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Abstract 
The viscoelastic behavior of polymer optical fibers has garnered increasing in-
terest due to their application as fiber sensors. A common technique for de-
termining the storage and loss modulus of optical fibers involves fitting an ex-
ponential model to damped oscillatory motion. However, few studies address 
the challenge of identifying and specifying the various internal and external con-
tributions to damping. The damping of a simple pendulum is influenced by 
several factors, such as the friction at the pivot and air drag on the string. In 
this case, the bob and the string are a coupled oscillating system, for its study, 
we used a bare polymethyl methacrylate optical fiber as a non-ideal, extensible, 
and viscoelastic string. The optical fiber was attached to a quasi-punctual sup-
port to minimize friction at the pivot. We considered the contribution to the 
damping of the pendulum due to air drag on the bob by varying the bob’s frontal 
area and extrapolating to the limit case where the frontal area of the bob tends 
to zero. This approach allowed us to calculate the damping coefficient solely 
due to the viscoelastic properties of the string. By conducting a dynamic anal-
ysis of the forces along the string and considering the interaction between the 
string and bob through the viscosity, we calculated the complex Young’s mod-
ulus, a key parameter in understanding the viscoelastic properties of the sys-
tem. 
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1. Introduction 

The dissipative forces in a real pendulum decrease the pendulum’s oscillation 
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amplitude until the movement ceases. There are two types of damping agents in 
oscillatory motion: the first is caused by external dissipative forces acting on the 
oscillating system, while the second arises from internal dissipative forces orig-
inating within the system. External dissipative forces include: 1) friction between 
the support and the fixed end of the string and 2) air drag on the bob (non-point 
mass) hanging from a real string. Conversely, the internal dissipative force origi-
nates from the viscoelastic properties of the string under the oscillating force. 
Studying the effects of the non-conservative forces can help us determine the vis-
coelastic properties of both the oscillating system and the medium in which it os-
cillates. 

The sources of mechanical energy dissipation in this system have been studied 
both theoretically and experimentally. Theoretically, several authors have analyzed 
the effect of air on the string and bob [1], while others have experimentally inves-
tigated the contribution of external dissipative forces acting on the different parts 
of a real pendulum [2]. These experiments often involve taking multiple measure-
ments to perform a least squares interpolation. These studies compare the energy 
loss due to string drag against that of bob drag. First, they determine the drag of 
the string by varying its length and measuring the associated damping coefficient. 
With these measurements, they generate a linear least square fit, whose slope rep-
resents the contribution of the string to the energy loss. Then, in a similar manner, 
they determine the damping by the bob varying its diameter. Mohabazzi and Shan-
kar [2] demonstrated that the string can significantly contribute to the damping of 
a real pendulum. 

The behavior of a real pendulum is also influenced by the viscoelastic properties 
of the string. In the equation of motion for the oscillating mass, the damping co-
efficient comprises contributions from both internal and external dissipative 
forces. The challenge in understanding damping measurements lies in identifying 
the contributions of both the internal and external dissipative forces. For example, 
the period of a torsion pendulum depends on the torsion constant of the string 
and the moment of inertia of the mass. The damping depends on the air resistance 
acting on the mass and the viscoelastic behavior of the string. The torsion pendu-
lum is used as a precision instrument for measurements in various fields, such as 
biophysics, metrology, and gravitational physics [3]. In material science, it has 
been employed to measure the shear modulus of single filaments with uniform 
micro-sized diameters to determine the mechanical properties of materials under 
torsional loads. Air resistance significantly contributes to the damping in a torsion 
pendulum. To minimize the external energy dissipation factors, a torsion pendu-
lum was suspended from a tungsten fiber in a vacuum vessel at 1.5 × 10−5 Pa [4]. 
They observed that the pendulum oscillated for four days. The oscillation ampli-
tude exhibited typical attenuated behavior, which must stem solely from non-con-
servative internal forces. Similarly, a real pendulum in a vacuum is also subjected 
to internal dissipative forces. For this reason, a damped oscillation can be used to 
study viscoelastic properties of materials that are subjected to external agents such 
as loads and torques during their most common application as sensors or optical 
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transmitters. 
Our study aimed at theoretically and experimentally analyzing the effect of a vis-

coelastic string in a damped pendulum. If the string is very thin, then the most prom-
inent source of energy dissipation in the pendulum is the air drag on the lateral sur-
face of the bob. After an extrapolation to zero lateral surface, the results of the ex-
periment indicate residual damping in the zero limit of lateral surface of the bob. 
Contrary to the proposal by Mohabazzi and Shankar [2], we attribute this to the 
viscoelastic behavior of the string, given the polymeric fiber nature of the string 
in our experiment. For the theoretical analysis, we assumed that the pendulum is 
suspended by a viscoelastic string with a tiny cross-section and a complex Young’s 
modulus. 

