctuation; 
R : Resultant Amplitude; 
Ø : Phase Angle; 

maxθ : Maximum Cam Rotation; 

nums : ODE Solution Number; 

1̂s : First ODE Plus/Minus Sign Pattern; 

2ŝ : Second ODE Plus/Minus Sign Pattern; 
k : Variable ODE Initial Condition; 
ς : Normalization Parameter; 
α : Rotational Gripper Angle 1 2O O B  (or 1 3O O C ); 
ψ : Angle Corresponding to Triangle 1 2O BO  (or 1 3O CO ); 

cm : Wedge Cam Contour Slope; 
ρ : Tangential Force Angle; 
Ω : Normal Force Angle; 
φ : Pressure Angle; 
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md : Horizontal Moment Arm Length of Normal Cam Path Force Transmissibility; 

AF : Translational Gripper Contact Force; 

BF : Right-Side Rotational Gripper Contact Force; 

CF : Left-Side Rotational Gripper Contact Force; 

1,2DF : Right Side Normal Force at Roller Follower Point 1D  (or 2D ); 

1,2EF : Left Side Normal Force at Roller Follower Point 1E  (or 2E ); 

1NF : Normal (Friction Related) Force on the Upper End of Translational Gripper; 

2NF : Normal (Friction Related) Force on the Lower End of Translational Gripper; 

2O xF : Horizontal Component of the Reaction Force at Pivot Point 2O ; 

2O yF : Vertical Component of the Reaction Force at Pivot Point 2O ; 

3O xF : Horizontal Component of the Reaction Force at Pivot Point 3O ; 

3O yF : Vertical Component of the Reaction Force at Pivot Point 3O ; 
t : Time Parameter; 

TGs : Linear Displacement Function; 

TGv : Rectilinear Translational Gripper Velocity; 

RGω : Angular Rotational Gripper Velocity; 

RGα : Angular Rotational Gripper Acceleration; 

jRGα : Angular Rotational Gripper Jerk; 

RGv : Tangential Curvilinear Rotational Gripper Velocity; 

RGa : Tangential Curvilinear Rotational Gripper Acceleration; 

RGj : Tangential Curvilinear Rotational Gripper Jerk; 

cxv : Horizontal Component of the Curvilinear Wedge Cam Contour Velocity; 

cxa : Horizontal Component of the Curvilinear Wedge Cam Contour Acceleration; 

cxj : Horizontal Component of the Curvilinear Wedge Cam Contour Jerk; 

cyv : Vertical Component of the Curvilinear Wedge Cam Contour Velocity; 

cya : Vertical Component of the Curvilinear Wedge Cam Contour Acceleration; 

cyj : Vertical Component of the Curvilinear Wedge Cam Contour Jerk; 

cv : Resultant Curvilinear Wedge Cam Contour Velocity; 

ca : Resultant Curvilinear Wedge Cam Contour Acceleration; 

cj : Resultant Curvilinear Wedge Cam Contour Jerk; 

3. Methodology 
3.1. Kinematic Development of Parametric Inverse/Regular 

Wedge Cam Path 
3.1.1. Specified/Driving and Calculated/Driven Fixed Analysis Variables 
In connection with the prescribed nomenclature and Figure 1 below, the founda-
tional kinematics regarding the cam profile will be mathematically derived for 
producing self-centering motion applicable to three-point contact about varying 
diameters of the workpiece within a specified size range. 

Due to symmetry, the layout can be viewed as shown with the theoretical for-
mulation comprising quadrants 1 and 4 about a global stationary coordinate 
system located at point 1O . In relation, there is an inverse (or regular) wedge 
cam/roller follower located at point D  through which, when vertical movement  
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Figure 1. The kinematic self-centering motion layout (a) ınverse wedge cam, (b) regular wedge cam. 
 

of the translational gripper/roller follower to point 1D  occurs in conjunction 
with rotation of the rotational gripper about point 2O , all three roller gripper 
diameters (located at points A , B , and C ) will contact the theoretical work-
piece diameter (located at point 1O ) in a simultaneous tangent fashion thus 
achieving self-centering motion of this type. 

The generalized self-centering cam derivation arising from the corresponding 
moving x′ - y′  coordinate system (starting at point D  and incrementing 
through point 2D  (or 1D )—for the inverse (or regular) wedge cams respec-
tively—over the cam rotation range required for tangential gripping of all three 
roller diameters) considers parameterization of the cam contour equations used for 
producing a path in the local x′ - y′  Cartesian coordinate system located at 
points 2D  (or 1D ). For clarification, points 2D  (and 1D ) are shown in Figure 
1(a) (and Figure 1(b)), respectively, at an intermediate position of the total cam 
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rotation range. 
Regarding the kinematic motion and associated theoretical development, as 

shown in Section B of the nomenclature, several specified/driving analysis varia-
bles are prescribed. In connection, the independent variable is specified as the an-
gle of cam rotation θ  ranging from 0˚ to a maximum value that corresponds to 
the minimum workpiece diameter. However, and for convenience, maximum and 
minimum actual workpiece radii, wmaxR  and wminR , are utilized rather than di-
ameters when formulating the theoretical framework. Additionally, and im-
portant to note, the gripper roller radius parameter r  may be interchanged with 
noncircular shapes by being consistent with vectors starting from points A , B , 
and C  and ending at their outer edges of contact with the corresponding mating 
surface of the workpiece diameter. 

Moreover, to broaden the practical aspects related to designing a satisfactory 
self-centering arrangement, a clearance allowance lrxC  is included. This hori-
zontal component starts from the outermost tangential edge of the maximum ac-
tual workpiece diameter (along its horizontal axis) and ends at the outermost tan-
gential edge of gripper rollers B  (and C ) (along their horizontal axes) in their 
initial configuration. In connection, and as an aid toward the development of an 
optimal design, an initial contact angle oϕ  is utilized to establish the starting po-
sitions of gripper rollers B  (and C ) in alignment with the prescribed clearance 
and maximum actual workpiece radius. 

Furthermore, for better visualization of the design specification and associated 
limits of the design space within an optimization environment, the starting posi-
tions of points 2O  and D  are assigned as coordinate points ( 1x , 1y ) and ( 2x , 

2y ) relative to the workpiece origin 1O . Lastly, and regarding a static and dy-
namic analyses integral to an extension of the kinematics theory for providing a 
generalized and holistic systems engineering approach to the design of such de-
vices, the static friction coefficient sµ , activation force aF , given workpiece re-
action forces and external moment components wpxF , wpyF , extxM , extyM , and 

extzM , as well as the constant power source cP  are provided as specified design 
parameters. 

In conjunction, and as preliminary specification toward the theoretical devel-
opment of the wedge cam contour equations, the calculated/driven fixed analysis 
variables (in accordance with Section C of the nomenclature) are shown through 
the following equations. 

With the horizontal clearance specification between the rotational gripper roll-
ers as well as the maximum actual workpiece radius, the maximum theoretical 
workpiece radius twmaxR  can be determined by Equation (1) below. 

 
cos

wmax lrx
twmax

o

R C r
R r

ϕ
+ +

= −  (1) 

Note that the maximum theoretical workpiece radius provides an upper bound 
for the allowed range of the adjustable theoretical workpiece radius in which the 
gripper rollers theoretically contact and/or move through. 
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Additionally, various kinematic lengths are determined through the following 
equations. 

 ( )( ) ( )( )2 2
1 1 1cos sintwmax o twmax oL x R r y R rϕ ϕ= − + + + +  (2) 

 ( ) ( )2 2
2 2 1 2 1L x x y y= − + −  (3) 

 2 2
3 1 1L x y= +  (4) 

In connection, their associated angles are determined as follows: 

 ( )
( )

11

1

cosπ tan
2 sin

twmax o

twmax o

x R r
y R r

ϕ
η

ϕ
− − +

= −
+ +

 (5) 

 1 2 1

2 1

π tan
2

x x
y y

δ η − −
= + +

−
 (6) 

 1 1

1

  tan y
x

β −=  (7) 

3.1.2. Method 1: Trigonometry Applied to the Coordinate Points Design 
Layout 

With having established the specified and calculated parameters within the previ-
ous discussion, nomenclature, and associated equations, the development of cal-
culated/driven variable equations/analysis functions will be shown within the fol-
lowing presentment. To note, Section D of the nomenclature has been provided 
for use in conjunction with the following generalized theoretical formulations. 

In reference to Figure 1, forward kinematic equations that describe the moving 
coordinate points A , B , 1D , and 2D  will be derived as a function of the cam 
rotation θ  for use when developing the associated parametric wedge cam equa-
tions. Moreover, the corresponding formulation will be outlined through an ana-
lytical approach involving basic trigonometric concepts. 

In deriving the forward kinematics, the following angles as a function of the 
cam rotation θ  are presented. 

 ( ) ( )µ θ δ η θ= − −  (8) 

 ( ) ( )πθ µ θ= −  (9) 

Furthermore, coordinates ( )3x θ  and ( )3y θ  for point B  along with the 
associated theoretical workpiece radius ( )twR θ  are provided through Equations 
(10)-(12). 

 ( ) ( )3 1 1 cosx x Lθ η θ= − −  (10) 

 ( ) ( )3 1 1siny L yθ η θ= − −  (11) 

 ( ) ( ) ( )2 2
3 3twR x y rθ θ θ= + −  (12) 

Additionally, coordinates 4x  and ( )4y θ  of the vertically translating roller 
located at point A  are given below. 

 4 0x =  (13) 
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 ( ) ( )4 twy R rθ θ= +  (14) 

Moreover, coordinates ( )5x θ  and ( )5y θ  of the vertically translating cam 
roller follower located at point 1D  are given as follows. 

 5 2x x=  (15) 

 ( ) ( )( )5 2 twmax twy y R Rθ θ= − −  (16) 

Lastly, coordinates ( )6x θ  and ( )6y θ  for point 2D  are given by Equations 
(17) and (18). 

 ( ) ( )6 1 2 cosx x Lθ θ= +   (17) 

 ( ) ( )6 1 2 siny y Lθ θ= +   (18) 

With having the above theoretical foundation specification, parametric equa-
tions of the wedge cam contours can now be formulated as a function of their cam 
rotation. Several preliminary equations for defining the cam contour equations 
are as follows. 

 ( ) ( )( ) ( ) ( )( )2 2
6 5 6 5ch x x y yθ θ θ θ= − + −  (19) 

 ( ) ( ) ( )
( )

6 51

6 5

tan
y y

x x
θ θ

ω θ
θ

− −
=

−
 (20) 

 ( ) ( )λ θ θ ω θ= +  (21) 

Consequently, the components of the inverse and regular cam paths on the 
moving x′ - y′  coordinate system are provided by ( )cx θ  and ( )cy θ  
through Equations (22) to (25) below. To note, subscripts i  and r  are used to 
distinguish between inverse and regular cam types. 

 ( ) ( ) ( )cos
ic cx hθ θ λ θ=  (22) 

 ( ) ( ) ( )sin
ic cy hθ θ λ θ=  (23) 

 ( ) ( ) ( )cos
rc cx hθ θ ω θ=  (24) 

 ( ) ( ) ( )sin
rc cy hθ θ ω θ=  (25) 

While the above parametric equations are adequate for creating a useful design, 
they rely on incrementing the rotating gripper (angle of cam rotation) for devel-
oping the cam contour. However, and regarding a robotics & controls theory ap-
plication among other potential theoretical uses in design and optimization, it 
may be useful to extend the parametric cam equations into rectangular form 
within the local Cartesian reference frame located at points 2D  (or 1D ) for both 
cam types respectively. 

In relation, and with taking the theoretical formulation of the backward kine-
matic cam rotation equation into consideration, the composition of the paramet-
ric cam equations in expanded form (with substitution of all related forward kin-
ematic equations) contain trigonometric functions of unlike angles thereby pre-
senting difficulties for isolating the cam rotation. Therefore, a combined loop-
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closure with vector projection/resolution method will be explored as an attempt 
to resolve this mathematical issue as well as to provide an alternative generalized 
approach for developing the parametric cam path equations which may prove use-
ful and convenient within a robust design optimization context. 

3.1.3. Method 2: Combined Loop-Closure with Vector  
Projection/Resolution Using Coordinate Points Design Layout 

Regarding the combined loop-closure with vector projection/resolution formula-
tion, two loop closures are superimposed onto each moving component of the 
self-centering mechanism in terms of both the translational and rotational grip-
pers as shown in Figure 2 below. 

 

 
Figure 2. Combined loop-closure with vector projection/resolution layout (a) ınverse wedge cam, (b) regular wedge cam. 
 

In connection, theoretical five-bar mechanisms are chosen for both loops in 
order to directly capture the contact angle and associated line of action of contact 
forces useful for design optimization tasks. Moreover, each of the five-bar mech-
anisms describe the vertical movement of point 1D  on the translational gripper 
and the rotation of point 2D  on the rotational gripper respectively. Due to this 
configuration in association with both loops sharing similar vectors in addition to 
a common point of contact for producing simultaneous translation and rotation 
thereby contributing to the moving coordinate system of the cam contour, the 
parametric cam contour equations can be developed through projection (or reso-
lution) of related vector components onto this moving coordinate system at points 

2D  (or 1D ) along with taking their relative differences. 
Following, a complex algebraic approach will be employed for deriving the 

vectors of the loop closures in terms of their coordinate points. To note, both 
loop closures start and end at point 2O  and are oriented in a counterclockwise 
fashion. 

The vectors for the first loop are as follows. 
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 ( ) ( )( ) ( )( )1 3 1 3ix x y yθ θ θ= − − + +BOR
2

 (26) 

 ( ) ( ) ( )
1 3 3ix yθ θ θ= − −O BR  (27) 

 ( ) ( )4 4ix yθ θ= −AOR
1

 (28) 

 ( ) ( ) ( )( )5 4 5 4( ) ix x y yθ θ θ= − − −D AR
1

 (29) 

 ( ) ( ) ( )( )1 5 5 1ix x y yθ θ= − + −O DR
2 1

 (30) 

The additional second loop vectors are defined below. 

 ( ) ( )( ) ( ) ( )( )6 4 6 4ix x y yθ θ θ θ= − − −D AR
2

 (31) 

 ( ) ( )( ) ( )( )1 6 6 1ix x y yθ θ θ= − + −O DR
2 2

 (32) 

Consequently, the loop-closure equations for both loop closures are: 

 ( ) ( ) ( ) ( ) ( ) 0θ θ θ θ θ+ + + + =BO O B AO D A O DR R R R R
2 1 1 1 2 1

 (33) 

 ( ) ( ) ( ) ( ) ( ) 0θ θ θ θ θ+ + + + =BO O B AO D A O DR R R R R
2 1 1 2 2 2

 (34) 

In alignment with a complex polar algebraic approach and from the above vec-
tor equations along with the following angles, the magnitudes and directions of 
the vectors can be determined through the use of absolute value and argument 
functions for complex numbers. However, note that several of the angles obtained 
from the argument function are equated to the contact angle among others for use 
when incorporating constraints within specialized design arrangements and the 
application of various techniques regarding optimization/multi-objective optimi-
zation. 

 ( ) ( )
( )

31

3

tan
y
x

θ
ϕ θ

θ
−=  (35) 

 ( ) ( )
1 5 1

5 1

tan
x x

y y
ζ θ

θ
− −

=
−

 (36) 

 ( ) ( )π
2

γ θ ζ θ= +  (37) 

Furthermore, and pertaining to the complex polar algebraic approach, the mag-
nitudes and directions of the vectors are provided as shown through the following 
equations. 

 ( ) ( ) ( )( ) ( )( ) ( )
2

2 2
1 3 1 3BO BR x x y yθ θ θ θ θ η θ∠ = − + + ∠π− −



 (38) 

 ( ) ( ) ( ) ( ) ( )
1 1

2 2
3 3O B OR x yθ θ θ θ θ ϕ θ∠ = + ∠π+



 (39) 

 ( ) ( ) ( )
1

22 2
4 4 3

2AO AR x yθ θ θ θ π
∠ = + ∠



 (40) 

 ( ) ( ) ( ) ( ) ( )( )1 1

22
5 4 5 4D A DR x x y yθ θ θ θ θ∠ = − + −



 

 ( ) ( )5 41

5 4

2 tan
y y

x x
θ θ− −

∠ π−
−

 (41) 
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 ( ) ( ) ( ) ( )( ) ( )
2 1 21

22
1 5 5 1O D OR x x y yθ θ θ θ γ θ∠ = − + − ∠



 (42) 

 ( ) ( ) ( )( ) ( ) ( )( )2 2

2 2
6 4 6 4D A DR x x y yθ θ θ θ θ θ∠ = − + −



 

 
( ) ( )
( )

6 41

6 4

2 tan
y y

x x
θ θ
θ

− −
∠ π−

−
 (43) 

 ( ) ( ) ( )( ) ( )( ) ( )
2 2 22

2 2
1 6 6 1O D OR x x y yθ θ θ θ θ µ θ∠ = − + − ∠



 (44) 

To illustrate the incorporation of generalization into the loop-closure equa-
tions, the magnitudes and directions provided by the above equations are used in 
the following manner for converting the original vector formulation into standard 
complex algebraic form. 

