
Journal of Software Engineering and Applications, 2025, 18(2), 76-86
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2025.182005 Feb. 28, 2025 76 Journal of Software Engineering and Applications

Microservices in Organizations

Andrew Ganje

Vuori, Enterprise Engineering & Architecture, San Diego, California

Abstract
Microservices have revolutionized traditional software architecture. While
monolithic designs continue to be common, particularly in legacy applications,
there is a growing trend towards the modularity, independent deployability,
and flexibility offered by microservices, which is further enhanced by devel-
opments in cloud technology. This shift towards microservice architecture
meets the modern business need for agility, facilitating rapid adaptability in a
competitive landscape. Microservices offer an agile framework and, in many
cases, can simplify the development process, though the implementation can
vary and sometimes introduce complexities. Unlike monolithic systems, which
can be cumbersome to modify, microservices enable quicker adjustments and
faster deployment times, essential in today’s dynamic environment. This arti-
cle delves into the essence of microservices and explores their growing prom-
inence in the software industry.

Keywords
Microservices, Monolithic, Agile, Composability, Encapsulation, Loose
Coupling, Independent Deployability, Scalability, Resilience, Cloud
Computing, Digital Transformation, Competitive Advantage, Trade-Off
Analysis, Data Integrity, Latency, Fault Tolerance

1. Introduction

In the modern era, we live in a rapidly moving and highly interconnected global
environment. Such dynamism and connectivity demand software systems that are
not only agile and adaptable allowing easy modification and swift deployments.
Gone are the days when software changes could take months or even years.

In today’s rapidly evolving business landscape, organizations face increasing
pressure to remain agile, innovative, and competitive. The rise of digital transfor-
mation and disruptive technologies has enabled new market entrants to challenge
established players at an unprecedented pace [1] [2]. Businesses that fail to adapt

How to cite this paper: Ganje, A. (2025)
Microservices in Organizations. Journal of
Software Engineering and Applications, 18,
76-86.
https://doi.org/10.4236/jsea.2025.182005

Received: April 15, 2024
Accepted: February 25, 2025
Published: February 28, 2025

Copyright © 2025 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2025.182005
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/jsea.2025.182005
http://creativecommons.org/licenses/by/4.0/

A. Ganje

DOI: 10.4236/jsea.2025.182005 77 Journal of Software Engineering and Applications

swiftly to these changes risk obsolescence, particularly large enterprises burdened
by rigid and outdated processes [3].

The adoption of microservices architecture has emerged as a strategic approach
to fostering business agility. By breaking complex monolithic systems into mod-
ular, independently deployable services, organizations can accelerate develop-
ment cycles, enhance scalability, and respond to market shifts with greater flexi-
bility [4] [5]. Research highlights that this architecture enables faster time-to-mar-
ket for new features, as development teams can work autonomously, reducing de-
pendencies and bottlenecks in the deployment process [6] [7].

Moreover, the shift towards microservices is not merely a technical decision but
a fundamental business strategy. As enterprises navigate highly competitive envi-
ronments, the ability to deliver new capabilities rapidly and scale services on de-
mand becomes a core differentiator [8] [9]. The alignment of microservices with
business domains further strengthens operational efficiency, ensuring that tech-
nology infrastructures support dynamic and evolving market conditions [10] [11].

Ultimately, microservices empower organizations to innovate continuously,
minimize technical debt, and remain resilient against industry disruptions. In a
world where adaptability is a key determinant of success, embracing microservices
can provide businesses with the agility needed to thrive in an ever-changing com-
petitive landscape [1] [2] [12].

For organizations to thrive and demonstrate resilience, especially in the face of
unprecedented challenges like pandemics, trade wars, or other geopolitical affairs
as our global interconnectedness has increased, it’s vital to embrace such trans-
formative technologies. Adopting microservices may not only position businesses
for success but also aid their longevity and adaptability in an ever-evolving world.
Reference [2] states that the ability of your business to change quickly, innovate
easily, and meet competition wherever it arises is a strategic necessity today. Or-
ganizations only using monolithic software and ideologies will hinder their ability
to not only adapt but also incrementally enhance current information and com-
munication technology at the speed required to maintain competitive advantage
[1].