This paper is organized as follows: Section 2 presents the dynamics of the damped 
pendulum and the viscoelastic string. Section 3 describes the methodology and ex-
perimental setup. The results are discussed in Section 4, and conclusions are pre-
sented in Section 5. 

2. Mathematical Model 
2.1. The Damped Pendulum 

A real pendulum is subjected to dissipative forces, which decrease their maximum 
amplitude over time, see Figure 1. The total dissipative force is proportional to the 
bob velocity Lθ , and the damping term Lλ θ  contains the contributions from all 
dissipative forces acting on the system. The equation of motion is: 

 

 

Figure 1. Scheme of the plane of oscillation of a real pendulum with cylindrical bob. 
 

 2
0 0

M
λθ θ ω θ+ + =    (1) 

where, θ  is the oscillation amplitude; M  is the mass of the bob; and using the 
Steiner’s theorem for a cylindrical body moving around a fixed axis perpendicular  

to the oscillation plane 2
0 2

c

MgL
I ML

ω =
+

 [5], with L  being the length of the 
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pendulum measured from the fixed point to the mass center of the bob, g  being 

the acceleration due to gravity, and 2 21 1
4 12cI Mr MH= +  (where r  and H  are 

radius and the height of the bob, respectively). 
The solution to Equation (1) is: 

 ( )0e cost tγθ θ ω−= ,   (2) 

where 0θ  is the initial amplitude, the damping coefficient is 
2M
λγ = , and the 

angular frequency is 2 2
0ω ω γ= − . The coefficient γ  can be determined exper-

imentally, and its value depends on the magnitude of all dissipative forces. 

2.2. The Viscoelastic String 

Viscoelastic materials are characterized by complex elastic moduli. The Young’s mod-
ulus *Y  has the following general form: 

 ( )* 1Y Y iY Y iη′ ′′ ′= + = + ,   (3) 

where Y
Y

η
′′

=
′

, the loss factor. 

When a periodic stress σ  with frequency 0ω  is applied to a viscoelastic ma-
terial, a strain ε  is produced. The behavior of the viscoelastic material is described 
by the equation: 

 ( ) ( ) ( )* t Y iY tσ ε′ ′′= + ,   (4) 

where the real stress is associated with the conservative term ( ) ( )t Y tσ ε′ ′= , and 
the imaginary term is linked to the dissipative parameters of the system  

( ) ( )t Y tσ ε′′ ′′= . Consequently, it is possible to determine the complex Young’s 
modulus of a material through a damping experiment [6]. However, there is an 
intrinsic difficulty in separating all possible energy loss agents [7]. Therefore, the 
experimental design must minimize losses other than dissipation in the viscoelas-
tic medium. 

The equation of motion of a pendulum with a bob of mass M  suspended by 
a string with variable length is given by: 

 ( ) ( ) ( )0 01 1 sin 0L M L Mgε θ ε λθ θ+ + + + = ,   (5) 

where 0L  is the initial length of the pendulum and ε  the strain of the string 
subjected to periodic stress caused by the longitudinal component of the bob’s 
weight. In this equation, 1 ε . Therefore, its solution is known as the solution 
of a damped oscillator [5]. 

The forced oscillation of the viscoelastic string is given by the following equa-
tion: 

 ( )0 2 0 2 0 cosmL L k L Mgε λ ε ε θ+ + = ,   (6) 

where m  is the mass of the string; 2k  is the elasticity constant of the string; and 

2 0Lλ ε  is the dissipative term, with 2λ  being the damping constant of the cou-
pled system and ( )cosMg θ  is the weight component along the string [5]. 
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Equation (6) can be rewritten as: 

 2
2 2

0

2 cosMg
mL

ε γ ε ω ε θ+ + =  ,   (7) 

where 2
2 2m

λγ =  and 2 2
2

k
m

ω = . Substituting the solution of Equation (5)  

( )0e cost tγθ θ ω− =   in Equation (7) yields the following: 

 ( )2
2 2 0

0

2 cos e costMg t
mL

γε γ ε ω ε θ ω− + + =    .   (8) 

Equation (5) and Equation (6) represent two oscillating systems coupled by the 
damping and gravitational forces. The driven frequency in Equation (8) is ω . There-
fore, both systems oscillate with the coupled frequency ω . 