 ( ) ( ) ( ) ( ) ( )
2 2

cos i sinBO B BO BR Rθ θ θ θ θ θ θ= +BOR
 

2
 (45) 

 ( ) ( ) ( ) ( ) ( )
1 1 1 1

cos i sinO B O O B OR Rθ θ θ θ θ θ θ= +O BR
 

1
 (46) 

 ( ) ( ) ( )
1 1

cos i sinAO A AO AR Rθ θ θ θ θ= +AOR
 

1
 (47) 

 ( ) ( ) ( ) ( ) ( )
1 1 1 1

cos i sinD A D D A DR Rθ θ θ θ θ θ θ= +D AR
 

1
 (48) 

 ( ) ( ) ( ) ( ) ( )
2 1 2 2 1 21 1

cos i sinO D O O D OR Rθ θ θ θ θ θ θ= +O DR
 

2 1
 (49) 

 ( ) ( ) ( ) ( ) ( )
2 2 22cos i sinD A D D A DR Rθ θ θ θ θ θ θ= +D AR

 

2
 (50) 

 ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 22 2

cos i sinO D O O D OR Rθ θ θ θ θ θ θ= +O DR
 

2 2
 (51) 

With having derived the vector equations for both loop-closures, the magni-
tudes of vectors ( )θO DR 2 1  and ( )θO DR 2 2  are projected (or resolved) onto the 

’x - ’ y  coordinate system at points 2D  (or 1)D  for inverse (or regular) wedge 
cams respectively. The projected (or resolved) vectors are then combined through 
their difference(s) as shown within ( )θD DR 1 2  provided below. 

 
( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )
2 2 2 2 1 22 1

2 2 2 2 1 22 1

cos cos

i sin sin

O D O O D O

O D O O D O

R R

R R

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

= − − −

+ − − −

iD DR
 

 

1 2
 (52) 

 ( ) ( )( ) ( ) ( )( )6 5 6 5ix x y yθ θ θ θ= − − −
rD DR

1 2
 (53) 

Consequently, the components of ( )θD DR 1 2  are extracted for defining the 
parametric wedge cam equations for both design types. 

 ( ) ( ) ( )( ) ( ) ( )( )2 2 2 2 1 22 1
cos cos

ic O D O O D Ox R Rθ θ θ θ θ θ θ θ θ= − − −
 

 (54) 

 ( ) ( ) ( )( ) ( ) ( )( )2 2 2 2 1 22 1
sin sin

ic O D O O D Oy R Rθ θ θ θ θ θ θ θ θ= − − −
 

 (55) 

 ( ) ( )6 5rcx x xθ θ= −  (56) 

 ( ) ( ) ( )( )6 5rcy y yθ θ θ= − −  (57) 

Concluding from the vector formulation of the cam path(s), the loop-closure 
equation for the inverse/regular wedge cam type is defined below by Equation 
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(59). Regarding this loop-closure equation, the vector ( )θD DR 1 2 —Equation (52) 
for the inverse wedge cam—is resolved parallel to a stationary coordinate system 
located at point D  and coincident with the cam follower point 1D  as shown 
through Equation (58). However, and for the regular wedge cam type, this vector 
is defined as Equation (53) and is inherently resolved parallel to the previously 
mentioned coordinate system and coincident with the cam follower point 2D  by 
definition of the regular wedge cam path. Therefore, an additional equation for 
the ‘resolved’ vector ( )θD DR 1 2  is unnecessary for the regular wedge cam type. 

 ( ) ( ) ( )( ) ( ) ( )( )cos sin i cos sin
i i i ic c c cx y y xθ θ θ θ θ θ θ θ θ= − + +

iD DR
1 2

 (58) 

 ( ) ( ) ( ) 0θ θ θ+ − =D D O D O DR R R
1 2 2 1 2 2

 (59) 

Similarly to the basic trigonometric method, the parametric cam Equations (54) 
to (57) adequately define the inverse/regular cam contours. Contrary to the trig-
onometric method, the proper sense of the cam path components naturally arises 
from the vector equations. More importantly, it may be desired to use the com-
bined loop-closure with vector projection/resolution method during robust de-
sign optimization tasks due to the convenience of such regarding utilization of the 
loop-closure summation from a constraint perspective as well as having the con-
tact angle embedded within the vector formulation in relation to contact force 
transmissibility. However, the parametric cam Equations (54) and (55) in expanded 
form still does not provide a mathematical structure that enables an easy isolation 
of the cam rotation. Therefore, transformation equations (strictly based upon the 
cam rotation for this specific problem) will be used to reformulate the cam path and 
associated coordinate points for eliminating this complexity as well as to provide a 
natural extension toward generalization of the theoretical framework. 

3.1.4. Method 3: Transformation Equations Applied to Coordinate Points 
Design Layout 

Within the following, an analytical approach involving transformation equations 
will be applied to the kinematic coordinate points layout as shown in Figure 3 
below. 

In the development of the cam path formulation utilizing this specific method, 
there are no preliminary variable angle equations necessary as that shown for the 
basic trigonometric and loop-closure methods. Therefore, the equations for the 
coordinate points derived from transformation equations are immediately pre-
sented. 

Regarding this derivation, coordinates ( )3x θ  and ( )3y θ  for point B  are 
provided through Equations (60) and (61). 

 
( ) ( )( )

( )( )
3 1 1

1

cos cos

sin sin
twmax o

twmax o

x x x R r

y R r

θ ϕ θ

ϕ θ

= − − +

− + +
 (60) 

 
( ) ( )( )

( )( )
3 1 1

1

cos sin

sin cos
twmax o

twmax o

y y x R r

y R r

θ ϕ θ

ϕ θ

= − − − +

+ + +
 (61) 
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Figure 3. The transformation equations layout (a) inverse wedge cam, (b) regular wedge cam. 

 
In conjunction, the theoretical workpiece radius ( )twR θ  from Equation (12) 

is presented below in expanded form regarding future isolation of the cam rota-
tion. 

 

( ) ( ) ( )

( )( )( ( )( )
( )( ) ( )( )

( )( ) ( )( ) )

2 2
3 3

22
3 1 1 1

1 1 1 1

2
1 1 1

2 cos cos cos

2 cos sin 2 cos sin

2 sin sin sin

tw

twmax o twmax o

twmax o twmax o

twmax o twmax o

R x y r

r L x x r R x r R

y x r R y y r R

x y r R y r R

θ θ θ

θ ϕ ϕ

ϕ θ θ ϕ

θ ϕ ϕ

= + − ⇒

− + √ − − + + − +

+ − + − + +

− + + + + +

 (62) 

Additionally, coordinate ( )4y θ  of the vertically translating roller located at 
point A  is given below in expanded form. Note that the horizontal coordinate 
for this component is given by Equation (13) ( 4 0x = ). 
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( ) ( )
( )( )( ( )( )

( )( ) ( )( )
( )( ) ( )( ) )

4

22
3 1 1 1

1 1 1 1

2
1 1 1

2 cos cos cos

2 cos sin 2 cos sin

2 sin sin sin

tw

twmax o twmax o

twmax o twmax o

twmax o twmax o

y R r

L x x r R x r R

y x r R y y r R

x y r R y r R

θ θ

θ ϕ ϕ

ϕ θ θ ϕ

θ ϕ ϕ

= + ⇒

√ − − + + − +

+ − + − + +

− + + + + +

 (63) 

Furthermore, coordinate ( )5y θ  of the vertically translating cam roller fol-
lower located at point 1D  is given below in expanded form. Note that the hori-
zontal coordinate for this point is given by Equation (15) ( 5 2x x= ). 

 

( ) ( )( )
( )( )((

( )( ) ( )( )
( )( )
( )( ) ( )( ) ))

5 2

2
2 3 1 1

2
1 1 1

1 1

2
1 1 1

2 cos cos

cos 2 cos sin

2 cos sin

2 sin sin sin

twmax tw

twmax twmax o

twmax o twmax o

twmax o

twmax o twmax o

y y R R

y R r L x x r R

x r R y x r R

y y r R

x y r R y r R

θ θ

θ ϕ

ϕ ϕ θ

θ ϕ

θ ϕ ϕ

= − − ⇒

− − − + √ − − +


+ − + + − +

− + +

− + + + + + 


 (64) 

Lastly, coordinates ( )6x θ  and ( )6y θ  for point 2D  are given by Equations 
(65) and (66). 

 ( ) ( ) ( )6 1 2 1 2 1cos sinx x x x y yθ θ θ= + − + −  (65) 

 ( ) ( ) ( )6 1 2 1 2 1sin cosy y x x y yθ θ θ= − − + −  (66) 

With having the above derivation for the coordinate points, the parametric in-
verse/regular wedge cam equations are as follows. 

( ) ( ) ( ) ( )( )

( ) ( ) (((
( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( ) ))

2 1 2 1 5 1

2
2 1 2 1 2 3

2
1 1 1

1 1 1 1

2
1 1 1

cos sin

cos

2 cos cos cos

2 cos sin 2 cos sin

2 sin sin sin

ic

twmax

twmax o twmax o

twmax o twmax o

twmax o twmax o

x x x x x y y

x x x x y R r L

x x R r x R r

y x R r y y R r

x y R r y R r

θ θ θ θ

θ

θ ϕ ϕ

ϕ θ θ ϕ

θ ϕ ϕ

= − − − + − ⇒

− − − + − − − + √


− − + + − +

+ − + − + +

− + + + + + 1 siny θ −  

 (67) 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )( )((
( )( ) ( )( )

( )( ) ( )

2 1 2 1 5 1

2 1 2 1 2 1 2 1

2
2 3 1 1

2
1 1 1

1 1 1 1

sin cos

sin cos

2 cos cos

cos 2 cos sin

2 cos sin 2 sin s

ic

twmax twmax o

twmax o twmax o

twmax o twmax

y y y x x y y

y y x x x x x x

y R r L x x R r

x R r y x R r

y y R r x y R r

θ θ θ θ

θ θ

θ ϕ

ϕ ϕ θ

θ ϕ θ

= − − − − − ⇒

− − − − − − −


 + − − − + √ − − + 

+ − + + − +

− + + − + +( )

( )( ) ))2
1 1 1

in

sin sin cos

o

twmax oy R r y y

ϕ

ϕ θ θ+ + + − −    

  (68) 

 ( ) ( ) ( ) ( )6 2 1 2 2 1 2 1cos sin
rcx x x x x x x y yθ θ θ θ= − ⇒ − + − + −  (69) 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )(

( )( ) ( )( )
( )( ) ( )( )

( )( ) )

6 5 1 2 2 1 2 1

2
3 1 1

2
1 1 1

1 1 1 1

2
1

sin cos

2 cos cos

cos 2 cos sin

2 cos sin 2 sin sin

sin

rc

twmax twmax o

twmax o twmax o

twmax o twmax o

twmax o

y y y y y x x y y

R r L x x R r

x R r y x R r

y y R r x y R r

y R r

θ θ θ θ θ

θ ϕ

ϕ ϕ θ

θ ϕ θ ϕ

ϕ

= − ⇒ − − − + −

+ + −√ − − +

+ − + + − +

− + + − + +

+ + +

  (70) 

Due to the way in which transformation equations are applied to this specific 
problem, the mathematical structure of the parametric cam Equations (67) to (70) 
are satisfactory for the development of backward kinematic cam rotation equations. 

3.1.5. Related Other: Spatial Derivatives of the Parametric Cam Equations 
Prior to advancing into the backward kinematic cam rotation equation formula-
tion, the spatial derivatives of the cam Equations (67) to (70) are computed for 
future use when exploring nonlinear ordinary differential equations, static equi-
librium equations, and cam dynamics. To note, the spatial derivatives of Equa-
tions (67), (68), and (70) over the cam rotation result in very complicated equa-
tions. Due to such, there are common terms found within the derivative equations 
that are extracted and correlated to ( )4y θ  as well as to several summation wave 
equations congruent with expressions that are encountered within the simulated 
unified resultant amplitude method (URAM) prescribed in [46]. 

In connection, sinusoidal amplitude parameters associated with the summation 
wave equations for both cam types used for condensing the derivatives are: 

 ( ) ( )1 4 2 1i twmaxa y y y R rθ θ= + − − −  (71) 

 1 2 1i
b x x= −  (72) 

 ( )( )2 1 12 cos
i twmax oa y x R r ϕ= − +  (73) 

 ( )( )2 1 12 cos
i twmax ob x x R r ϕ= − +  (74) 

 ( )( )3 1 12 sin
i twmax oa x y R r ϕ= − + +  (75) 

 ( )( )3 1 12 sin
i twmax ob y y R r ϕ= + +  (76) 

 ( )( )1 1 12 cos
r twmax oa y x R r ϕ= − +  (77) 

 ( )( )1 1 12 cos
r twmax ob x x R r ϕ= − +  (78) 

 ( )( )2 1 12 sin
r twmax oa x y R r ϕ= − + +  (79) 

 ( )2 1 12 sin )
r twmax ob y y R r ϕ= + +  (80) 

Therefore, the corresponding summation wave equations are: 

 ( ) ( )
1 1 1cos sin

i iiwc a bθ θ θ θ= +  (81) 

 
2 2 2cos sin

i iiwc a bθ θ= +  (82) 

 
3 3 3cos sin

i iiwc a bθ θ= +  (83) 
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4 2 2cos sin

i iiwc b aθ θ= −  (84) 

 
5 3 3cos sin

i iiwc b aθ θ= −  (85) 

 ( ) ( )
6 1 1cos sin

i iiwc b aθ θ θ θ= − +  (86) 

 ( )
1 1 1cos sin

r rrwc a bθ θ θ= +  (87) 

 
2 2 2cos sin

r rrwc a bθ θ= +  (88) 

 
3 1 1cos sin

r rrwc b aθ θ= −  (89) 

 
4 2 2cos sin

r rrwc b aθ θ= −  (90) 

With having the summation wave equations, the condensed spatial horizontal 
cam path component derivatives for both cam types are: 

 
( )

( )
( )

( )
2 3

1
4

sind
d 2

i ii

i

w wc
w

c cx
c

y

θθ
θ

θ θ

+
= +  (91) 

 
( )

( )
( )

( ) ( )
( )

( )
2 3 2 34 5

6

2
2

2 3
4 4 4

cosd
sin

2d 4
i i i ii i i

i

w w w ww wc
w

c c c cc cx
c

y y y

θθ
θ θ

θ θθ θ

 + ++ 
= − + + − 

 
 

 (92) 

 

( )
( )

( )
( )

( )
( )

( )
( )

( )( )
( )

( )
( )

( )

2 3 4 5

1

2 3 2 3 4 5

2 32 3

2
3

3 3
44

3

5 3
4 4

4 4

3 3d
cos

2d 4

3 3

8 4

3
sin

2 2

i i i ii

i

ii i i i i

i ii i

w w w wc
w

w w w w w w

w ww w

c c c cx
c

yy

c c c c c c

y y

c cc c

y y

θ
θ θ

θθ θ

θ θ

θ
θ θ

 + + 
= − + − + 

 
 

 + + +
+ −



++ − − 


 (93) 

 
( )

( ) ( )2 1 2 1

d
cos sin

d
rcx

y y x x
θ

θ θ
θ

= − − −  (94) 

 
( )

( ) ( )
2

2 1 2 12

d
cos sin

d
rcx

x x y y
θ

θ θ
θ

= − − − −  (95) 

 
( )

( ) ( )
3

2 1 2 13

d
cos sin

d
rcx

y y x x
θ

θ θ
θ

= − − + −  (96) 

Additionally, the condensed spatial vertical cam path component derivatives 
are: 

 
( )

( )
( )

( )
2 3

6
4

cosd
d 2

i ii

i

w wc
w

c cy
c

y

θθ
θ

θ θ

+
= −  (97) 

( )
( )

( )
( )

( )
( ) ( )

2 3 2 3 4 5

1

2
2

2 3
4 44

sind
cos

2d 4
ii i i ii i

i

w w w w w wc
w

c c c c c cy
c

y yy

θθ
θ θ

θ θθ θ

 + + − − 
= + + + 

 
 

 (98) 

https://doi.org/10.4236/jamp.2025.133040


S. P. Guillory et al. 
 

 

DOI: 10.4236/jamp.2025.133040 749 Journal of Applied Mathematics and Physics 
 

( )
( )

( )
( )

( )( )
( )

( )
( )

( )
( )

( )
( )

2 3 2 3 4 5

6

2 3 2 3 4 5

3
3

3 5 3
4 4

2

3
4 44

3 3d
d 8 4

2 3 3
cos sin

24

i ii i i ii

i

i i i i i i

w w w w w wc
w

w w w w w w

c c c c c cy
c

y y

c c c c c c

y yy

θ
θ

θ θ θ

θ θ
θ θθ

 + + +
= − + − +




 + + + + + − +     

 (99) 

 
( )

( ) ( )
( )

( )
1 2

2 1 2 1
4

d
cos sin

d 2
rr rw wc c cy

x x y y
y

θθ
θ θ

θ θ

+
= − − − − −  (100) 

( )
( ) ( )

( )( )
( ) ( )

1 2 3 4

2
2

2 1 2 12 3
44

d
sin cos

2d 4
r rr r r

w w w wc
c c c cy

x x y y
yy

θθ
θ θ

θθ θ

+ +
= − − − + −  (101) 

 

( )
( ) ( )

( )( )
( )

( )( )( )
( )

( )
( )

1 2

1 2 3 4 1 2

3
3

2 1 2 13 5
4

3
44

3d
cos sin

d 8

3  

24

r rr

rr r r r r

w wc

w w w w w w

c cy
x x y y

y

c c c c c c

yy

θθ
θ θ

θ θ

θ θ

θθ

+
= − + − −

+ + +
+ +

 (102) 

Combined with the transformation parametric cam equations and associated 
spatial derivatives, backward kinematic cam rotation equations in terms of the 
horizontal cam path component will commence through incorporation of both 
approximation and exact methods. 