2. What Are Microservices?

Microservices, also known as microservice architecture, represent an architectural
paradigm that structures an application as a collection of single-responsibility, au-
tonomous services. Each service focuses on a single process or business capability
and is independently deployable. This architectural style offers a departure from
monolithic design, fostering flexibility, scalability, and adaptability to rapidly
changing business requirements [6]. Given the increasing potential for disrup-
tions in various industries, microservices emerge as a pivotal software considera-
tion for organizations striving to keep pace in the rapidly evolving global land-
scape. Delving into this technology and contrasting it with predecessors like mon-
olithic systems provides clarity on the essence of microservices.

https://doi.org/10.4236/jsea.2025.182005

A. Ganje

DOI: 10.4236/jsea.2025.182005 78 Journal of Software Engineering and Applications

2.1. Defining Microservices

Microservices are an architectural style that changes the way applications are cre-
ated, tested, implemented, and maintained. By using microservices, a large appli-
cation can be implemented as a set of small applications that can be developed,
deployed, expanded, managed, and monitored independently [9].

The term “microservice” can be misleading, as “micro” refers not to the size of
the service, but to the scope of its functionality. Each microservice is designed to
handle a specific business capability, allowing for independent development, de-
ployment, and scaling [9]. This approach enhances modularity and agility within
the overall system. A microservice is designed to perform a single function or a
small group of related functions usually grouped by business domain, enabling
more granular and flexible scaling, easier maintenance, and better fault isolation
compared to traditional monolithic applications [13].

To fully grasp the essence of microservices and the transformative impact they
can have on organizations, it is essential to familiarize oneself with their funda-
mental characteristics. These are:

1) Independent deployability;
2) Loosely coupled;
3) Organized around specific functionalities or business domains;
4) Goal-oriented nature;
5) Control over their own data or state, a principle also referred to as encapsu-

lation;
6) Flexibility;
7) Alignment between architecture and organizational structure [12] [14].

2.2. Interdependent Deployability

The independence of microservices allows them to be developed, deployed, and
scaled independently by different teams, which enhances an organization’s ability
to adapt to changes quickly [7]. This independence also supports a more resilient
and flexible system architecture, as issues in one service can be contained and ad-
dressed without impacting others. Therefore, while the services themselves can be
quite robust and complex, the emphasis on doing a specific, limited set of tasks
aligns with the principle of reducing complexity through division and specializa-
tion [15].

A microservice provides a business or platform capability through a well-de-
fined API, data contract, and configuration. It provides this function and only this
function. It does one thing, and it does it well [16].

2.3. Loosely Coupled

The loosely coupled nature of microservices means that each service operates in-
dependently of the others, yet they can work together to form a comprehensive
application. This separation reduces dependencies, which in turn minimizes the
risk of cascading failures across services. It enables developers to manage and up-

https://doi.org/10.4236/jsea.2025.182005

A. Ganje

DOI: 10.4236/jsea.2025.182005 79 Journal of Software Engineering and Applications

date services more efficiently, promoting robust system architecture [2] [8].

2.4. Organized around Specific Functionalities or Business
Domains

Microservices are organized around specific functionalities or business domains,
aligning the service structure directly with business needs. This organizational
method ensures that each microservice is focused on a single business capability,
enhancing both the functional clarity and the effectiveness of the development
teams responsible for different services [2].

2.5. Control over Their Own Data or State

Each microservice manages its own data or state, a practice known as encapsula-
tion. This autonomy prevents data conflicts and ensures that the service’s perfor-
mance is optimized for its specific tasks. Encapsulation supports the integrity and
independence of microservices, facilitating more secure and stable operations.
Additionally, this promotes backwards compatibility as limiting shared data pre-
vents issues created from updates in different service boundaries [2].

2.6. Flexibility

Since microservices are designed to be independent, loosely coupled, encapsu-
lated, and organized around a business function they inherently provide flexibility
[2]. As mentioned, it allows each team to make their own changes without im-
pacting the other if API contracts are not being changed. With this type of flexi-
bility, it creates adaptability as well as composability in the organization to quickly
introduce changes minimizing impact to other services if data contracts are not
changing. Additionally, microservices offer technological flexibility, enabling or-
ganizations to adopt the latest technologies and gain competitive advantages [3]

Each microservice can be implemented using various programming languages
and storage methods. This flexibility allows teams to select the most suitable tech-
nologies for each specific service [17]. It is important for an organization to estab-
lish a framework or set standards to effectively manage a diverse technology stack.
This structured approach helps ensure compatibility, maintainability, and secu-
rity across different services and technologies, facilitating smoother operations
and easier integration of new components as needed.