By developing the cosine of the right side of Equation (8) in its Taylor’s series and 
considering only up to the quadratic term, we get: 

 ( )2
2 2 0

0

2 cos e costMg t
mL

γε γ ε ω ε θ ω− + + =    .   (9) 

We propose the following solution for Equation (9): 

 ( ) ( ) ( )2 2
0 1 21 e cos e sint tt A A t A tβ βε ω ω− − = − −  ,   (10) 

where 0ε , 1A , 2A  and β  are constants; 1 2A A≠ ; and 2ω ω . To verify this as 
the solution, we substituted it into Equation (9) and equated the coefficients mul-
tiplying the monomials on each side of the equation as follows: 

1) Constant monomials: 

 0 2
0 2

MgA
mL ω

=    (11) 

2) sin cost tω ω  monomials under the condition 1 2A A≠ : 
 2β γ=   (12) 

3) ( )2sin tω  monomials: 

 
2 2 22

0 0
2 2 2 2 2

2 2
2
2

0
4 1 4

A ω θ θω
ω ω ω ω

ω

= − = − ≈
−

−
  (13) 

4) ( )2cos tω  monomials: 

 

2

2 2 22 2 2
0 0 02 2

1 22 2 2
2

2
2

1 2
2 ; 2

2 2 24 1 4
A

ω
θ θ θω ω ω γ γ

ω ω ω
ω

−
   −

= = ≈ =   −    −
   (14) 

On the other hand, the constitutive equation for the stress state on the viscoelastic 
fiber can be expressed as follows: 

 ( ) ( ) ( )kF t
t Y t

A
σ ε′ ′= =     (15) 

 ( ) ( ) ( )dF t
t Y t

A
σ ε′′ ′′= =      (16) 

In the absence of energy dissipation, the elastic force is ( ) ( )0 2kF t L k tε= , where 
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( )tε  is the solution of the undamped driven string. This means  

( ) ( )
2

2 2
2

cosMt t
m

ωε ω
ω ω

=
−

, while the damping force is  

( ) ( ) ( )0 0 02d oF t L t mL tλ ε γ ε= =  , where 01 γ  is the damping time of the viscoelas-
tic string. This property is independent of the experiment used for this calculation. 
The temporal change of the strain ( )tε  is calculated from Equation (10). Con-
sidering that 2 1A A , 2e 1tγ− ≈ , and 2 2γ ω  and the ω  dependence of 
( )tε , we get the following: 

 
( )
( )

( ) ( )

( )
0 0 0

2
2 0

2

2
2

4 sin cos

cos
1

L t t tY
Y k L t M t

m

λ ε γ ω ω ω
ε ω ω

ω
ω

′′
= ≅

′

−



.   (17) 

In Equation (17), 2 2
2 1ω ω  . In the limit case, where the damping of the pendu-

lum is solely due to viscoelasticity in the string, we propose 2 0 lim2m Mγ γ γ= = , 
because 0γ  is a property of the viscoelastic string and the coupling between sys-
tems is given by the ratio m M . In this case, the damping coefficient of the pen-
dulum is limγ . Thus, we get the following: 

 ( )lim4 sinY t
Y

γη ω
ω

′′
= =

′
   (18) 

In this case, the Young’s complex modulus will be as follows: 

 ( )* 1Y Y iη′= +     (19) 

3. Experimental Procedure 

The amplitude of a damped simple pendulum decreases as its mechanical energy 
is dissipated due to frictional forces. In our analysis, we considered four sources 
of energy dissipation: 

1) Friction at the fixed end of the pendulum; 
2) String drag or air resistance on the string; 
3) Air resistance on the pendulum bob; 
4) Dissipation within the viscoelastic string. 
To reduce friction at the fixed end of the string in the pendulum, we used quasi-

punctual support to allow free oscillation around a point, as shown in Figure 
2. Additionally, to minimize drag effects on the string and make them negli-
gible compared to the drag effects on the bob, we used a string and bob with radii 

0.05 cmr′ =  and 1.10 cmr = , respectively. The pendulum length 0.33 mL =  
was measured from the fixed point to the mass center of the bob, consisting of a 
constant segment of 0.08 m and a variable segment ( )0 1L ε+ , where 0L  is the 
length of the viscoelastic string without strain. Thus, only the air resistance on the 
bob and the damped oscillation along the viscoelastic string are the sources of dis-
sipation. In our experiment, the viscoelastic string is an optical fiber made of 
polymethyl methacrylate (PMMA) with length 0 0.25 mL =  without strain and 
mass 0.225 gm = . 
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Figure 2. Experimental setup. 
 