3.2. Backward Kinematic Cam Rotation Equations 
3.2.1. Developing a Solvable Equation 
Backward kinematic cam rotation equations are used for converting the paramet-
ric cam contour equations into rectangular form through substitution of ( )cxθ  
into the equation ( )cy θ . For inverting ( )cx θ  into ( )cxθ , Equation (67) is re-
arranged in a manner that eliminates the radical, and Equation (69) is rearranged 
in a similar form for comparative convenience. The rearranged equations are pro-
vided below. 

 

( ) ( )( ) ( )(
( ) )

2
4 1 2 1 2

2
1 2

eqn , sin cos

sin

0

i ii c c

twmax

x y x x x x x

R r y y

θ θ θ θ

θ

= − − + + − +

+ + + −

≡

 (103) 

 ( ) ( ) ( )1 2 2 1 2 1eqn , cos sin 0
r rr c cx x x x x x y yθ θ θ= − − + − + − ≡  (104) 

To note, Equations (103) and (104) are presented in two variables, θ  and cx , 
where θ  must be isolated. This results in a contour plot of the equation with a 
family of curves representing ( )eqn , cxθ  and with the curve of interest being 
specified where ( )eqn , 0cxθ =  for determining the roots. 

For isolating the cam rotation θ , the eleventh order Taylor series expansion 
and the trigonometric substitution & transformation method will be applied to 
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( )eqn , cxθ  for deriving the corresponding approximate and exact backward kin-
ematic equations. 

3.2.2. Method 1: The Taylor Series Expansion 
The Taylor series approach is applied to the framework of the theoretical arrange-
ment for developing an approximation of the cam rotation equation. With the 
origin of expansion starting at 0oθ = , the eleventh order series expansion of 

( )eqn , cxθ  relative to θ  yields an eleventh order polynomial approximation. 
The resulting approximation for the inverse wedge cam is given by Equation (117) 
with its Taylor series coefficients being defined by Equations (105) through (116) 
and with the resulting approximation for the regular wedge cam being defined by 
Equation (118). 

 
( ) ( )( )( )( )(

( )( ))
11 1 2 1 2

1 1

1 1023
19958400

44286 cos sin

i ic c twmax

twmax o o

c x x x x R r y y

R r y xϕ ϕ

= − − − + + −

− + +
  (105) 

 

( ) ( ) ( )(
( )( ) ( )

( )( ))

2
10 1 2 2 1 2

1 1 1 2

2
2 1 1

1 13995 255 510
1814400

2 256 7253 512

256 14250 cos sin

i i ic c c

twmax twmax

twmax o o

c x x x x x x x x

R r y y R r y y

y R r x yϕ ϕ

= − + + − +

+ − + − + + +

− + + −

  (106) 

 
( ) ( )( )( )(

( )( ))
9 1 2 1 2

1 1

1 255
181440

4920 cos sin

i ic c twmax

twmax o o

c x x x x R r y y

R r y xϕ ϕ

= − − + + −

+ + +
  (107) 

 

( ) ( ) ( )(
( )( ) ( )( )

( )( ))

2
8 1 2 2 1 2

2
1 1 1 2 2

1 1

1 1449 63 126
20160
8 16 197 16 8

1512 cos sin

i i ic c c

twmax twmax

twmax o o

c x x x x x x x x

y R r y R r y y y

R r x yϕ ϕ

= − + + +

+ + + − + + +

+ + − +

  (108) 

 
( ) ( )( )( )( )(

( )( ))
7 1 2 1 2

1 1

1 63
2520
546 cos sin

i ic c twmax

twmax o o

c x x x x R r y y

r R y xϕ ϕ

= − − − + + −

− + +
  (109) 

 

( ) ( ) ( )(
( )( ) ( )

( )( ))

2
6 1 2 2 1 2

1 1 1 2

2
2 1 1

1 135 15 30
360
2 16 83 32

16 150 cos sin

i ic c ci

twmax twmax

twmax o o

c x x x x x x x x

y R r y R r y y

y R r x yϕ ϕ

= − + + − +

− + + + + +

− + + −

  (110) 

 
( ) ( )( )( )(

( )( ))
5 1 2 1 2

1 1

1 15
60
60 cos sin

ici c twmax

twmax o o

c x x x x R r y y

R r y xϕ ϕ

= − − + + −

+ + +
  (111) 

 

( ) ( ) ( )(
( ) ( )

( )( ))

2
4 1 2 2 1 2

1 1 1 2

2
2 1 1

1 9 3 6
12
8 2 8

4 12 cos sin

i i ic c c

twmax twmax

twmax o o

c x x x x x x x x

y R r y R r y y

y R r x yϕ ϕ

= − + + +

+ + + − + +

+ + + − +

  (112) 
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( ) ( )( )( )( )(

( )( ))
3 1 2 1 2

1 1

1 3
3
6 cos sin

i ic c twmax

twmax o o

c x x x x R r y y

R r y xϕ ϕ

= − − − + + −

− + +
  (113) 

 ( ) ( ) ( ) ( )( )2 2 1 2 1 1 22
i ic c twmaxc x x x x y y R r y y= − + − + + −  (114) 

 ( ) ( )1 1 22
i ic c twmaxc x x R r y y= − + + −  (115) 

 ( ) 2
0 i ic cc x x= −  (116) 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 10 9 8
11 10 9 8

7 6 5 4
7 6 5 4

3 2
3 2 1 0

,

0

i i i i i

i i i

i i i i

i c c c c c

c ci c c

c c c c

f x c x c x c x c x

c x c x c x c x

c x c x c x c x

θ θ θ θ θ

θ θ θ θ

θ θ θ

= + + +

+ + + +

+ + + +

≡

 (117) 

 

( )

( )

11 10 9 81 2 1 2 2 1 2 1

7 6 5 41 2 1 2 2 1 2 1

3 21 2 1 2
2 1

,
11! 10! 9! 8!

7! 6! 5! 4!

3! 2!
0

r

r cr

c

y y x x y y x xf x

y y x x y y x x

y y x x y y x

θ θ θ θ θ

θ θ θ θ

θ θ θ

− − − −
= + + +

− − − −
+ + + +

− −
+ + + − −

≡

 (118) 

While an eleventh order approximation may appear rather large when consid-
ering a regression analysis of the actual cam path, it is necessary for generalizing 
and accurately approximating the angle of cam rotation over a bounded range of 
0 90θ≤ ≤  . In the application of the Taylor series approach, note that the spec-
ified series requires angles to be in radians. 

In connection, the backward kinematic cam rotation equation can be solved by 
taking the roots of the polynomial ( ), cf xθ . There are eleven different real/com-
plex roots that satisfy the corresponding eleventh order polynomial. In view of 
polynomial algebra, the roots can be determined numerically through synthetic 
division, Newton’s method, and software programming to name a few. To note, 
only a single root out of the many different roots (on a pointwise basis) pertains 
to the cam rotation equation associated with the self-centering arrangement and 
given design parameters. However, the designer must be aware if, and when, the 
root solution number changes from one to another depending on the portion of 
the cam path being considered. 

Moreover, matters of deriving closed-form equations for fifth and greater order 
polynomial roots are entirely too complex for theoretically determining the cam 
rotation equation. Therefore, due to the theoretical complexity involved, experi-
mental evaluation via numerical methods for solving the roots of the polynomial 
are required. In connection, most root solutions pertaining to this particular self-
centering theory can only be represented programmatically through symbolic 
form rather than through closed-form solutions. 

Consequently, with the use of matching methods and/or a graphical approach, 

https://doi.org/10.4236/jamp.2025.133040


S. P. Guillory et al. 
 

 

DOI: 10.4236/jamp.2025.133040 752 Journal of Applied Mathematics and Physics 
 

the appropriate root solution(s) can be selected. For example, the variable cx  
can be numerically quantified through an evaluation of its parametric cam equa-
tion by using a specified value for the cam rotation and substituting this value into 
Equations (105) through (116) for determining the polynomial coefficients of 
Equation (117) for the inverse wedge cam (and substituting the same value into 
Equation (118) for the regular wedge cam). Thereafter, the numerical root solu-
tion can be solved through the quantified polynomial and compared against the 
chosen value of the cam rotation to find the closest match. 

From a graphical perspective, a horizontal line can be drawn on the contour 
plot of ( ), cf xθ  at the calculated value for cx  (at a chosen angle within the 
design range) whereby the roots of this function correspond to points along this 
line where the angle of cam rotation intersects both the line and the contour of 
the function ( ), 0.cf xθ =  Determination of the appropriate root through the 
contour plot provides a direct approach since the desired root is present within 
the applicable range of 0 maxθ θ≤ ≤  along the actual cx  vs. θ  curve. 

Nevertheless, and for eliminating inaccuracies involved within the Taylor series 
approach, an exact mathematical formulation of the backward kinematic cam ro-
tation equation will be derived through an approach involving trigonometric sub-
stitution & transformation. 

3.2.3. Method 2: Trigonometric Substitution & Transformation (TS&T) 
Trigonometric substitution, specific to the parametric cam contour equations de-
veloped from the transformation equations method, involves a replacement of the 
cosine and sine functions found within Equations (103) and (104) for their uni-
versal trigonometric identities where both are in terms of the half-angle tangent 
function. As a consequence of such, transformation arises when using Equations 
(119) and (120) for the theta Θ  (trigonometric numerator) and gamma Γ  
(trigonometric denominator) parameters thereby illustrating the similarity be-
tween the universal identities defined by Equations (121) and (123). 

 tan 2θΘ =  (119) 

 21Γ = +Θ  (120) 

 2

2 tan 2 2sin
1 tan 2

θθ
θ

Θ
≡ ⇒

Γ+
 (121) 

 
2 2

2

1 tan 2 1cos
1 tan 2

θθ
θ

− −Θ
≡ ⇒

Γ+
 (122) 

This exact mathematical method being presented transforms Equations (103) 
and (104) into polynomial form as shown by Equation (130) with its coefficients 
defined by Equations (123) through (129) for the inverse wedge cam (and by 
Equation (131) for the regular wedge cam). The associated polynomial roots of 
Equation (130) provide several solution(s), and Equation (131) provides two so-
lution(s) for the theta parameter Θ . Additionally, isolation of the cam rotation 
arises when utilizing the combination of Equations (130) and (132) with Equation 
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(119) in terms of the polynomial root Θ  as shown through Equation (133). 

 ( ) ( )( )2

6 1 22
i ic cc x x x x= − − +  (123) 

 ( ) ( )( )( )5 1 2 1 24 2
i ic c twmaxc x x x x R r y y= − − + + + −  (124) 

 

( ) ( )
( )( ) ( )
( )( )

2 2 2
4 1 2 1 2 2

1 1 1 2

2
2 1 1

12 4 8 8 3

4 2 3 8

4 16 cos sin

i i i ic c c c

twmax twmax

twmax o o

c x x x x x x x x x

y R r y R r y y

y R r x yϕ ϕ

= − + − + −

+ − + + + + +

− + + − +

  (125) 

 
( ) ( )( )(

( )( ))
3 1 2 1 2

1 1

8

2 cos sin
i ic c twmax

twmax o o

c x x x x R r y y

R r y xϕ ϕ

= − − + + + −

+ + +
  (126) 

 ( ) ( ) ( ) ( )( )2 1 2 1 2 1 24 4 3 4 2
i i ic c c twmaxc x x x x x y y R r y y= − + − − − + + −   (127) 

 ( ) ( )1 1 24
i ic c twmaxc x x R r y y= − + + −  (128) 

 ( ) 2
0 i ic cc x x= −  (129) 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

6 5 4 3
6 5 4 3

2
2 1 0

,

0

i i i i i

i i i

i c c c c c

c c c

f x c x c x c x c x

c x c x c x

Θ = Θ + Θ + Θ + Θ

+ Θ + Θ+

≡

  (130) 

 ( ) ( )( ) ( )2
1 2 2 1Θ, 2 Θ 2 Θ 0

r r rr c c cf x x x x y y x= − − + − − ≡  (131) 

 ( ) ( )
( )( )

( )

2 2 2
1 2 1 2 1 21 2

1 2 1 2

2

2 2
r r

r
r r

c c
c

c c

x x x y y x y yy yx
x x x x x x

− − − + +−
Θ = ±

− − − −
 (132) 

 ( ) ( )12 tanc cx xθ −= Θ  (133) 

Similarly to the Taylor series expansion, the procedures for determining the 
roots of Equations (130) and (131) follow the same approach (using matching 
methods and/or a graphical analysis). However, and to note, solving Equations 
(117) and (118) from the series expansion directly provides the cam rotation so-
lution(s), while solving for the cam rotation using Equations (130) and (131) re-
quires the additional use of Equation (133). 

The potential benefit of using this method over the Taylor series is that it pro-
vides an exact, rather than approximate, cam rotation solution. This may be nec-
essary from a research & development perspective when designing devices utiliz-
ing this theory as deviations from the theoretically exact cam rotation and corre-
sponding clamping action may lead to undesirable contact force differences be-
tween the three grippers which present various functionality implications regard-
ing real-world product designs. Furthermore, and worth considering, manufac-
turing will induce deviations from the theoretical cam contour due to machining 
capabilities and associated tolerances. Therefore, having a theoretically exact der-
ivation for the cam rotation prior to manufacturing may be imperative to the de-
sired output function of the accompanying physical product design with its cor-
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responding manufacturing deviations from the theoretical exact design. 

3.2.4. Related Other: Applied Unified Resultant Amplitude Method 
(URAM) 

The various methods presented in the previous sections involving backward kin-
ematic cam rotation equations are useful for creating the cam contour solution 
over an infinite domain. However, and for the design case, a finite range of the 
cam rotation must be specified in connection with the minimum and maximum 
workpiece diameters. Therefore, and considering generalization due to potential 
issues that may arise with sign changes occurring with trigonometric functions, a 
simulated unified resultant amplitude method for opposite wave summation has 
been developed [46] and will be utilized for obtaining the maximum cam rotation. 

In connection, the maximum cam path coordinates can be determined in ac-
cordance with the maximum cam rotation by setting the minimum of Equation 
(14) for ( )4y θ  to an equation comprising known specified analysis variables as 
shown through Equation (134). Consequently, a system of equations is developed 
and rearranged in the form of a summation wave, as shown through Equation 
(135), due to its connection with URAM theory. 

 ( )4wmin maxR r y θ+ =  (134) 

 ( ) ( ) ( )22 2
1 1 1 1 1 32 cos 2 sinmax max wminL x L y L L R rη θ η θ− − − − = − − + +  (135) 

When applying URAM theory, various resultant wave parameters, including 
the cosine and sine amplitudes as well as the known wave summation number, are 
extracted from Equation (135) in the following manner. 