2.7. Alignment between Architecture and Organizational
Structure

The architecture of microservices is often aligned with the organizational struc-
ture, embodying the principle of Conway’s Law, which posits that system designs
mirror the communication structures of the organizations that create them. This
alignment helps in minimizing communication overhead and enhances coordina-
tion among teams, leading to more efficient and effective development cycles [2].
These traits allow the software to be flexible, agile, easily changed, and frequent
and reliable delivery for large organizations [6].

https://doi.org/10.4236/jsea.2025.182005

A. Ganje

DOI: 10.4236/jsea.2025.182005 80 Journal of Software Engineering and Applications

3. Monolithic vs Microservice

Monolithic architecture is a traditional model for designing software applications
where software is built as in all-in-one package. Where changing one requires the
entire application to be rebuilt and deployed. What this means is the code base is
singular which inherently couples all business logic together. “With monoliths,
applications are developed in entire blocks that communicate internally, manage
their data usually in a single database, and each new feature demands the deploy-
ment of the application as a whole” [3].

This software architecture was commonly used and is still today as it can be
easier to set up, manage, and deploy. Reference [3] identifies several advantages
of monolithic architecture, particularly concerning the size and complexity of the
software:

1) Easier Deployment: The deployment process involves a single application
packaged as a unified file or directory.

2) Simpler Initial Development: Development is in one code repository, more
often with only one programming language. Note, there is software that uses one
code repository with more than one language. This is due to interoperability with
the compiler of languages to the same Common Intermediate Language (CIL).
Example, of this is Dynamics 365 Finance and Operations where both X++ and
C# are in the same repository [18]. This is also known as polyglot programming
and allows developers to leverage the benefits of different programming languages
[19]. This approach can be used in microservices.

Despite the initial advantages of monolithic, it has been found often that over-
time monolithic software grows quite large and complex. Having a large software
base with all business logic coupled together in single base presents challenges
when needing to rapidly innovate, as changes are slower to introduce. As men-
tioned, monolithic architecture has a high coupling but also, they have low cohe-
sion [11]. Cohesion is the degree to which the elements inside a module or soft-
ware application are grouped together [14]. Low cohesion means the applications
encompass a wide range of functionalities within the single code base. One could
argue that grouping code a specific way could prevent low cohesion in monolithic
but at the end of the day all the functionality is in the same singular application
resulting in down time of all functionalities for one change and shared resources.
As the development timeline progresses, numerous developers contribute new
features and functionalities to a single codebase. This accumulation often results
in highly coupled software with low cohesion, complicating the introduction of
continuous changes and making the codebase less transparent and more challeng-
ing to maintain.

With this increased complexity there also is a higher risk of introducing unin-
tentional behavior known as regressions [20]. As more changes are introduced
into the single codebase, the risk of regressions rises. Over time, this complexity
slows down the pace of changes and reduces the software’s adaptability and flexi-
bility. The illustration created by Andrew Ganje below demonstrates that, in a

https://doi.org/10.4236/jsea.2025.182005

A. Ganje

DOI: 10.4236/jsea.2025.182005 81 Journal of Software Engineering and Applications

monolithic design, all functionalities are integrated into a single system. In con-
trast, the microservice approach divides these functionalities into three distinct
silos, ensuring each service has a singular purpose (Figure 1).

Figure 1. Monolith vs Microservices.

The diagram illustrates how a microservice architecture can simplify systems

that have grown overly large and intricate by segmenting their functionality into
distinct services. As systems expand in size and complexity, leading to challenges,
the adoption of microservices becomes an attractive solution. This is why its pop-
ularity has surged among organizations facing issues with their expansive software
systems [13]. Note, as you read these concepts reference this article to see the ar-
chitecture paradigms and benefits and cons are supported visually by the archi-
tecture diagram. This diagram is similar used in other popular resources in differ-
ent variations but still depicts decoupled vs coupled mono architecture.

Furthermore, microservices enhance composability, which refers to the ability
to interchange components without impacting other parts of the system. This level
of modularity allows for independent updates and maintenance, a feature that is
not feasible with monolithic architecture. In a monolithic system, making changes
often requires taking down the entire application, and dependencies between com-
ponents must be carefully managed. Composable software architectures like mi-
croservices thus promote greater flexibility and agility, enabling organizations to
adapt more quickly to changing requirements and technologies.

Microservices in summary are a software development approach that creates a
system with isolated services that each have a goal or function that can be easily
changed, deployed, and maintained. These services are widely popular with cloud
providers due to the ability to easily deploy them on technologies such as Mi-
crosoft Azure or Amazon AWS [4] [5]. Monolithic on the other hand is a soft-
ware architecture where all business logic is coupled together in a singular code
base.

https://doi.org/10.4236/jsea.2025.182005

A. Ganje

DOI: 10.4236/jsea.2025.182005 82 Journal of Software Engineering and Applications

4. Strategic Considerations in Microservices

Microservices architecture continues to gain global traction as a pivotal approach
in software development. Its ability to address modern challenges of agility and
adaptability aligns perfectly with the interconnected nature of today’s world. As
global trade, supply chains, and communication networks become more inter-
twined, businesses face increasing vulnerabilities to disruptions. Tensions between
countries, trade wars, and other geopolitical issues can create a domino effect, im-
pacting industries far removed from the initial point of conflict. These challenges
necessitate systems capable of adapting quickly, operating efficiently, and inno-
vating at speed. Microservices, with their modular design and agility, provide or-
ganizations with the tools to remain resilient amidst such uncertainties.

4.1. Benefits Driving Microservices Adoption

In my professional experience developing cloud business applications and inte-
grations, microservices have emerged as a critical enabler for both large and small
organizations. They allow companies to enhance operational efficiency, foster in-
novation, and prepare for disruptions by enabling independent updates, scalabil-
ity, and composability. Furthermore, in the era of big data, microservices integrate
seamlessly into data pipelines to perform specialized tasks, such as fraud detec-
tion, traffic management, and medical research [21]. The adoption of cloud com-
puting and the need for organizations to meet disruptions and changes quickly
only strengthen the upward trajectory of microservices adoption. Reference [15]
highlights that microservices represent a significant evolution in software archi-
tecture, offering numerous advantages over traditional monolithic approaches.

4.2. Challenges and Limitations of Microservices

While the benefits of microservices are clear, it is equally important to consider
their limitations to ensure they are the right fit for a given context. Adopting mi-
croservices comes with inherent challenges:

1) Increased Complexity
Managing distributed systems requires sophisticated tools and processes, such

as container orchestration platforms (e.g., Kubernetes) and monitoring frame-
works (e.g., Prometheus). This operational complexity can overwhelm organiza-
tions lacking the necessary expertise [2].

2) Higher Costs
The infrastructure and maintenance costs associated with microservices are of-

ten significantly higher than those of monolithic architectures, particularly for
smaller organizations or applications [10].

3) Data Integrity and Consistency
Distributed databases introduce challenges in maintaining data consistency, es-

pecially in scenarios requiring transactional guarantees. Approaches like eventual
consistency require careful consideration and trade-offs [22].

4) Dependency on Organizational Structure

https://doi.org/10.4236/jsea.2025.182005

A. Ganje

DOI: 10.4236/jsea.2025.182005 83 Journal of Software Engineering and Applications

Microservices work best when the architecture aligns with a decentralized, do-
main-focused team structure. Organizations with rigid or siloed structures may
struggle to implement microservices effectively [2].

5) Latency and Reliability
Communication between services over a network introduces latency and po-

tential failure points. These challenges require additional fault tolerance mecha-
nisms, adding to system complexity [15].

4.3. Evaluation Metrics for Choosing Architectural Approaches

To navigate the complexities of modern software architecture, organizations must
evaluate whether microservices align with their goals. The following metrics can
guide decision-making:

1) Scalability Needs
If specific components of the system require independent scaling, microservices

are likely the better choice. Monolithic architecture may suffice for simpler or
smaller systems.

2) Operational Complexity Tolerance
Organizations must assess whether they have the tools, expertise, and processes

in place to handle the complexities of distributed systems.
3) Deployment Frequency
Microservices are ideal for environments where frequent updates and releases

are critical to maintaining competitiveness [7].
4) Resilience and Fault Tolerance Requirements
If high availability and fault isolation are priorities, microservices provide a sig-

nificant advantage due to their modular design [12] [15].
5) Team Readiness and Structure
Microservices require cross-functional, autonomous teams capable of owning

the full lifecycle of a service. Without such a structure, adopting microservices
may lead to inefficiencies.