 1 12a L x= −  (136) 

 1 12b L y= −  (137) 

 ( )22 2
1 3 wminc L L R r= − − + +  (138) 

Therefore, the wave summation equation for the maximum cam rotation is: 

 ( ) ( )cos sinmax maxa b cη θ η θ− + − =  (139) 

Based on the sense of a  and b  in relation to the triangle formations shown 
in [46], the quadrant number for the theoretical wave summation specific to this 
generalized arrangement will always be: 

 3q =  (140) 

Accordingly, the combination-wave fluctuations arising from an analysis of po-
lar waves are: 

 ( ) ( )Floori 1 π 2

1
e 1ˆ 1

q q
m

m
R

 
−  

 

=

= = − ⇒ −∏  (141) 

 ( ) ( ) ( )i 1 πØ e cos π 1 isin πˆ 1 1q q q−= − = − − − − ⇒ −  (142) 

Additionally, the associated resultant amplitude and phase angle parameters 
are: 
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 2 2
1 32R a b L L= + ⇒  (143) 

 1Ø tan b
a

β−= ⇒  (144) 

Furthermore, the unified wave that corresponds to Equation (139) is: 

 
( )( )
( ) ( )22 2

1 3 1 3

ˆcos OO

2 cos

ˆ
max

max wmin

RR c

L L L L r R

η θ

β η θ

 − + / / = ⇒ 

− + = − − + +
 (145) 

Assuming the positive-domain condition along with a bounded limit of 
0 90θ≤ ≤   due to practical application (requiring that 0m = ), the maximum 
cam rotation equation is: 

 
( )

1

22 2
1 31

1 3

ˆcos OO

cos
2

ˆmax

wmin

c m
RR

L L r R
L L

θ η

η β

−

−

 = − − / / − π 
 

+ − +
⇒ − −

 (146) 

In summary, backward kinematic cam rotation equations including the maxi-
mum cam rotation have been derived. Subsequently, a conversion of the paramet-
ric inverse/regular wedge cam equations into rectangular form will follow. 

3.3. Converting the Parametric Wedge Cam Path into Rectangular 
Form 

3.3.1. Method 1: Approximate Cam Contour Equations in Rectangular 
Form 

Although the backward kinematic cam rotation equations involved the use of 
transformation equations, the parametric cam contour equations from any one of 
the three different methods can be converted into rectangular form. With the use 
of ( )cxθ  derived by approximation, the parametric equation ( )cy θ  can be 
converted into ( )c cy x  within the local x′ - y′  Cartesian reference frame start-
ing at point D  and rotating to point 2D  for the inverse wedge cam (or trans-
lating to point 1D  for the regular wedge cam) through to the full cam rotation 
range as shown within the previous figures. However, and important to note, in-
accuracies from the Taylor series are induced into the rectangular form of the cam 
contour equation. While this will most likely be undesirable, the use of higher 
order terms (as previously provided) may improve the accuracy of the cam profile 
to within an acceptable amount of error. 

3.3.2. Method 2: Exact Cam Contour Equations in Rectangular Form 
For eliminating inaccuracies involved within the Taylor series, the trigonometric 
substitution & transformation method for the equation of ( )cxθ  can be used in 
conjunction with any one of the three parametric equation methods to obtain the 
rectangular form conversion of the cam contour equation. Additionally, the max-
imum cam rotation equation can be used to terminate the domain of both approx-
imate and exact rectangular forms of the parametric cam contour equations. 
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3.3.3. Method 3: The Nonlinear Second Order Nonhomogeneous  
Instantaneous Constant Radius of Curvature Ordinary  
Differential Equation 

To restate, the Taylor series as well as the trigonometric substitution & transfor-
mation method are used for converting the various parametric cam contour equa-
tions into approximate and exact rectangular forms respectively. Nevertheless, in-
stead of converting the parametric cam contour equations into rectangular form 
by using the parametric cam contour equations in conjunction with the angle iso-
lation approach, the radius of curvature ODE provided in Appendix A can be used 
to define the cam contour in rectangular form as a replacement for the parametric 
equations (although it still requires the angle solution). In connection with the 
ODE solution, the radius of curvature ( )rc cr x  along with the associated variable 
initial conditions ( )1 ck x  and ( )2 ck x  of the cam contour are as follows. 

 ( )

( )( )
( )( )

( )( )
( )( )( )

( )( )
( )( )

3 22

2

1 c c

c c

rc c

c c c c

c cc c

y x
x x

r x
y x y x

x xx x

θ

θ

θ θ

θθ

  ′ +    ′  =
′′ ′

+
′′′

 (147) 

 ( ) ( )( ) ( )( )1 c c c c ck x y x y xθ θ= ⇒  (148) 

 ( ) ( )
( )( )
( )( )2

c c
c c c

c c

y x
k x y x

x x

θ

θ

′
′= ⇒

′
 (149) 

Regarding this generalized ODE solution, any one of the solutions can be cho-
sen for producing the same cam contour equation. However, only one of the so-
lutions provides the appropriate sense for the first and second spatial derivatives 
of the cam path over the horizontal cam path component. Additionally, the posi-
tive sign choice for ( )1 cc x  is required for satisfying the direction of the associ-
ated derivatives. Therefore, the final differential equation solution involving the 
radius of curvature for the cam contours of both cam types is given by Equation 
(152). 

 ( ) ( )
( ) ( )

( ) ( )( ) ( )

2 2
2

1
2 2 4
2 21

c rc cc
c

rc c c c rc c

k x r xx
c x

r x k x k x r x
= +

+
 (150) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
2 1 1 12c c rc c c rc c c c rc c cc x k x r x x r x c x x r x c x= − − + −  (151) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 1 22c rc c c rc c c c rc c c cy x r x x r x c x x r x c x c x= − + − +  (152) 

Although Equation (152) for the cam contour solution(s) appears to be rather 
simple and consolidated, it is more complex than the parametric cam contour so-
lution when expanded with associated derivatives and combined with the back-
ward kinematic cam rotation equations. Nevertheless, one may find use for this 
radius of curvature ODE approach as a matter of choice. Additionally, it can be 
used as a means of validating the manner in which variable initial conditions are 
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prescribed within the ODE theory through expecting the results to be identical to 
both the original approximation and exact methods respectively. Moreover, the 
differential equation itself can be validated through a consideration of the ODE 
solution in conjunction with its first and second derivatives. The combination de-
scribed must be used rather than the ODE solution and its first derivative alone 
due to the nature in which the instantaneous constant variables ( )1 cc x  and 

( )2 cc x  are determined. 

3.3.4. Related Other: Normalization of the Wedge Cam Contour Equations 
With the parametric and rectangular forms of the cam profile being established, 
normalization of the cam path equations will follow. In general, normalizing an 
equation means to create a unit vector. Specific to the self-centering wedge cam 
path, creating a unit vector for the cam profile will be based on the premise of 
changing the independent variable cx  (a one-dimensional vector) by dividing it 
with the maximum value of cx  for creating a ratio ς  that maximizes at unity. 
Therefore, and regarding the resulting Equation (153), the original independent 
variable cx  is equivalent to cmaxx ς . 

 ( ) ( )
( )
c

c max

x
x

ς
θ

θ
θ

=  (153) 

Furthermore, parametric normalization can be achieved through a parametric 
plot of ( )cy θ  versus ( )ς θ . Additionally, rectangular forms of the cam contour 
can be normalized by substituting cmaxx ς  for cx  thereby changing the inde-
pendent variable to the normalization parameter spanning ratio values from zero 
to unity. 

From a design context, having the normalized cam contour may be helpful for 
comparing one curve versus another within the analysis process. In connection, a 
potential application may involve design optimization for minimizing accelera-
tions for various practical engineering reasons. 

To note, and up to this point, a thorough presentation of the theoretical devel-
opment for parametric cam contour equations, their associated spatial derivatives, 
backward kinematic cam rotation equations, as well as various rectangular form 
conversion methods have been provided. In the following, a generalized static 
equilibrium analysis of the mechanism will be formulated along with dynamics 
for providing a more holistic systems engineering framework regarding the self-
centering wedge cam theory presented herein. 

3.4. Static Equilibrium Equations 
3.4.1. Driven Kinematic and Given Force Parameters 
In order for equilibrium of the self-centering mechanism to be achieved, free-body 
diagrams of the workpiece, both rotational grippers, and the translational gripper 
are provided as shown in Figure 4 below. The static analyses presented, involving 
the determination of clamping, normal, and reaction forces, are useful from a ma-
chine design, application engineering, and robust design optimization context. 
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Figure 4. Free-body diagrams for force transmission (a) ınverse wedge cam, (b) regular wedge cam. 

 
For generalization purposes, external reaction forces and external moments are 

included on the free-body diagram of the workpiece. These reaction forces take 
into account the weight of the workpiece, any external loadings along with their 
associated angles of approach, and the angle of tilt of the mechanism with respect 
to the global horizontal axis. Details regarding the equations for these reactions 
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are left aside for the application engineer due to the numerous scenarios that 
might be encountered in practical reality. 

As an aid to the application engineer, the problem will generally be indetermi-
nate to the second degree and, therefore, the use of compatibility equations for the 
workpiece in the x - z  and y - z  planes can be considered through superposi-
tion to solve for the associated reaction forces and moments. Alternatively, the use 
of standard force and moment tables or general FEA techniques may be utilized 
when solving for the generalized reaction forces and moments denoted within the 
theory. Note that the manner in which moment reactions are transferred to the 
mechanism are left up to the application engineer. Additionally, the forces wpxF  
and wpyF  in this theory are taken as the opposite sign of what is obtained by the 
application engineer. 

Prior to static equilibrium analysis, the kinematic aspects shown in Figure 4 are 
derived in the following way. 

The required angles are: 

 ( )α θ η β θ= − −  (154) 

 ( ) ( ) ( )( )πψ θ ϕ θ β α θ= − + +  (155) 

Additionally, the cam contour slope for both cam types is: 

 ( ) ( ) ( )( )
( )

( )( )
( )

d d d
d d d

c c c cc c
c c

c c c

y x x xy x
m x

x x x
θ θ
θ θ

= ⇒ ÷  (156) 

In connection, the tangential and normal cam path angles for each cam type are: 

 ( ) ( )1tani cmρ θ θ θ−= −  (157) 

 ( ) ( )1tanr cmρ θ θ−=  (158) 

 ( ) ( )π
2

θ ρ θΩ = −  (159) 

Therefore, the pressure angles for each cam are: 

 ( ) ( ) ( )iφ θ θ ζ θ= Ω −  (160) 

 ( ) ( ) ( )
( )

6 11

6 1

tanr

x x
y y

θ
φ θ θ

θ
− −

= Ω −
−

 (161) 

Lastly, the moment arms pertaining to the loop closure and force transmissibil-
ity regarding the normal cam contour forces are: 

 ( ) ( )
2 1im O DL Rθ θ=



 (162) 

 ( ) ( )
2 2rm O DL Rθ θ=



 (163) 

 ( ) ( ) ( )
( ) ( ) ( )1 1

cos
cot

sin
m

m

L
d y x

θ φ θ
θ θ θ

θ
= + Ω +

Ω
 (164) 

3.4.2. Equilibrium Equation Development 
Within the static equilibrium equation development for the workpiece as previ-
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ously shown in Figure 4—FBD 1, the positive sense of all external reaction forces 
is assumed. To note, there are five equilibrium equations for FBD 1 along with a 
total of six unknown variables. 

 ( ) ( ) ( ) ( ) ( )
1

0 ; cos cos 0
xx C B wpF F F Fθ θ ϕ θ θ ϕ θ Σ = + → − + =   (165) 

 ( ) ( ) ( ) ( ) ( ) ( )
1

0 ; sin sin 0
yy A B C wpF F F F Fθ θ θ ϕ θ θ ϕ θ Σ = + ↑ − − + =   (166) 

 ( )
1 1 1

0 ; 0
xO x ext O xM M Mθ Σ = + − =    (167) 

 ( )
1 1 1

0 ; 0
yO y ext O yM M Mθ Σ = + − =    (168) 

 ( )
1 1 1

0 ; 0
zO z ext O zM M Mθ Σ = + − =    (169) 

Additionally, the three equilibrium equations for FBD 2 pertaining to the rota-
tional gripper on the left side yields three extra unknowns. 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2 1,2

0 ; cos cos 0x O x B DF F F Fθ θ θ ϕ θ θ θ Σ = + → + + Ω =   (170) 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2 1,2

0 ; sin sin 0y O y B DF F F Fθ θ θ ϕ θ θ θ Σ = + ↑ + + Ω =   (171) 

( ) ( ) ( ) ( )( ) ( ) ( )( )22 1,2 10 ; cos sin 0O m D BM L F L Fθ θ θ φ θ θ ψ θ Σ = + − =    (172) 

Similarly, the three equilibrium equations for FBD 3 pertaining to the rotational 
gripper on the right side yields three extra unknowns. 

 ( ) ( ) ( ) ( ) ( ) ( )
3 3 1,2

0 ; cos cos 0
xx O C EF F F Fθ θ θ ϕ θ θ θ Σ = + → − − Ω =   (173) 

 ( ) ( ) ( ) ( ) ( ) ( )
3 3 1,2

0 ; sin sin 0
yy O C EF F F Fθ θ θ ϕ θ θ θ Σ = + ↑ + + Ω =   (174) 

( ) ( ) ( )( ) ( ) ( ) ( )( )3 1,210 ; sin cos 0O C m EM L F L Fθ θ ψ θ θ θ φ θ Σ = + − =    (175) 

Finally, the three equilibrium equations for FBD 4 regarding the translational 
gripper yields two extra unknowns. 

 
( ) ( ) ( ) ( ) ( )
( ) ( )

4 1,2 1,2

1 2

0 ; cos cos

0
x E D

N N

F F F

F F

θ θ θ θ θ

θ θ

 Σ = + → Ω − Ω 
+ + =

 (176) 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

4 1,2 1,2

1 2

0 ; sin sin

0
y a A D E

s N s N

F F F F F

F F

θ θ θ θ θ θ

µ θ µ θ

 Σ = + ↑ − − Ω − Ω 
− − =

 (177) 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 2 24

2 2 1,2

1,2

0 ;

sin

sin 0

O N m N s m N m

N s m E m

D m

M F y F x F y

F x F d

F d

θ θ θ µ θ

θ µ θ θ θ

θ θ θ

 Σ = + + + 
+ + Ω

− Ω =



 (178) 

Therefore, a total of 14 equations and 14 unknowns have been accounted for 
with the assumption that the reactions at the workpiece are given and/or calcu-
lated through other methods as previously described. 

3.4.3. Static Force Equations in Terms of Kinematics and Given Force  
Parameters 

Through a systematic resolution of the unknown variables, the contact force that 
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the translational gripper exerts on the workpiece is: 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )(
( ) ( ) ( ) ( )( ))

1

1

1
cos sin sin sin

cos sin

sin sin cos tan
y x

A
m

a m

wp wp s

F
L L

F L

L F F

θ
θ φ θ ϕ θ ψ θ θ

θ φ θ ϕ θ

ψ θ θ µ θ ϕ θ

=
+ Ω

×

− Ω + Ω

 (179) 

In conjunction, the contact force on the workpiece due to the rotational gripper 
on the right side is: 

 

( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )(

( ) ( ) ( ) ( )( ))

1

1

1
2 cos sin sin sin

cos tan

sec sin sin cos

y x

x

B
m

m a wp wp

wp s

F
L L

L F F F

F L

θ
θ φ θ ϕ θ ψ θ θ

θ φ θ ϕ θ

ϕ θ ψ θ θ µ θ

=
+ Ω

× + +

+ Ω − Ω

 (180) 

Similarly, the contact force on the workpiece due to the rotational gripper on 
the left side is: 

 

( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )(

( ) ( ) ( ) ( )( ))

1

1

1
2 cos sin sin sin

cos tan

sec sin cos sin

y x

x

C
m

m wp a wp

wp s

F
L L

L F F F

F L

θ
θ φ θ ϕ θ ψ θ θ

θ φ θ ϕ θ

ϕ θ ψ θ µ θ θ

=
+ Ω

× + −

− Ω + Ω

 (181) 

Additionally, the reaction moments on the workpiece located at the mechanism 
x - y  plane are 1 1O x extxM M= , 1 1O y extyM M= , and 1 1O z extzM M= . 

Moving further, the normal force reactions regarding the cam roller follower 
on the right side of the translational gripper are: 

 

( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ( ) ( )

( ) ( ) ( ) ( )(
( ))) ( ) ( )

1,2
1

1

1

1
2 sin sec sin sin

tan

sec sec sin sin

cos sec sin

x y

x

D
m m

wp m a wp m

wp

s

F
L L L

F L F F L

F L

L

θ
θ θ ϕ θ φ θ ψ θ θ

θ ϕ θ θ

φ θ ϕ θ ψ θ θ

µ θ φ θ ψ θ

=
+ Ω

× + +

+ Ω

− Ω

 (182) 

Similarly, the normal force reactions regarding the cam roller follower on the 
left side of the translational gripper are: 

 

( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ( ) ( )

( ) ( ) ( ) ( )(
( ))) ( ) ( )

1,2
1

1

1

1
2 sin sec sin sin

tan

sec sec sin cos

sin sec sin

x y

x

E
m m

wp m a wp m

wp s

F
L L L

F L F F L

F L

L

θ
θ θ ϕ θ φ θ ψ θ θ

θ ϕ θ θ

φ θ ϕ θ ψ θ µ θ

θ φ θ ψ θ

−
=

+ Ω

× − +

+ Ω

+ Ω

 (183) 

Also, the normal (friction related) force for the upper end of the translational 
gripper is: 
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( )

( ) ( )( ) ( ) ( )((
( ) ( )) ( ) ( ) ( ))

1 2 2

1 2 1 2

1

1 cos

sin sec sec sin
x

N m m s
m m m m m s

m wp

F y x
L y y x x

d F L

θ µ θ
θ µ

θ θ φ θ ϕ θ ψ θ

= − + Ω
− + −

− Ω

 (184) 

Similarly, the normal (friction related) force for the lower end of the transla-
tional gripper (at the actuator) is: 

 
( )

( ) ( )( ) ( ) ( )((
( ) ( )) ( ) ( ) ( ))

2 1 1

1 2 1 2

1

1 cos

sin sec sec sin
x

N m m s
m m m m m s

m wp

F y x
L y y x x

d F L

θ µ θ
θ µ

θ θ φ θ ϕ θ ψ θ

= + Ω
− + −

− Ω

 (185) 

Finally, the reaction forces at the pivot for the rotational gripper on the right 
side are: 

 

( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ( ) ( ) ( )

( ) ( )( ) ( ) ( ))

2
1

1

1

1
2 sin sec sin sin

cos cos sec sec sin

sec sec sin

sin cos tan

y x

x

O x
m m

m

a wp m wp

s wp m

F
L L L

L L

F F L F L

F L

θ
θ θ ϕ θ φ θ ψ θ θ

ϕ θ θ θ φ θ ϕ θ ψ θ

θ φ θ ϕ θ ψ θ

θ µ θ θ ϕ θ

= −
+ Ω

× + Ω

+ +

Ω − Ω +

 (186) 

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( )( ))

2

1

1 tan
2

sec sec sin sin cos

y x

x

O y a wp m wp m
m

wp s

F F F L F L
L

F L

θ θ θ ϕ θ
θ

φ θ ϕ θ ψ θ θ µ θ

= − + +

+ Ω − Ω
 (187) 

Similarly, the reaction forces at the pivot for the rotational gripper on the left 
side are: 

 

( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( )( ( ) ( ) ( )

( ) ( )( ) ( ) ( ))

3
1

1

1

1
2 sin sec sin sin

cos cos sec sec sin

sec sec sin

sin cos tan

y x

x

O x
m m

m

a wp m wp

s wp m

F
L L L

L L

F F L F L

F L

θ
θ θ ϕ θ φ θ ψ θ θ

ϕ θ θ θ φ θ ϕ θ ψ θ

θ φ θ ϕ θ ψ θ

θ µ θ θ ϕ θ

= −
+ Ω

× + Ω

× + − +

× Ω + Ω +

 (188) 

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( )( ))

3

1

1 tan
2

sec sec sin sin cos

x y

x

O y wp m a wp m
m

wp s

F F L F F L
L

F L

θ θ ϕ θ θ
θ

φ θ ϕ θ ψ θ θ µ θ

= − +

+ Ω + Ω
 (189) 

As shown, all force formulations are conveniently expressed only in terms of 
given externally applied loadings and geometrical parameters rather than in terms 
of other unknown forces. This is valuable as all forces can be theoretically defined 
rather than needing to use experimental or other similar approaches for resolving 
one or more of the unknown forces for determining the remaining unknown 
forces. Moreover, and from a machine design context, the contact forces may then 
be used in conjunction with Hertzian cylindrical contact stress or other related 
machine design formulas and/or FEA for determining contact stresses on the 
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workpiece/grippers and related components as well as the cam paths/roller fol-
lowers and their related components. Additionally, the reaction forces at the pivot 
points 2O  and 3O  may be used to calculate stresses on the gripper arms and 
housing at the pivot holes and related pins/bolts. These stresses in comparison to 
materials and their properties along with reasonable safety factors for the intended 
application may be used for properly designing and/or sizing these items. 

3.5. Translational Gripper, Rotational Gripper, and Cam Dynamics 
Equations 

3.5.1. Rectilinear Self-Centering Translational Gripper Dynamics 
As an extension of the generalized static equilibrium analysis in conjunction with 
being useful from an engineering design, robotics & controls theory, as well as 
robust design optimization context, dynamic equations regarding the transla-
tional and rotational grippers in addition to the cam will be presented. 

From a dynamic perspective, vertical movement of the translational gripper re-
sults in rotation of the side-arm grippers. Consequently, rectilinear dynamics arise 
in connection with angular and curvilinear dynamics of the rotational gripper and 
associated cam contour as provided by the general description within Figure 5 
below. 

 

 
Figure 5. Dynamics diagram of the entire system (a) ınverse wedge cam, (b) regular wedge cam. 

 

Rectilinear dynamics for the translational gripper will be considered through 
the constant power condition for practical purposes. More specifically, the con-
stant power condition will be used for producing a linear displacement function 
coupled with a constant rectilinear velocity. As widely known, the constant power 
condition states that: 
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force displacementpower

time
×

=  

Therefore, and with the force aF  (given), the power cP  (given), and the lin-
ear displacement function ( )TGs t  (travel from the datum in the positive y  di-
rection as shown in Figure 5), the displacement function can be isolated as a func-
tion of time. 

 ( ) c
TG

a

P
s t t

F
=  (190) 

Additionally, the time derivative of the linear displacement function results in 
the rectilinear self-centering velocity as shown below. 

 ( ) c
TG

a

P
v t

F
=  (191) 

Provided that the velocity is constant, as expected for constant power, the ac-
celeration and jerk are zero. To follow, the associated rectilinear dynamics are ex-
tended into the development of angular dynamics for the rotational grippers. 

3.5.2. Angular Rotational Gripper Dynamics 
In consideration of angular dynamics, the angle of cam rotation is required to be 
a function of time. Therefore, the linear displacement function ( )TGs t  will be 
used in conjunction with ( )4y θ  obtained from the basic trigonometric method 
as follows. 

 ( ) ( ) ( )4 twmax TGy R r s tθ = + −  (192) 

To note, the associated value of time that corresponds to the angle of cam rota-
tion is: 

 ( ) ( )( )a
twmax tw

c

F
t R R

P
θ θ= −  (193) 

In connection with URAM theory [46], Equation (192) is converted into the 
following wave summation form. 

 

( ) ( )1 1 1 1

2
2 2
1 3

2 cos 2 sin

c
twmax

a

L x L y

P
L L r R t

F

η θ η θ− − − −

 
= − − + + − 

 

 (194) 

The cosine and sine amplitudes for Equation (194) are identical to Equations 
(136) and (137). However, the wave summation number is different than Equation 
(138) due to the varying time parameter for travel. Consequently, the wave sum-
mation number for Equation (194) is: 

 ( )
2

2 2
1 3

c
D twmax

a

P
c t L L r R t

F
 

= − − + + − 
 

 (195) 

Due to the cosine and sine amplitudes being the same, the quadrant number of 
wave summation q , combination-wave fluctuations R̂  and Ø̂ , and resultant 
amplitude parameters R  and Ø  are identical to their respective equations re-
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garding the determination of the maximum angle of cam rotation. 
Therefore, the corresponding unified summation wave for Equation (194) is: 

 

( )( ) ( )

( )
2

2 2
1 3 1 3

ˆcos OO

2 cos

ˆ
D

c
twmax

a

RR c t

P
L L L L r R t

F

η θ

β η θ

 − + / / = ⇒ 

 
− − + = − − + + − 

 

 (196) 

Consequently, and assuming the positive-domain condition along with a bounded 
limit of 0 90θ≤ ≤   (requiring that 0m = ), the temporal-domain cam rotation 
equation is: 

 

( ) ( )1

2
2 2
1 3

1

1 3

ˆcos OO

cos

ˆ

2

D

c
twmax

a

c t
t m

RR

PL L r R t
F

L L

θ η

η β

−

−

 
= − − / / − π 

 

 
+ − + − 

 = − −

 (197) 

Moving further, with having the temporal-domain cam rotation provided by 
Equation (197), successive time derivatives of the cam rotation are performed for 
obtaining the angular dynamics of the rotational gripper. Note that the derivatives 
are presented in condensed form utilizing Equation (143) for R , Equation (195) 
for ( )Dc t , Equation (191) for ( )TGv t , and Equation (14) or (63) for ( )4y θ . 
Also, note that Equation (197) is used for substitution into ( )4y θ  for conversion 
of the cam rotation into temporal-domain form. 

 ( ) ( )
( ) ( )( )

( )
4

22

2 TG
RG

D

v t y t
t t

R c t

θ
ω θ= ⇒

−
  (198) 

 ( ) ( ) ( ) ( )
( )

( ) ( ) ( )( )
( )( )

222
4

3 22 22 2

42 D TGTG
RG RG

D D

c t v t y tv t
t t t

R c t R c t

θ
α θ ω= = ⇒ − −

− −


  (199) 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( )( )

( ) ( ) ( )( )
( )( )

( ) ( )( )
( )( )

33 2 3
4 4

3 2 5 22 22 2

33
4

3 222

12 24

8

RGj RG RG

D TG D TG

D D

TG

D

t t t t

c t v t y t c t v t y t

R c t R c t

v t y t

R c t

α θ ω α

θ θ

θ

= = = ⇒

+
− −

+
−

 





 (200) 

To follow, curvilinear dynamics of the rotational gripper with a consideration 
of generalized universal cylindrical motion equations will be presented. 

3.5.3. Curvilinear Rotational Gripper Dynamics 
In connection with curvilinear rotational dynamics, the position of the rotational 
gripper is determined by the arc length formula. 

 ( ) ( ) 1RGs t t Lθ=  (201) 

Furthermore, the total velocity, acceleration, and jerk vectors having radial and 
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transverse components are obtained from cylindrical motion equations as shown 
below. 

 ( ) ( ) ( ) ( )1 1 1 10RG RG RG RGv t L L t L t L tω ω ω = + ⇒ + ⇒   r θ r θu u u u  (202) 

 
( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

2
1 1 1 1

2 4 2
1 1 1

2RG RG RG RG

RG RG RG RG

a t L L t L t L t

L t L t L t t

ω α ω

ω α ω α

 = − + + ⇒ 

 − + ⇒ + 

r θ

r θ

u u

u u



 (203) 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2
1 1 1

3
1 1 1 1

2 2 2
1 1 1

3 3

3 3

3 9

RG

RG RG

RG RG RG RG

j RG RG RG

RG RG j RG RG j

j t L L t t L t

L t L t L t L t

L t t L t L t t t

ω α ω

α ω ω ω

ω α α ω α α

= − −
+ + + − ⇒

 − + ⇒ + 

r

θ

r θ

u

u

u u

 







 



 (204) 

The translational and rotational gripper dynamics provided may be useful re-
garding impact forces within an engineering design and design optimization/ro-
bust design optimization context. Additionally, the angular dynamics associated 
with the above curvilinear dynamics will be used to formulate the following cam 
dynamic equations. 

3.5.4. Curvilinear Wedge Cam Contour Dynamics 
For deriving cam dynamic equations, spatial derivatives and angular dynamics are 
used regarding the application of the chain rule for time differentiation of the par-
ametric cam contour equation in terms of the cam rotation [38]. Spatial deriva-
tives of the cam contour equation are given by Equations (91) through (102) for 
both cam types. In conjunction, the angular dynamics are given by Equations 
(198) through (200). To provide a holistic cam dynamic analysis, horizontal, ver-
tical, and resultant components of motion regarding velocity, acceleration, and 
jerk are provided below. 

The horizontal components of motion are: 

 ( )
( )( )
( ) ( )

d
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x t
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Furthermore, the vertical components of motion are: 

 ( )
( )( )
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Finally, the resultant of both horizontal and vertical components of motion re-
garding the cam path are: 

 ( ) ( ) ( )2 2
x yc c cv t v t v t= +  (211) 

 ( ) ( ) ( )2 2
x yc c ca t a t a t= +  (212) 

 ( ) ( ) ( )2 2
x yc c cj t j t j t= +  (213) 

In connection, and in terms of cylindrical motion equations, the resultant com-
ponents of motion represent the total velocity, acceleration, and jerk (or magni-
tude of the specific radial and transverse components of self-centering motion). 

In closing, Equations (205) through (213) for the curvilinear cam dynamic pro-
cedures provide a systematic method for determining the motions of the cam con-
tour utilizing spatial and angular (constant power-based) dynamics. In relation to 
such, a consideration of the dynamic characteristics for these wedge cams may be 
useful in engineering design as well as design optimization/robust design optimi-
zation of the self-centering arrangement for minimizing certain motion aspects 
which may involve the cam contour shape in addition to clamping characteristics 
in terms of impact and vibration. 

4. Results with Results Discussion 

Regarding authentication of the generalized kinematic theory for achieving accu-
rate self-centering clamping action, the kinematic layout and theoretical arrange-
ment has been applied within the framework of self-centering inverse and regular 
wedge cam mechanism designs. The overall approach taken to validate the theo-
retical arrangement and the foundational mathematics involves development of 
the cam contours as well as the associated gripper paths and related self-centering 
functions from computer-generated configurations of the mechanism designs as 
previously shown in Figure 1(a) and Figure 1(b). The expected results compared 
against actual results created from the self-centering function and associated lay-
out validates the actual cam contour solutions and self-centering motion regard-
ing the gripper paths in connection with variable theoretical workpiece diameters 
constructed from their three points of tangency. 

Moving further, clarity in relation to other engineering methods involving the 
vector formulation and force analyses are self-evidently and respectively verified 
through loop-closure and equilibrium equations as well as computer-aided engi-
neering (CAE) simulation. Moreover, verification of the dynamic analyses arises 
from a consideration of CAE motion simulation, average speed calculations, and 
centered finite-difference methods in addition to graphical considerations regard-
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ing calculus aspects in relation to concavity, critical points, abscissa intercepts, 
inflection points, and curvatures. 

4.1. The Self-Centering Inverse and Regular Wedge Cam  
Mechanism Concept Design Based on Transformation  
Equations with Cam Path Validation 

The validation procedures for the design configurations shown in Figure 1 are 
constructed from several specified/driving analysis variables including wmaxR  = 
4 in. (0.1016 m), wminR  = 0.5 in. (0.0127 m), r  = 2 in. (0.0508 m), lrxC  = 0.5 
in. (0.0127 m), oϕ  = 30˚, 1x  = 12.21 in. (0.3101 m), and 1y  = 11.14 in. (0.2829 
m) for both design types along with 2x  = 15.38 in. (0.3907 m) and 2y  = 22.64 
in. (0.5751 m) for the inverse wedge cam (and 2x  = 13.21 in. (0.3355 m) and 

2y  = 18.29 in. (0.4646 m) for the regular wedge cam), for defining the self-
centering geometry. In connection with the design specifications, the finite-do-
main cam profile and corresponding gripper paths (shown in Figure 6) are deter-
mined through transformation equations in conjunction with the angle of cam 
rotation varying from 0˚ to 18.06˚ (0.315 rad) in accordance with URAM theory. 
The resulting cam path equations shown in Figure 7 are used for producing the 
self-centering function(s) regarding the design layouts (at various cam rotation 
increments) as shown in Figure 8 below. For validation of the cam contour(s) in 
connection with the self-centering function(s), the design configurations shown 
provide an illustration for self-centering coordinates (ϕ , RGR , and TGR  at vari-
ous increments of the cam angle) obtained from transformation equations of the 
cam paths. Concluding from the parametrically driven computer-generated mod-
els, it is observed in Figure 8 below that the radial self-centering coordinate point  

 

 
Figure 6. (a) Inverse cam contour, (b) regular cam contour, (c) gripper paths for both types. 
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Figure 7. Wedge cam path creation (a) inverse wedge cam, (b) regular wedge cam. 
 

magnitudes for the rotational grippers match the translational gripper magnitudes 
thereby indicating that the cam contour equations based on transformation equa-
tions along with their intended self-centering function are validated. 

Additionally, expected values of self-centering coordinates are obtained through 
basic trigonometry and compared against actual self-centering coordinates obtained 
through analytical equations in terms of chosen and calculated angles of cam rota-
tion when validating parametric and rectangular form equations of the cam con-
tours in connection with the variable theoretical workpiece diameters regarding 
their points of tangency. In conjunction, the self-centering radii at the initial and 
maximum angles of cam rotation match their expected values of 5.506twmaxR =  
in. (0.1398 m) determined from Equation (1) and 0.5wminR =  in. (0.0127 m) as 
previously given in addition to all expected values in between as can be reasonably 
extrapolated from Figure 8. For comparison of results, the actual cam profiles in 
parametric form determined through trigonometric, combined loop-closure with 
vector projection/resolution, and transformation equations are compared against 
the cam paths validated within the computer-aided environment indicating 
0.0000% percent errors as shown in Table 1 below. For further validation of re-
sults, the actual cam profiles in rectangular form are determined through both 
transformation equations and the ODE solution using the Taylor series approach 
as well as the trigonometric substitution & transformation method in conjunction 
with the maximum cam rotation from URAM theory. 