6) Time-to-Market Priorities
Microservices enable rapid feature development and deployment, which is cru-

cial in highly competitive industries [22].
7) Cost-Benefit Analysis
The potential benefits of microservices should be weighed against the costs of

implementation and maintenance, particularly for organizations with limited re-
sources [10].

4.4. Balancing the Benefits and Drawbacks

While microservices offer unparalleled flexibility, scalability, and resilience, they
are not a universal solution. Monolithic architecture still holds merit for small
applications or organizations that prioritize simplicity and cost-efficiency. Serv-
erless architecture, meanwhile, offers an alternative for workloads with sporadic
demand, minimizing infrastructure management while maximizing resource uti-

https://doi.org/10.4236/jsea.2025.182005

A. Ganje

DOI: 10.4236/jsea.2025.182005 84 Journal of Software Engineering and Applications

lization. Selecting the right architecture requires a nuanced understanding of the
system’s requirements, operational context, and organizational capabilities.

4.5. The Road Ahead

Microservices are well-positioned to remain a dominant force in software devel-
opment due to their alignment with trends like cloud computing, big data, and
the increasing need for rapid adaptation. However, their adoption must be strate-
gic, weighing the benefits of agility and modularity against the complexities and
costs they introduce. As organizations face ever-changing geopolitical, economic,
and technological challenges, the choice of software architecture will play a pivotal
role in determining their ability to thrive in an interconnected world.

By critically evaluating architectural approaches using metrics and understand-
ing the trade-offs involved, organizations can ensure that their systems are not
only resilient but also capable of driving innovation and sustaining competitive
advantage.

5. Conclusions

In today’s dynamic and interconnected global landscape, the demand for agile,
adaptable, and swiftly deployable software systems has never been greater. As ref-
erence [23] emphasizes, adopting microservices brings scalability, flexibility, and
agility to software development, which are crucial for staying ahead in a compet-
itive business environment. Microservices have emerged as a transformative ar-
chitectural paradigm, enabling organizations to achieve the flexibility, scalability,
and resilience required to navigate challenges ranging from geopolitical tensions
to technological disruptions.

Microservices architecture, characterized by its independent deployability,
loose coupling, and alignment with specific business functionalities, offers signif-
icant advantages over traditional monolithic systems. By facilitating modularity
and autonomy, microservices enable faster development cycles, enhanced fault
tolerance, and the ability to scale components independently [7]. This architec-
tural shift empowers organizations to innovate and adapt with greater speed, po-
sitioning them to meet evolving market demands effectively.

However, while the benefits of microservices are compelling, their adoption re-
quires a nuanced approach. Transitioning from monolithic architecture involves
not only technical refactoring but also cultural and organizational transformation.
These shifts demand meticulous planning and significant investment, particularly
for smaller organizations that may lack the necessary resources or expertise [22].
Additionally, the increased complexity of managing distributed systems intro-
duces operational challenges that must be carefully addressed to ensure long-term
success [10].

Despite these challenges, the upward trajectory of adoption of microservices
reflects their alignment with global trends such as the rise of cloud computing, big
data, and the demand for rapid adaptation. As [21] notes, microservices are par-

https://doi.org/10.4236/jsea.2025.182005

A. Ganje

DOI: 10.4236/jsea.2025.182005 85 Journal of Software Engineering and Applications

ticularly well-suited for big data applications, where their modularity and scala-
bility offer unparalleled advantages in managing large-scale, complex workloads.

Looking ahead, microservices are expected to play a pivotal role in shaping the
future of software development. Their ability to enable composable and resilient
architecture makes them an essential tool for organizations striving to achieve op-
erational efficiency, foster innovation, and build resilience in an increasingly dig-
ital and interconnected world. By embracing microservices, organizations can not
only address the challenges of today but also position themselves for sustained
success in the evolving technological landscape.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References
[1] Kaloudis, M. (2024) Evolving Software Architectures from Monolithic Systems to Re-

silient Microservices: Best Practices, Challenges and Future Trends. International Jour-
nal of Advanced Computer Science and Applications, 15, 1-10.
https://doi.org/10.14569/IJACSA.2024.0150901

[2] Newman, S. (2021) Building Microservices: Designing Fine-Grained Systems. 2nd
Edition, O’Reilly Media.