As shown in Table 2, the methods using the Taylor series produce maximum 
errors of 0.0001% for the inverse wedge cam (as well as 0.0000% for the regular 
wedge cam) regarding self-centering coordinates over the given design range. 
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While error is expected, it is negligible for the eleventh order series expansion in 
connection with these associated designs. Moreover, the methods comprising 
trigonometric substitution & transformation provide errors of 0.0000%. This is  
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Figure 8. Computer-generated parametrically driven model of the self-centering wedge cams at various angle increments (a) inverse 
wedge cam, (b) regular wedge cam. 
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also expected since the theoretical basis of these methods are founded upon exact 
mathematical principles rather than using approximation methods. With the 
percent error being at or near 0.0000% for all approximate and exact methods, the 
cam contours, all three gripper paths, and therefore the corresponding self-center-
ing functions are validated with a high degree of mathematical accuracy and preci-
sion. Furthermore, validation is self-evidently extended to the normalization  

 
Table 1. Parametric cam contour and associated self-centering points validation (a) inverse wedge cam, (b) regular wedge cam. 

(a) 

Incr. 
(θ ) 

Expected Cam 
Path Points 

Expected Self- 
Centering Points 

Actual Cam Path Points 
with Percent Error 

Actual Self-Centering Points 
with Percent Error 

Parametric Trigonometric Cam Path Equations 

θ  cx  cy  ϕ  RGR  TGR  cx  cy  xcE  ycE  ϕ  RGR  TGR  Eϕ  RGE  TGE  

(deg) (m) (m) (deg) (m) (m) (m) (m) (%) (%) (deg) (m) (m) (%) (%) (%) 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.014 0.017 30.94 0.119 0.119 0.014 0.017 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.027 0.035 31.72 0.098 0.098 0.027 0.035 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.037 0.054 32.26 0.077 0.077 0.037 0.054 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.045 0.072 32.42 0.055 0.055 0.045 0.072 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.051 0.091 31.90 0.034 0.034 0.051 0.091 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

Parametric Loop-Closure Cam Path Equations 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.014 0.017 30.94 0.119 0.119 0.014 0.017 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.027 0.035 31.72 0.098 0.098 0.027 0.035 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.037 0.054 32.26 0.077 0.077 0.037 0.054 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.045 0.072 32.42 0.055 0.055 0.045 0.072 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.051 0.091 31.90 0.034 0.034 0.051 0.091 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

Parametric Transformation Cam Path Equations 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.014 0.017 30.94 0.119 0.119 0.014 0.017 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.027 0.035 31.72 0.098 0.098 0.027 0.035 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.037 0.054 32.26 0.077 0.077 0.037 0.054 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.045 0.072 32.42 0.055 0.055 0.045 0.072 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.051 0.091 31.90 0.034 0.034 0.051 0.091 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

https://doi.org/10.4236/jamp.2025.133040


S. P. Guillory et al. 
 

 

DOI: 10.4236/jamp.2025.133040 773 Journal of Applied Mathematics and Physics 
 

Continued 

(b) 

Incr. 
(θ ) 

Expected Cam 
Path Points 

Expected Self- 
Centering Points 

Actual Cam Path Points 
with Percent Error 

Actual Self-Centering Points 
with Percent Error 

Parametric Trigonometric Cam Path Equations 

θ  cx  cy  ϕ  RGR  TGR  cx  cy  xcE  ycE  ϕ  RGR  TGR  Eϕ  RGE  TGE  

(deg) (m) (m) (deg) (m) (m) (m) (m) (%) (%) (deg) (m) (m) (%) (%) (%) 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.010 0.019 30.94 0.119 0.119 0.010 0.019 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.019 0.039 31.72 0.098 0.098 0.019 0.039 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.028 0.057 32.26 0.077 0.077 0.028 0.057 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.037 0.075 32.42 0.055 0.055 0.037 0.075 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.046 0.093 31.90 0.034 0.034 0.046 0.093 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

Parametric Loop-Closure Cam Path Equations 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.010 0.019 30.94 0.119 0.119 0.010 0.019 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.019 0.039 31.72 0.098 0.098 0.019 0.039 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.028 0.057 32.26 0.077 0.077 0.028 0.057 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.037 0.075 32.42 0.055 0.055 0.037 0.075 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.046 0.093 31.90 0.034 0.034 0.046 0.093 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

Parametric Transformation Cam Path Equations 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.010 0.019 30.94 0.119 0.119 0.010 0.019 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.019 0.039 31.72 0.098 0.098 0.019 0.039 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.028 0.057 32.26 0.077 0.077 0.028 0.057 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.037 0.075 32.42 0.055 0.055 0.037 0.075 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.046 0.093 31.90 0.034 0.034 0.046 0.093 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

 
technique due to the concept of changing variables leading to cancellation of the 
maximum horizontal component. 

As confirmed, parametric equations and rectangular form conversion methods 
using trigonometric substitution & transformation are more accurate than using 
the Taylor series approach (although rather negligible in error for this design 
case). Moreover, it is a matter of choice on whether to use parametric, rectangular, 
or normalized forms of the cam path equations. Of the various forms presented,  
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Table 2. Rectangular form cam contour and associated self-centering points validation (a) inverse wedge cam, (b) regular wedge 
cam. 

(a) 

Incr. 
(θ ) 

Expected Cam 
Path Points 

Expected Self- 
Centering Points 

Incr. 
( cx ) 

Actual Cam Path Points 
with Percent Error 

Actual Self-Centering Points 
with Percent Error 

Taylor Series Approximation 

θ  cx  cy  ϕ  RGR  TGR  cx  θ  cy  Eθ  ycE  ϕ  RGR  TGR  Eϕ  RGE  TGE  

(deg) (m) (m) (deg) (m) (m) (m) (deg) (m) (%) (%) (deg) (m) (m) (%) (%) (%) 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.00 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.014 0.017 30.94 0.119 0.119 0.014 3.00 0.017 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.027 0.035 31.72 0.098 0.098 0.027 6.00 0.035 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.037 0.054 32.26 0.077 0.077 0.037 9.00 0.054 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.045 0.072 32.42 0.055 0.055 0.045 12.00 0.072 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.051 0.091 31.90 0.034 0.034 0.051 15.00 0.091 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 18.06 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0001 0.0001 

Trigonometric Substitution & Transformation 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.00 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.014 0.017 30.94 0.119 0.119 0.014 3.00 0.017 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.027 0.035 31.72 0.098 0.098 0.027 6.00 0.035 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.037 0.054 32.26 0.077 0.077 0.037 9.00 0.054 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.045 0.072 32.42 0.055 0.055 0.045 12.00 0.072 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.051 0.091 31.90 0.034 0.034 0.051 15.00 0.091 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 18.06 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

Nonlinear ODE Using the Taylor Series Approximation 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.00 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.014 0.017 30.94 0.119 0.119 0.014 3.00 0.017 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.027 0.035 31.72 0.098 0.098 0.027 6.00 0.035 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.037 0.054 32.26 0.077 0.077 0.037 9.00 0.054 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.045 0.072 32.42 0.055 0.055 0.045 12.00 0.072 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.051 0.091 31.90 0.034 0.034 0.051 15.00 0.091 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 18.06 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0001 0.0001 

Nonlinear ODE Using Trigonometric Substitution & Transformation 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.00 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.014 0.017 30.94 0.119 0.119 0.014 3.00 0.017 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.027 0.035 31.72 0.098 0.098 0.027 6.00 0.035 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.037 0.054 32.26 0.077 0.077 0.037 9.00 0.054 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 
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Continued 

12 0.045 0.072 32.42 0.055 0.055 0.045 12.00 0.072 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.051 0.091 31.90 0.034 0.034 0.051 15.00 0.091 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 18.06 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

(b) 

Incr. 
(θ ) 

Expected Cam 
Path Points 

Expected Self- 
Centering Points 

Incr. 
( cx ) 

Actual Cam Path Points 
with Percent Error 

Actual Self-Centering Points 
with Percent Error 

Taylor Series Approximation 

θ  cx  cy  ϕ  RGR  TGR  cx  θ  cy  Eθ  ycE  ϕ  RGR  TGR  Eϕ  RGE  TGE  

(deg) (m) (m) (deg) (m) (m) (m) (deg) (m) (%) (%) (deg) (m) (m) (%) (%) (%) 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.00 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.010 0.019 30.94 0.119 0.119 0.010 3.00 0.019 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.019 0.039 31.72 0.098 0.098 0.019 6.00 0.039 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.028 0.057 32.26 0.077 0.077 0.028 9.00 0.057 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.037 0.075 32.42 0.055 0.055 0.037 12.00 0.075 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.046 0.093 31.90 0.034 0.034 0.046 15.00 0.093 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 18.06 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

Trigonometric Substitution & Transformation 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.00 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.010 0.019 30.94 0.119 0.119 0.010 3.00 0.019 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.019 0.039 31.72 0.098 0.098 0.019 6.00 0.039 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.028 0.057 32.26 0.077 0.077 0.028 9.00 0.057 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.037 0.075 32.42 0.055 0.055 0.037 12.00 0.075 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.046 0.093 31.90 0.034 0.034 0.046 15.00 0.093 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 18.06 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

Nonlinear ODE Using the Taylor Series Approximation 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.00 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.010 0.019 30.94 0.119 0.119 0.010 3.00 0.019 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 

6 0.019 0.039 31.72 0.098 0.098 0.019 6.00 0.039 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.028 0.057 32.26 0.077 0.077 0.028 9.00 0.057 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.037 0.075 32.42 0.055 0.055 0.037 12.00 0.075 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.046 0.093 31.90 0.034 0.034 0.046 15.00 0.093 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 18.06 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

Nonlinear ODE Using Trigonometric Substitution & Transformation 

0 0.000 0.000 30.00 0.134 0.134 0.000 0.00 0.000 0.0000 0.0000 30.00 0.134 0.134 0.0000 0.0000 0.0000 

3 0.010 0.019 30.94 0.119 0.119 0.010 3.00 0.019 0.0000 0.0000 30.94 0.119 0.119 0.0000 0.0000 0.0000 
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Continued 

6 0.019 0.039 31.72 0.098 0.098 0.019 6.00 0.039 0.0000 0.0000 31.72 0.098 0.098 0.0000 0.0000 0.0000 

9 0.028 0.057 32.26 0.077 0.077 0.028 9.00 0.057 0.0000 0.0000 32.26 0.077 0.077 0.0000 0.0000 0.0000 

12 0.037 0.075 32.42 0.055 0.055 0.037 12.00 0.075 0.0000 0.0000 32.42 0.055 0.055 0.0000 0.0000 0.0000 

15 0.046 0.093 31.90 0.034 0.034 0.046 15.00 0.093 0.0000 0.0000 31.90 0.034 0.034 0.0000 0.0000 0.0000 

18.06 0.055 0.110 30.00 0.013 0.013 0.055 18.06 0.110 0.0000 0.0000 30.00 0.013 0.013 0.0000 0.0000 0.0000 

 
it is also a matter choice on whether to use the trigonometric, combined loop-
closure with vector projection/resolution, transformation equation, Taylor series, 
trigonometric substitution & transformation, or nonlinear ODE solution methods 
depending on which is more convenient/preferred within the design environment 
in connection with associated design intent. 

Nevertheless, and for additional validation of the combined loop-closure with 
vector projection/resolution method, Table 3 is provided below to show that all 
associated summation equations equate to values of zero, as expected. With having 
confirmation of the kinematic self-centering theory, validation of the static equilib-
rium equations and associated closed-form force equations will commence. 

4.2. Statics Validation 

Regarding statics validation, various contact, normal, and reaction forces gener-
ated from computer-aided engineering simulation are compared against calcu-
lated values derived from solving a system of force equilibrium equations of the 
entire system with observing that the results are very close to within reason along 
with all equilibrium equations summing to zero. However, and to note, a self-
centering design utilizing the regular wedge cam type is utilized for validation 
purposes due to technical difficulties occurring in the computer-aided engineer-
ing simulation environment arising from the more complex inverse wedge cam. 
It is important to point out that the statics are virtually the same between both 
types except for the pressure angle, normal cam path angle, and moment arm dis-
tance 2 1O DR



 vs. 2 2O DR


 which is either changing (inverse wedge cam) or fixed 
(regular wedge cam) over the cam rotation range. Nevertheless, and at any instant 
in time/cam rotation, a comparison can be appropriately and accurately made 
with either applied design configuration due to the formulation of the statics 
equations being identical for either regular or inverse wedge cam design type. 

In connection, an activation force of 100aF =  lb. (445 N) is applied along 
with normal (friction related) force moment arm lengths of 1 3mx =  in. (0.0762 
m), 1 12my =  in. (0.3048 m), 2 0.75mx =  in. (0.0191 m), and 2 27.125my =  in. 
(0.6889 m) relative to the origin of the workpiece. 

In the example shown within Figure 9, the static friction coefficient sµ  and ex-
ternal moment components ( extxM , extyM ,and extzM ) are assigned values of zero. 
Additionally, vertical external loadings applied on the workpiece at two locations 
(out-of-plane), as shown in Figure 9 for wpyF , provide a value of 23.125wpyF = −   
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Table 3. Loop-closure equations (a) inverse wedge cam, (b) regular wedge cam. 

(a) 

Loop-Closure with Vector Projection Method 

Incr. Vector Magnitudes Vector Summations 

θ  2BOR  
1O BR  

1AOR  
1D AR  

2 1O DR  
2D AR  

2 2O DR  
1 2D DR  1ΣR  2ΣR  3ΣR  

(deg) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) 

0 0.4051 0.1906 0.1906 0.5781 0.3030 0.5481 0.3030 0.0000 0.0000 0.0000 0.0000 

3 0.4051 0.1696 0.1696 0.5781 0.2828 0.5704 0.3030 0.0223 0.0000 0.0000 0.0000 

6 0.4051 0.1485 0.1485 0.5781 0.2626 0.5920 0.3030 0.0440 0.0000 0.0000 0.0000 

9 0.4051 0.1274 0.1274 0.5781 0.2426 0.6130 0.3030 0.0649 0.0000 0.0000 0.0000 

12 0.4051 0.1062 0.1062 0.5781 0.2227 0.6331 0.3030 0.0851 0.0000 0.0000 0.0000 

15 0.4051 0.0850 0.0850 0.5781 0.2031 0.6525 0.3030 0.1045 0.0000 0.0000 0.0000 

18.06 0.4051 0.0635 0.0635 0.5781 0.1836 0.6714 0.3030 0.1233 0.0000 0.0000 0.0000 

(b) 

Loop-Closure with Vector Resolution Method 

Incr. Vector Magnitudes Vector Summations 

θ  2BOR  
1O BR  

1AOR  
1D AR  

2 1O DR  
2D AR  

2 2O DR  
1 2D DR  1ΣR  2ΣR  3ΣR  

(deg) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) 

0 0.4051 0.1906 0.1906 0.4331 0.1834 0.4331 0.1834 0.0000 0.0000 0.0000 0.0000 

3 0.4051 0.1696 0.1696 0.4331 0.1626 0.4529 0.1834 0.0216 0.0000 0.0000 0.0000 

6 0.4051 0.1485 0.1485 0.4331 0.1418 0.4724 0.1834 0.0428 0.0000 0.0000 0.0000 

9 0.4051 0.1274 0.1274 0.4331 0.1210 0.4917 0.1834 0.0636 0.0000 0.0000 0.0000 

12 0.4051 0.1062 0.1062 0.4331 0.1004 0.5107 0.1834 0.0839 0.0000 0.0000 0.0000 

15 0.4051 0.0850 0.0850 0.4331 0.0801 0.5294 0.1834 0.1037 0.0000 0.0000 0.0000 

18.06 0.4051 0.0635 0.0635 0.4331 0.0601 0.5479 0.1834 0.1233 0.0000 0.0000 0.0000 

 
lb. (−103 N) located at the x - y  mechanism plane. Due to there being no hori-
zontal loading wpxF , the resulting forces are symmetrical with respect to each 
other and about the centerline of the mechanism, as expected. The associated 
comparison indicates 6.39% of maximum percent error (1.84% average error). 

As a more thorough example, the static friction coefficient sµ  has a value of 
0.3 along with external moment components ( extxM , extyM ,and extzM ) defined 
as zero. Additionally, vertical and horizontal loadings are applied along the work-
piece as shown in Figure 10 below (giving totals of 4.6875wpxF = −  lb. (-20.85 
N) and 23.125wpyF = −  lb. (−103 N) located at the x - y  mechanism plane) 
with observing that the results are also very close to each other and within ac-
ceptable reason. However, and regarding the asymmetrical case, due to the pres-
ence of horizontal loading on the workpiece, the forces are not symmetrical about  
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(N) Given Max. Error 

aF  445 @ Actuator ( 0 mz = ) 6.39% 

xwpF  0 Along WP ( 1.37 mz = ) Avg. Error 

ywpF  -178 ( 0.914 mz = ); -89 ( 1.37 mz = ) 1.84% 

(N) Simulated Theory Error % 

AF  226.19 221.26 2.23 

BF  110.81 117.78 0.87 

CF  110.81 117.78 0.87 

2DF  247.99 251.24 1.28 

2EF  247.99 251.24 1.28 

2O xF  317.96 319.78 0.57 

2O yF  165.74 170.99 3.07 

3O xF  317.96 319.78 0.57 

3O yF  165.74 170.99 3.07 

xRwpF  0.00 0.00 0.00 

yRwpF  153.55 164.05 6.39 

Figure 9. Computer-aided symmetrical force simulation ( 3.5twR =  in. [0.0889 m]). 
 