[3] Krug, D.S., Chanin, R. and Sales, A. (2024) Exploring the Pros and Cons of Mono-
lithic Applications versus Microservices. Proceedings of the 19th International Con-
ference on Evaluation of Novel Approaches to Software Engineering (ENASE), 19,
123-130.

[4] Amazon (2021) Microservices. https://aws.amazon.com/microservices/

[5] Microsoft (2021) Introduction to Microservices on Azure-Azure Service Fabric.
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-mi-
croservices

[6] Newman, S. (2021) Monolith to Microservices: Evolutionary Patterns to Transform
Your Monolith. O’Reilly Media.

[7] Samant, P.S. (2023) Microservices in the Cloud: Enabling Scalability, Flexibility, and
Rapid Deployment. Journal of Advanced Research in Engineering and Technology,
3, 1-10.
https://www.researchgate.net/publication/381306736_MICRO-
SERVICES_IN_THE_CLOUD_ENABLING_SCALABILITY_FLEXIBIL-
ITY_AND_RAPID_DEPLOYMENT

[8] Prabhakar, G. (2025) Microservices Architecture. International Research Journal of
Modernization in Engineering, Technology and Science, 7, 3296-3307.

[9] Vera-Rivera, F.H., Gaona, C. and Astudillo, H. (2021) Defining and Measuring Mi-
croservice Granularity—A Literature Overview. PeerJ Computer Science, 7, e695.
https://doi.org/10.7717/peerj-cs.695

[10] Richardson, C. (2018) Microservices Patterns: With Examples in Java. Manning Pub-
lications.

[11] Singh, N.P. and Deshpande, A. (2021) Challenges and Patterns for Modernizing a
Monolithic Application into Microservices.
https://developer.ibm.com/articles/challenges-and-patterns-for-modernizing-a-
monolithic-application-into-microservices/

https://doi.org/10.4236/jsea.2025.182005
https://doi.org/10.14569/IJACSA.2024.0150901
https://aws.amazon.com/microservices/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
https://www.researchgate.net/publication/381306736_MICROSERVICES_IN_THE_CLOUD_ENABLING_SCALABILITY_FLEXIBILITY_AND_RAPID_DEPLOYMENT
https://www.researchgate.net/publication/381306736_MICROSERVICES_IN_THE_CLOUD_ENABLING_SCALABILITY_FLEXIBILITY_AND_RAPID_DEPLOYMENT
https://www.researchgate.net/publication/381306736_MICROSERVICES_IN_THE_CLOUD_ENABLING_SCALABILITY_FLEXIBILITY_AND_RAPID_DEPLOYMENT
https://doi.org/10.7717/peerj-cs.695
https://developer.ibm.com/articles/challenges-and-patterns-for-modernizing-a-monolithic-application-into-microservices/
https://developer.ibm.com/articles/challenges-and-patterns-for-modernizing-a-monolithic-application-into-microservices/

A. Ganje

DOI: 10.4236/jsea.2025.182005 86 Journal of Software Engineering and Applications

[12] Vemasani, P. and Modi, S. (2024) Building Resilient Distributed Systems: Fault-Tol-
erant Design Patterns for Stateful Workflows. International Journal of Computer En-
gineering and Technology, 15, 169-181.
https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_15_IS-
SUE_3/IJCET_15_03_016.pdf

[13] Amundsen, M. (2016) Microservice Architecture. Sebastopol, O’Reilly Media, Inc.

[14] Pagade, G. (2022) Difference between Cohesion and Coupling. Baeldung on Com-
puter Science. https://www.baeldung.com/cs/cohesion-vs-coupling

[15] Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R.
and Safina, L. (2017) Microservices: Yesterday, Today, and Tomorrow. In: Mazzara,
M. and Meyer, B., Eds., Present and Ulterior Software Engineering, Springer, 195-
216. https://doi.org/10.1007/978-3-319-67425-4_12

[16] Familiar, B. (2015) What Is a Microservice? In: Microservices, IoT, and Azure,
Apress, 9-19. https://doi.org/10.1007/978-1-4842-1275-2_2