 

(N) Given Max. Error 

aF  445 @ Actuator ( 0 mz = ) 11.46% 

xwpF  −133 Along WP ( 1.37 mz = ) Avg. Error 

ywpF  
−178 ( 0.914 mz = );  

−89 ( 1.37 mz = ) 
5.58% 

(N) Simulated Theory Error % 

AF  227.88 226.41 0.65 

BF  96.86 104.36 10.06 

CF  127.66 128.91 0.96 

2DF  216.27 234.51 7.78 

2EF  279.93 289.76 3.38 

2O xF  267.83 298.52 10.29 

2O yF  156.27 159.60 2.08 

3O xF  367.33 368.85 0.41 

3O yF  175.59 197.19 11.46 

xRwpF  103.64 112.58 7.95 

yRwpF  153.60 164.05 6.37 

Figure 10. Computer-aided asymmetrical force simulation ( 3.5twR =  in. [0.0889 m]). 
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the mechanism’s centerline, as expected. The associated comparison indicates 
11.46% of maximum percent error (5.58% average error). 

Lastly, the equilibrium equations for both examples sum to zero as shown in 
Table 4 and Table 5 below thereby validating the generalized theoretical statics 
formulation of closed-form force equations in terms of kinematic and given force 
parameters. 

 
Table 4. Equilibrium summations for symmetrical example. 

Symmetric Static Equilibrium 

Incr. Force Magnitudes Force Summations 

θ  AF  BF  CF  
2DF  

2EF  
1NF  

2NF  
2O xF  

2O yF  
3O xF  

3O yF  Σ xF  Σ yF  
1

Σ O zM  

(deg) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N × m) 

0 216.9 114.0 114.0 169.0 169.0 0.0000 0.0000 −223.4 −171.0 −223.4 −171.0 0.0000 0.0000 0.0000 

3 225.7 119.5 119.5 181.5 181.5 0.0000 0.0000 −247.2 −171.0 −247.2 −171.0 0.0000 0.0000 0.0000 

6 235.2 125.9 125.9 199.3 199.3 0.0000 0.0000 276.6 −171.0 276.6 −171.0 0.0000 0.0000 0.0000 

9 245.9 134.0 134.0 225.2 225.2 0.0000 0.0000 −315.4 −171.0 −315.4 −171.0 0.0000 0.0000 0.0000 

12 258.7 145.4 145.4 264.5 264.5 0.0000 0.0000 −370.3 −171.0 −370.3 −171.0 0.0000 0.0000 0.0000 

15 275.4 163.0 163.0 328.4 328.4 0.0000 0.0000 −445.9 −171.0 −445.9 −171.0 0.0000 0.0000 0.0000 

18.06 300.3 197.5 197.5 449.6 449.6 0.0000 0.0000 −614.9 −171.0 −614.9 −171.0 0.0000 0.0000 0.0000 

 
Table 5. Equilibrium summations for asymmetrical example. 

Asymmetric Static Equilibrium 

Incr. Force Magnitudes Force Summations 

θ  AF  BF  CF  
2DF  

2EF  
1NF  

2NF  
2O xF  

2O yF  
3O xF  

3O yF  Σ xF  Σ yF  
1

Σ O zM  

(deg) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N × m) 

0 219.5 104.6 128.7 155.0 190.7 5.410 −31.75 −205.0 −156.9 252.2 −193.0 0.0000 0.0000 0.0000 

3 228.9 110.4 134.7 167.7 204.6 2.770 −32.21 −228.4 −158.0 278.7 −192.8 0.0000 0.0000 0.0000 

6 239.1 117.3 141.8 185.7 224.5 −0.270 −32.75 −257.7 −159.3 311.6 −192.6 0.0000 0.0000 0.0000 

9 250.6 126.0 150.7 211.8 253.3 −3.840 −33.34 −296.7 −160.8 354.7 −192.3 0.0000 0.0000 0.0000 

12 264.4 138.4 163.1 251.7 296.7 −8.140 −33.92 −352.5 −162.8 415.4 −191.8 0.0000 0.0000 0.0000 

15 282.6 157.8 182.4 317.5 366.9 −13.36 −34.37 −440.7 −165.3 509.3 −191.0 0.0000 0.0000 0.0000 

18.06 309.7 194.9 218.9 443.6 498.4 −19.70 −34.40 −606.6 −168.7 681.5 −189.5 0.0000 0.0000 0.0000 

4.3. Translational Gripper, Rotational Gripper, and Cam Dynamics 
Validation 

Regarding the models previously shown within Figure 8 along with prior related 
discussion, computer-aided designs were used in conjunction with parametric 
transformation equations of the cam profiles for developing and validating the 
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geometric cam paths and self-centering function(s) theory (strictly derived from 
the input of parametric equations). In connection, computer-aided engineering 
motion simulation is utilized along with linear displacement and angular dynamic 
equations, both independent to the geometric path(s) and to each other, to drive 
the vertical translational and rotational grippers respectively with a specified acti-
vation force of 100aF =  lb. (445 N) and power source of 50cP =  lb. × in./sec 
(5.649 N × m/sec). Moreover, the maximum angle and associated time are pre-
scribed through utilization of maximum cam rotation (developed from URAM 
theory) and constant power equations. 

Furthermore, as shown within Figure 11 below, the graphical trace path out-
put(s) are developed from the translational and rotational dynamic equations 
while noting that their path(s) independently and exactly match the geometrical 
path(s) formed from the parametric transformation equations. Additionally, and 
although unable to be shown without a dynamic animation, the mechanism(s) 
stop at the minimum workpiece diameter regarding the maximum angle and as-
sociated time using URAM theory, also being independent to the geometric 
path(s). In connection, it is observed that self-centering is achieved and that the 
auto-generated dynamics graphs within Figure 11 match the graphs produced 
from theory as shown in Figure 12 and Figure 13 below. 

Moreover, an extra layer of validation for the translational and angular dynam-
ics in addition to validation regarding the curvilinear rotational gripper and cur-
vilinear cam dynamics provided in Figures 12-16 is explored through various cal-
culus principles as shown in the following presentment. 

In connection, through inspection of the associated graphs in Figure 12(a) 
through Figure 16(a) and their first, second, and third derivatives regarding crit-
ical and inflection points as well as local and global maxima/minima and related 
concavity aspects, the resulting dynamics appear reasonable and in alignment 
with what would be expected. In relation, first derivatives testing is utilized to 
provide insights toward important features on the original corresponding graphs. 
For example, through observation of the angular velocity graph in Figure 13(b), 
it is noted that its sign does not change direction at the local minimum, therefore 
indicating that this critical point (which is located at approximately 6.4 seconds) 
is also an inflection point on the angular position graph (that cannot be easily seen 
due to scaling). Additionally, the sign of the angular acceleration graph is negative 
to the left of the critical point and positive to the right of the critical point thus 
implying that this critical point is also a local minimum on the angular velocity 
curve. Moreover, the angular jerk is always positive therefore indicating that the 
angular acceleration has an inflection point (that again cannot be easily seen due 
to scaling). 

Moving further, second derivatives are used for determining the concavity of 
their original graphs. With the angular acceleration in Figure 13(c) changing sign 
in addition to the second derivative being zero at this point, there is an inflection 
point on the angular position graph at that same abscissa point (which is in agreement  

https://doi.org/10.4236/jamp.2025.133040


S. P. Guillory et al. 
 

 

DOI: 10.4236/jamp.2025.133040 781 Journal of Applied Mathematics and Physics 
 

 
Figure 11. Computer-aided dynamic simulation (a) ınverse wedge cam, (b) regular wedge cam. 

 
with the previous discussion). Furthermore, and with the angular jerk always 
being positive in terms of concavity, there is a local minimum on the angular 
velocity graph which is also in agreement with the previous discussion involving 
first derivatives. Lastly, and in relation to various derivative aspects, graphical 
validation follows a similar pattern for the curvilinear rotational gripper and cam  
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Figure 12. Rectilinear self-centering translational gripper position and velocity for both cam designs. 
 

 
Figure 13. Angular rotational gripper position, velocity, acceleration, and jerk for both cam designs. 
 

dynamics shown in Figures 14-16 as previously described in the above discussion 
regarding angular dynamics. Note that the results of Figure 12 are not mentioned 
in this discussion due to the graphical understanding being self-evident in nature 
(i.e. the derivative of a linear function produces a horizontal line for constant ve-
locity). 

Moreover, basic engineering judgment is utilized with related average speed 
calculations for gaining a sense of numerical values for the first derivatives of 
position. Regarding such, and since it is known that the rotational gripper rotates  

https://doi.org/10.4236/jamp.2025.133040


S. P. Guillory et al. 
 

 

DOI: 10.4236/jamp.2025.133040 783 Journal of Applied Mathematics and Physics 
 

 
Figure 14. Curvilinear rotational gripper position, velocity, acceleration, and jerk for both cam designs. 

 

 
Figure 15. Curvilinear resultant ınverse wedge cam contour position, velocity, acceleration, and jerk. 
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Figure 16. Curvilinear resultant regular wedge cam contour position, velocity, acceleration, and jerk. 
 

approximately 18.06 degrees (0.315 radians) in 10.011 seconds over its full posi-
tional range, the angular velocity should be expected to be approximately equal to 
0.031 (0.315/10.011) rad/sec. In comparison, this coincides with Figure 13(b) 
which shows the value to be 0.032 rad/sec. Additionally, and using the same pro-
cedure, the curvilinear rotational gripper velocity is 0.502 (5.03/10.011) in./sec vs. 
0.506 in./sec (or 0.0128 (0.128/10.011) m/sec vs. 0.0129 m/sec) and the curvilinear 
inverse/regular cam velocity is 0.484 (4.86/10.011) in./sec vs. 0.449 in./sec (or 
0.0123 (0.123/10.011) m/sec vs. 0.0114 m/sec). Also, and to note, the angular ve-
locity times the first spatial derivative produces curvilinear velocity. In connec-
tion, the basic calculation approach provides 0.482 (15.06 × 0.032) in./sec (or 
0.0122 (0.383 × 0.032) m/sec) in conjunction with the graphical approach showing 
0.449 (14.031 × 0.032) in./sec (or 0.0114 (0.356 × 0.032) m/sec). These values are 
identical to the previous values obtained directly (in addition to being very close 
to one another). As noted, although rough first-pass approximations for first de-
rivatives are discussed, the basic calculated values closely coincide with their cor-
responding graphs thereby providing a further level of validation in conjunction 
with also providing a good base level of engineering intuition regarding dynamics. 

Furthermore, and with having each of the previously validated position equa-
tions and graphs, numerical techniques utilizing centered finite-difference Equa-
tions (214), (215), and (216) with corresponding results are shown within Table 
6 for providing close approximations in comparison with successive derivatives 
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of the original positional graphs expressed in terms of exact equations. 
Note that the numerical method and associated equations described (having an 

order of ( )4O h  error) are used instead of forward or backward finite-difference 
methods having an order of ( )2O h  error. Additionally, a step size of 0.01h =  
is used for the rectilinear translational gripper, angular rotational gripper, and 
curvilinear cam dynamics. However, a step size of 0.00005h =  is used for the 
curvilinear rotational gripper dynamics due to sensitivity issues regarding the jerk 
equation. 

 ( ) ( ) ( ) ( ) ( )d 2 8 8 2
d 12
f x f x h f x h f x h f x h

x h
− + + + − − + −

=  (214) 

 ( ) ( ) ( ) ( ) ( ) ( )2

2 2

d 2 16 30 16 2
d 12
f x f x h f x h f x f x h f x h
x h

− + + + − + − − −
=  (215) 

 
( ) ( )( ( ) ( )

( ) ( ) ( ))

3

3 3

d 1 3 8 2 13
d 8

13 8 2 3

f x
f x h f x h f x h

x h
f x h f x h f x h

= − + + + − +

+ − − − + −
 (216) 

Through observation of the error values within Table 6, indicating the maxi-
mum error between the exact dynamic equations vs. numerical methods is ap-
proximately 0.0079% for English units (0.0016% for metric units) for the inverse 
wedge cam and 0.0051% for English units (0.0016% for metric units) for the reg-
ular wedge cam, the centered finite-difference method for dynamic calculations 
validates the exact dynamic equations provided within the methodology. In rela-
tion to such, and in closing, computer-aided engineering dynamics simulation 
may follow as part of future exploratory efforts with a more thorough discussion 
pertaining to practical matters of cam design and associated optimization charac-
teristics. 

 
Table 6. Exact vs. approximate mechanism dynamics. 

(a) 

Incr. Exact Approximate Percent Error 

Rectilinear Translational Gripper Dynamics 

t  TGs  TGv  TGa  TGj  TGv  TGa  TGj  vE  aE  jE  

(s) (m) (m/s) (m/s2) (m/s3) (m/s) (m/s2) (m/s3) (%) (%) (%) 

0.0000 0.0000 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

1.6520 0.0210 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

3.3120 0.0421 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

4.9770 0.0633 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

6.6450 0.0845 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

8.3120 0.1057 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

10.0111 0.1271 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

https://doi.org/10.4236/jamp.2025.133040


S. P. Guillory et al. 
 

 

DOI: 10.4236/jamp.2025.133040 786 Journal of Applied Mathematics and Physics 
 

Continued 

Angular Rotational Gripper Dynamics 

t  θ  RGω  RGα  jRgα  RGω  RGα  RGjα  Eω  Eα  Eα  

(s) (rad) (rad/s) (rad/s2) (rad/s3) (rad/s) (rad/s2) (rad/s3) (%) (%) (%) 

0.0000 0.0000 0.0318 0.0000 0.0000 0.0318 0.0000 0.0000 0.0000 0.0000 0.0010 

1.6520 0.0524 0.0316 0.0000 0.0000 0.0316 0.0000 0.0000 0.0000 0.0000 0.0000 

3.3120 0,1047 0.0315 0.0000 0.0000 0.0315 0.0000 0.0000 0.0000 0.0000 0.0000 

4.9770 0.1571 0.0314 0.0000 0.0000 0.0314 0.0000 0.0000 0.0000 0.0000 0.0000 

6.6450 0.2094 0.0314 0.0000 0.0000 0.0314 0.0000 0.0000 0.0000 0.0000 0.0007 

8.3120 0.2618 0.0315 0.0000 0.0000 0.0315 0.0000 0.0000 0.0000 0.0000 0.0000 

10.0111 0.3151 0.0318 0.0003 0.0002 0.0318 0.0003 0.0002 0.0000 0.0000 0.0011 

Curvilinear Rotational Gripper Dynamics 

t  RGs  RGv  RGa  RGj  RGv  RGa  RGj  vE  aE  jE  

(s) (m) (m/s) (m/s2) (m/s3) (m/s) (m/s2) (m/s3) (%) (%) (%) 

0.0000 0.0000 0.0129 0.0004 0.0000 0.0129 0.0004 0.0114 0.0000 0.0000 0.0000 

1.6520 0.0212 0.0128 0.0004 0.0000 0.0128 0.0004 0.0000 0.0000 0.0086 0.0000 

3.3120 0.0424 0.0128 0.0004 0.0000 0.0128 0.0004 0.0146 0.0000 0.0000 0.0000 

4.9770 0.0636 0.0127 0.0004 0.0000 0.0127 0.0004 0.0127 0.0000 0.0016 0.0000 

6.6450 0.0848 0.0127 0.0004 0.0000 0.0127 0.0004 0.0000 0.0000 0.0000 0.0000 

8.3120 0.1061 0.0127 0.0004 0.0000 0.0127 0.0004 0.0085 0.0000 0.0000 0.0000 

10.0111 0.1277 0.0129 0.0004 0.0000 0.0129 0.0004 0.0063 0.0000 0.0010 0.0000 

Curvilinear Inverse Wedge Cam Dynamics 

t  ch  cv  ca  cj  cv  ca  cj  vE  aE  jE  

(s) (m) (m/s) (m/s2) (m/s3) (m/s) (m/s2) (m/s3) (%) (%) (%) 