[17] Baddula, P. (2023) The Evolution of Software Architecture: Monolithic to Micro-
services. Medium.
https://medium.com/@phanindra208/the-evolution-of-software-architecture-mon-
olithic-to-microservices-cb62fcd7aa94#:~:text=The%20conventional%20Mono-
lithic%20architecture%2C%20a%20unified%20model%20for,the%20ad-
vent%20of%20cloud%20computing%20and%20containerization%20technologies

[18] Microsoft. (2022) X++ Language Reference. Finance & Operations: Dynamics 365,
Microsoft Learn.
https://learn.microsoft.com/en-us/dynamics365/fin-ops-core/dev-itpro/dev-
ref/xpp-language-reference

[19] Neward, T. (2009) The Polyglot Programmer-Mixing and Matching Languages. Mi-
crosoft Learn.
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/march/the-poly-
glot-programmer-mixing-and-matching-languages

[20] Newth, A. (2021) What Is Software Regression?
https://www.easytechjunkie.com/what-is-software-regression.htm

[21] Vigliarolo, B. (2020) Microservices: A Cheat Sheet.
https://www.techrepublic.com/article/microservices-a-cheat-sheet/

[22] Fowler, M. and Lewis, J. (2014) Microservices: A Definition of This New Architec-
tural Term. https://martinfowler.com/articles/microservices.html

[23] Kothapalli, M. (2021) Securing Microservices Architecture: Best Practices and Chal-
lenges. Journal of Scientific and Engineering Research, 8, 187-192.

https://doi.org/10.4236/jsea.2025.182005
https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_15_ISSUE_3/IJCET_15_03_016.pdf
https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_15_ISSUE_3/IJCET_15_03_016.pdf
https://www.baeldung.com/cs/cohesion-vs-coupling
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-1-4842-1275-2_2
https://medium.com/@phanindra208/the-evolution-of-software-architecture-monolithic-to-microservices-cb62fcd7aa94#:%7E:text=The%20conventional%20Monolithic%20architecture%2C%20a%20unified%20model%20for,the%20advent%20of%20cloud%20computing%20and%20containerization%20technologies
https://medium.com/@phanindra208/the-evolution-of-software-architecture-monolithic-to-microservices-cb62fcd7aa94#:%7E:text=The%20conventional%20Monolithic%20architecture%2C%20a%20unified%20model%20for,the%20advent%20of%20cloud%20computing%20and%20containerization%20technologies
https://medium.com/@phanindra208/the-evolution-of-software-architecture-monolithic-to-microservices-cb62fcd7aa94#:%7E:text=The%20conventional%20Monolithic%20architecture%2C%20a%20unified%20model%20for,the%20advent%20of%20cloud%20computing%20and%20containerization%20technologies
https://medium.com/@phanindra208/the-evolution-of-software-architecture-monolithic-to-microservices-cb62fcd7aa94#:%7E:text=The%20conventional%20Monolithic%20architecture%2C%20a%20unified%20model%20for,the%20advent%20of%20cloud%20computing%20and%20containerization%20technologies
https://learn.microsoft.com/en-us/dynamics365/fin-ops-core/dev-itpro/dev-ref/xpp-language-reference
https://learn.microsoft.com/en-us/dynamics365/fin-ops-core/dev-itpro/dev-ref/xpp-language-reference
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/march/the-polyglot-programmer-mixing-and-matching-languages
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/march/the-polyglot-programmer-mixing-and-matching-languages
https://www.easytechjunkie.com/what-is-software-regression.htm
https://www.techrepublic.com/article/microservices-a-cheat-sheet/
https://martinfowler.com/articles/microservices.html

	Microservices in Organizations
	Abstract
	Keywords
	1. Introduction
	2. What Are Microservices?
	2.1. Defining Microservices
	2.2. Interdependent Deployability
	2.3. Loosely Coupled
	2.4. Organized around Specific Functionalities or Business Domains
	2.5. Control over Their Own Data or State
	2.6. Flexibility
	2.7. Alignment between Architecture and Organizational Structure

	3. Monolithic vs Microservice
	4. Strategic Considerations in Microservices
	4.1. Benefits Driving Microservices Adoption
	4.2. Challenges and Limitations of Microservices
	4.3. Evaluation Metrics for Choosing Architectural Approaches
	4.4. Balancing the Benefits and Drawbacks
	4.5. The Road Ahead

	5. Conclusions
	Conflicts of Interest
	References