0.0000 0.0000 0.0138 0.0008 0.0000 0.0138 0.0008 0.0000 0.0000 0.0000 0.0010 

1.6520 0.0223 0.0133 0.0008 0.0000 0.0133 0.0008 0.0000 0.0000 0.0000 0.0000 

3.3120 0.0440 0.0129 0.0008 0.0000 0.0129 0.0008 0.0000 0.0000 0.0000 0.0000 

4.9770 0.0649 0.0125 0.0008 0.0000 0.0125 0.0008 0.0000 0.0000 0.0000 0.0000 

6.6450 0.0851 0.0121 0.0007 0.0000 0.0121 0.0007 0.0000 0.0000 0.0000 0.0000 

8.3120 0.1045 0.0177 0.0007 0.0000 0.0177 0.0007 0.0000 0.0000 0.0000 0.0000 

10.0111 0.1233 0.0114 0.0007 0.0000 0.0114 0.0007 0.0000 0.0000 0.0000 0.0001 

(b) 

Incr. Exact Approximate Percent Error 

Rectilinear Translational Gripper Dynamics 

t  TGs  TGv  TGa  TGj  TGv  TGa  TGj  vE  aE  jE  

(s) (m) (m/s) (m/s2) (m/s3) (m/s) (m/s2) (m/s3) (%) (%) (%) 

0.0000 0.0000 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 
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Continued 

1.6520 0.0210 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

3.3120 0.0421 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

4.9770 0.0633 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

6.6450 0.0845 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

8.3120 0.1057 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

10.0111 0.1271 0.0127 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 

Angular Rotational Gripper Dynamics 

t  θ  RGω  RGα  jRgα  RGω  RGα  RGjα  Eω  Eα  Eα  

(s) (rad) (rad/s) (rad/s2) (rad/s3) (rad/s) (rad/s2) (rad/s3) (%) (%) (%) 

0.0000 0.0000 0.0318 0.0000 0.0000 0.0318 0.0000 0.0000 0.0000 0.0000 0.0010 

1.6520 0.0524 0.0316 0.0000 0.0000 0.0316 0.0000 0.0000 0.0000 0.0000 0.0000 

3.3120 0,1047 0.0315 0.0000 0.0000 0.0315 0.0000 0.0000 0.0000 0.0000 0.0000 

4.9770 0.1571 0.0314 0.0000 0.0000 0.0314 0.0000 0.0000 0.0000 0.0000 0.0000 

6.6450 0.2094 0.0314 0.0000 0.0000 0.0314 0.0000 0.0000 0.0000 0.0000 0.0007 

8.3120 0.2618 0.0315 0.0000 0.0000 0.0315 0.0000 0.0000 0.0000 0.0000 0.0000 

10.0111 0.3151 0.0318 0.0003 0.0002 0.0318 0.0003 0.0002 0.0000 0.0000 0.0011 

Curvilinear Rotational Gripper Dynamics 

t  RGs  RGv  RGa  RGj  RGv  RGa  RGj  vE  aE  jE  

(s) (m) (m/s) (m/s2) (m/s3) (m/s) (m/s2) (m/s3) (%) (%) (%) 

0.0000 0.0000 0.0129 0.0004 0.0000 0.0129 0.0004 0.0114 0.0000 0.0000 0.0000 

1.6520 0.0212 0.0128 0.0004 0.0000 0.0128 0.0004 0.0000 0.0000 0.0086 0.0000 

3.3120 0.0424 0.0128 0.0004 0.0000 0.0128 0.0004 0.0146 0.0000 0.0000 0.0000 

4.9770 0.0636 0.0127 0.0004 0.0000 0.0127 0.0004 0.0127 0.0000 0.0016 0.0000 

6.6450 0.0848 0.0127 0.0004 0.0000 0.0127 0.0004 0.0000 0.0000 0.0000 0.0000 

8.3120 0.1061 0.0127 0.0004 0.0000 0.0127 0.0004 0.0085 0.0000 0.0000 0.0000 

10.0111 0.1277 0.0129 0.0004 0.0000 0.0129 0.0004 0.0063 0.0000 0.0010 0.0000 

Curvilinear Regular Wedge Cam Dynamics 

t  ch  cv  ca  cj  cv  ca  cj  vE  aE  jE  

(s) (m) (m/s) (m/s2) (m/s3) (m/s) (m/s2) (m/s3) (%) (%) (%) 

0.0000 0.0000 0.0132 0.0002 0.0000 0.0132 0.0002 0.0000 0.0000 0.0000 0.0000 

1.6520 0.0216 0.0129 0.0002 0.0000 0.0129 0.0002 0.0000 0.0000 0.0000 0.0000 

3.3120 0.0428 0.0126 0.0002 0.0000 0.0126 0.0002 0.0000 0.0000 0.0000 0.0013 

4.9770 0.0636 0.0123 0.0002 0.0000 0.0123 0.0002 0.0000 0.0000 0.0000 0.0000 

6.6450 0.0839 0.0120 0.0002 0.0000 0.0120 0.0002 0.0000 0.0000 0.0000 0.0000 

8.3120 0.1037 0.0117 0.0002 0.0000 0.0117 0.0002 0.0000 0.0000 0.0000 0.0000 

10.0111 0.1233 0.0114 0.0002 0.0000 0.0114 0.0002 0.0000 0.0000 0.0000 0.0000 
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5. Conclusions with Limitations 

In conclusion, the theoretical self-centering wedge cam procedures and associated 
quantitative model(s) are adequately derived from first principles and validated 
through application within the context of a design concept(s). Various approaches 
involved within the derivation of the model(s) were presented which included 
both approximation and exact methods in conjunction with fundamental mathe-
matics applied within the context of kinematics theory and the laws of mechanics. 
However, it is important to note that when using approximation methods, unex-
plained variation in self-centering as well as approximation errors due to numer-
ical differentiation will be induced into the design framework. 

Nevertheless, establishing the foundational theory sets the premise through 
which product designs with this needed functionality of self-centering around cy-
lindrical workpieces can be better engineered or improved upon with proven 
quality design concepts such as robust design at their heart for increasing accuracy 
and precision in final output product designs. Moreover, the quantitative model 
presented is highly useful and important for design optimization in connection 
with computer-based robust design optimization techniques as once a reliable 
model is obtained, optimization results can often be quickly realized. Therefore, 
having this analytical model(s) is very beneficial for the practicing design engineer 
or inventor with sufficient mechanical engineering background and knowledge 
tasked with developing a product design of this self-centering inverse/regular 
wedge cam type under limited time constraints or lacking the specialized 
knowledge which may require the use of this self-centering theory as part of re-
search & development activities. 

To further mention, the entailed research is mathematically extensive and in-
tensive in nature which may provide insights beyond the specific self-centering 
theory depicted and into the development of other novel theories and research 
areas. However, care must always be taken to thoroughly validate mathematical-
based engineering models. While real-world product development activities were 
outside of the scope and focus of this current research manuscript, physical pro-
totypes with experimental testing are crucial for confirming the computer-aided 
simulations presented herein thereby demonstrating the effectiveness of a pro-
posed design in a real-world setting including operating conditions, manufactur-
ing tolerances, material properties, and external disturbances. 

Moreover, and worth considering, engineering designs represent a compromise 
among conflicting objectives and sometimes qualitative aspects will drive a design 
in significant ways. In connection, it is just as important to select the best concept 
for achieving the desired goal as optimization algorithms do not choose a design 
concept and only help optimize a particular concept. Consequently, the utilization 
of this theory in conjunction with a systems-based concurrent engineering ap-
proach should be considered for ensuring a design approaches the best design in 
relation to achieving true ‘robustness’ as it incorporates a holistic approach to 
solving engineering problems. 
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6. Future Research 

Having the associated mathematical model as presented within paves way for fu-
ture application toward a design concept in preparation for quantitative design 
synthesis regarding computer-based design optimization. This can be accom-
plished through robust design optimization techniques thereby providing a natu-
ral framework for creating robust product designs as it is an optimization problem 
at heart. Therefore, “robust design should be done in concert with optimization, 
since part of the robust design philosophy is to integrate variation and perfor-
mance considerations together, which can be accomplished in a straightforward 
way using optimization methods” [47]. 

Consequently, future research will involve preparing a design concept involving 
the self-centering cam theory that will be couched in terms of robust design and 
robust design optimization techniques along with performing sensitivity robust 
design optimization for minimizing a critical characteristic’s variation. This will 
take the form of first looking into robust design methods while considering oper-
ating conditions and external factors along with using good engineering judgment 
through means of establishing insights based on the theoretical kinematic cam 
procedures. This is an important preliminary aspect of design optimization as the 
theoretical procedures aid in providing design insights for reducing overall model 
complexity from a systems engineering view imperative to accurately performing 
computer-based optimization which typically requires a reasonably close starting 
point to the final global/local optimum solution. Extending upon such, design tol-
erances linked to manufacturing process capability in conjunction with statistical 
tolerancing connected to feasibility robust design optimization will be incorpo-
rated in future research for further balancing and vibration minimization as well 
as true physical clamping is concerned. Following, various computer-aided engi-
neering optimization techniques will be employed in context of the self-centering 
quantitative model for reducing the critical characteristic’s variation and assessing 
manufacturing tolerances along with comparison to the theoretical model(s). 

Furthermore, physical prototypes of baseline concepts vs. optimized concepts 
along with experimental testing coupled with studies into the nonlinear dynamic 
response of these cams subjected to rapid load changes, particularly relevant in 
robotics applications, in addition to reviewing how dynamic loads affect wear and 
longevity in relation to clamping accuracy will commence. In conjunction, this 
may be contained within the Design for Six Sigma (DFSS/DMADV) framework 
for taking a holistic systems engineering approach to robust design as it is almost 
always the case that a system vs. component view will produce the best design 
[48]. 
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Appendix A: The Nonlinear Second Order Nonhomogeneous 
Instantaneous Constant Radius of Curvature 
Ordinary Differential Equation (ODE) 

In connection with an ordinary differential equation arising from the radius of 
curvature Equation (A1), a radius of this kind can be correlated with the polar 
coordinate determined from the Pythagorean theorem as widely known by Equa-
tion (A2) [49]. While in general, the polar coordinate and the radius of curvature 
are not identical, there is one condition that results in equivalence. This condition 
occurs when all centers of curvature are coincident with the same origin of the 
Cartesian plane. 

 ( )
( )( )
( )

3 221
rc

y x
r x

y x

+
=

′

′′
 (A1) 

 ( ) ( )22
pcr x x y x= +  (A2) 

Nevertheless, and as shown, Equation (A1) represents a differential equation in 
atypical form. To determine the characteristics of this differential equation, it is 
converted into a form that is typically presented in the context of differential equa-
tion analysis as defined by Equations (A3) and (A4). 

 ( ) ( ) ( )( )32 22 1rcr x y x y x= ′+′′  (A3) 

 ( ) ( ) ( ) ( ) ( )2 2 4 62 1 3 3rcr x y x y x y x y x′′ ′ ′ + ′= + +  (A4) 

Regarding Equation (A4), the differential equation is described as nonlinear 
and nonhomogeneous. In relation to the solution of the differential equation, the 
function ( )y x  is considered to be an unknown function. In connection, when 
the radius of curvature is given in terms of x , there is a definite solution to the 
differential equation. The derivation of the solution consistent with the unique-
ness and existence theorem is presented below. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 1 22rc rc rcy x r x x r x c x x r x c x c x= − ± − +  (A5) 

However, and to note, the functions ( )1c x  and ( )2c x  are currently un-
known (will be determined further below). Additionally, the plus/minus signs in-
dicate multiple solutions which can be chosen in reference to Table A1 below. 

 
Table A1. Plus/minus sign patterns. 

Solution Num Radical Term Term ( ) ( )12 rcr x c x x  

1 − + 

2 + + 

3 − − 

4 + − 
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For eliminating the use of Table A1, the plus/minus sign patterns will be math-
ematically modeled through equations that depend on an integer-based solution 
number nums  that ranges from 1 to 4. This will be accomplished by utilizing Eu-
ler’s equation in specific reference to URAM theory [46]. The resulting calcula-
tions that produce the plus/minus sign patterns are given in Table A2 and accom-
panying Equations (A6) and (A7) below. 

 
Table A2. Calculations for the Plus/Minus Sign Patterns. 

nums  Values for 1̂s  Values for 2ŝ  

1 ( )i 1πe 1= −  
( )( )i πe 1− = +  

2 ( )i 2πe 1= +  
( ) ( )( )i π i 2πe e 1− = +  

3 ( )i 3πe 1= −  
( ) ( ) ( )( )i π i 2π i 3πe e e 1− = −  

4 ( )i 4πe 1= +  
( ) ( ) ( ) ( )( )i π i 2π i 3π i 4πe e e e 1− = −  

 

 ( ) ( ) ( )i π
1 e cos π i sin π 1,2, ,ˆ 3 4nums

num num nums s s s= ⇒ + =  (A6) 

 ( ) ( )
1

Floori π 22
1
e 1 1,2,3,4ˆ

num nums s
m

num
m

s s
− 

 
 

=

= − ⇒ − =∏  (A7) 

With the above equations containing the plus/minus sign patterns, the ODE 
solution becomes: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 2 1 1 22ˆ ˆrc rc rcy x s r x x s r x c x x r x c x c x= − + − +  (A8) 

The radius of curvature ( )rcr x  is treated as a constant along with utilizing the 
parameters ( )1c x  and ( )2c x  (which would normally be constants in typical 
differential equation theory). However, the true variable nature of the functions 

( )rcr x , ( )1c x , and ( )2c x  can be viewed as instantaneous constants that change 
from point to point for this specific ODE theory. This is consistent with the defi-
nition for the radius of curvature which states that it creates a circle that best ap-
proximates the curve and changes on a pointwise basis. 

In view of the instantaneous constant nature involved with this differential 
equation, the square of the radius of curvature is congruent to an instantaneous 
constant Lie symmetry invariant corresponding to well-known transformation 
equations for rotation in the x - y  plane. To mention, around 1870, Marius 
Sophus Lie realized that many of the methods for solving differential equations 
could be unified using group theory. Lie symmetry methods are central to the 
modern approach for studying nonlinear ODEs. They use the notion of symmetry 
to generate solutions in a systematic manner. Moreover, the works of Sophus Lie 
have an interesting connection with a powerful technique used in the theory of 
nonlinear ordinary differential equations which is in alignment with the instanta-
neous constant nature of the nonlinear radius of curvature ODE [50]. 
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With having the ODE solution given by Equation (A8), the following condition 
can be extrapolated to determine whether the solution is real or complex. 
 ( ) ( ) ( ) ( ) ( )2 2 2 2

2 1 1ˆ2 0rc rc rcr x x s r x c x x r x c x− + − >  (A9) 

Moving further, the associated spatial derivatives of the ODE solution are de-
termined on an instantaneous constant basis in the following manner. 

 ( )
( ) ( )( )

( ) ( ) ( ) ( ) ( )
1 2 1

2 2 2 2
2 1 1

ˆ 2 ˆ2

2 2ˆ
rc

rc rc rc

s x s r x c x
y x

r x x s r x c x x r x c x

− +
=

− + −
′  (A10) 

 

( )
( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

2
2 1

1 3 22 2 2 2
2 1 1

2 2 2 2
2 1 1

2 2

4 2

1

ˆ

ˆ

2

ˆ

ˆ

rc

rc rc rc

rc rc rc

x s r x c x
y x s

r x x s r x c x x r x c x

r x x s r x c x x r x c x

 − += −  − + −

+
− + − 

′′

 (A11) 

More importantly, having the ODE solution and its first spatial derivative ena-
bles a determination of the functions ( )1c x  and ( )2c x  through the use of 
known variable initial conditions ( )1k x  and ( )2k x . 
 ( ) ( )1k x y x=  (A12) 

 ( ) ( )2k x y x= ′  (A13) 

Solving for the parameters ( )1c x  and ( )2c x , we have: 

 ( ) ( )
( ) ( )

( ) ( )( ) ( )

2 2
22

1
2 2 4
2 2

ˆ

1
rc

rc rc

k x r xs xc x
r x k x k x r x

= ±
+

 (A14) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
2 1 1 2 1 1ˆ ˆ2rc rc rcc x k x s r x x s r x c x x r x c x= − − + −  (A15) 

In summary, the nonlinear radius of curvature ODE solution has been fully 
generalized with the functions ( )1c x  and ( )2c x  being determined from Equa-
tions (A14) and (A15). We conclude that the radius of curvature and associated 
initial condition functions adequately define the path ( )y x  in rectangular form. 
However, the path can also be determined through a parametric equation ( )y θ  
with the radius of curvature and initial conditions being formulated in terms of 
the angle θ . Another aspect worth noting is that the path in parametric form can 
be converted into rectangular form by substituting ( )xθ  into the associated 
equations for the radius of curvature and initial conditions. Nevertheless, it is im-
portant to reiterate that the solution does not define the path equation in full and 
only does so in relation to an instantaneous constant fashion. Future research may 
explore this nonlinear ODE regarding the development of the full path equation. 
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