To determine the role of the viscoelastic string in the dissipation of mechanical 
energy, we conducted an experiment with zero resistance on the bob. For this pur-
pose, we experimentally calculated the damping coefficient of the pendulum for 
bobs of different frontal areas. The bob is a brass cylinder with a mass of 100 g, 
height of 3.30 cm, and diameter of 2.20 cm. Thus, to vary the frontal area of the bob 
without changing either the mass center or the mass, we wrapped the bob with thin 
cardboard of different heights, ranging from 9.80H ′ =  to 3.80 cm, reducing the 
height and consequently the frontal area of the bob. The relationship between the 
frontal area of the bob and the damping coefficient γ  of the pendulum was de-
termined through least squares fitting. After extrapolating to zero frontal area to 
eliminate the air resistance on the bob, we obtained the residual damping coeffi-
cient limγ . This ensured that the only source of mechanical energy dissipation was 
within the viscoelastic string. 

The oscillations of the bob, set at an initial amplitude of a small angle with the 
vertical (≈10˚) and with a fixed bob height H ′ , were meticulously recorded with 
a video camera placed 0.50 m away from the device to avoid parallax errors. The 
motion of the pendulum while swinging back and forth coincides with the descrip-
tion in Equation (1), where the envelope of the oscillation is given by e tγ− . Each 
video was carefully analyzed using Tracker, a software for video analysis, to obtain 
the graph of the natural logarithm of the maxima against time t  and, through a 
linear fit of the data, we experimentally determined the value of γ . We filmed three 
videos per height H ′  to ensure the reproducibility of the results. 

4. Results and Discussion 

The moment of inertia of the bob 2
cI ML . Therefore, we considered 0 g Lω =  

to be the frequency of the pendulum. We obtained 0 4.449 Hzω = , and the oscil-
lation period 1.15 sT =  coincided with the observed values in all the curves rec-
orded and analyzed with Tracker. 
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Table 1 shows the pendulum damping coefficients γ  for each frontal area 
( )rH ′π , determined by performing the linear fit of the natural logarithm of the 
oscillation maxima against time for the first video. It also shows the correlation 
coefficient 2 1R ≈  of each fit, confirming that the pendulum movement while 
swinging back and forth is determined by Equation (1). 

 
Table 1. Damping coefficients corresponding to the first video of each bob. 

Frontal area, ±0.1 cm2 Damping coefficient γ , s−1 2R  

11.4 0.01893 0.9979 

13.1 0.02414 0.9981 

14.8 0.01924 0.9980 

16.6 0.01827 0.9981 

18.3 0.02222 0.9990 

20.0 0.02077 0.9981 

21.7 0.0192 0.9978 

23.5 0.02386 0.9976 

25.2 0.02283 0.9976 

26.9 0.02133 0.9969 

28.7 0.03291 0.9962 

30.4 0.02425 0.9973 

32.1 0.03365 0.9970 

33.8 0.03340 0.9954 

 
Table 2. Damping coefficients corresponding to the second video of each bob. 

Frontal area, ±0.1 cm2 Damping coefficient γ , s−1 2R  

11.4 0.01879 0.9977 

13.1 0.01525 0.9982 

14.8 0.0209 0.9974 

16.6 0.02105 0.9975 

18.3 0.02144 0.9980 

20.0 0.02343 0.9981 

21.7 0.02206 0.9982 

23.5 0.02866 0.9971 

25.2 0.0218 0.9982 

26.9 0.03778 0.9962 

28.7 0.01836 0.9977 

30.4 0.03057 0.9972 

32.1 0.03307 0.9943 

33.8 0.03398 0.9949 
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Table 2 and Table 3 show the results obtained from videos 2 and 3, respectively. 
The amplitude of the pendulum oscillation with 0.33 mL = , as given by Equation 
(2) and 0.02343γ = , corresponding to a frontal area of 20 cm2 from Table 2, is 
shown in Figure 3. The inset corresponds to the horizontal component of the os-
cillatory motion of the pendulum obtained through Tracker. The coincidence be-
tween the calculated frequency ω  and that observed in the Tracker graph indi-
cated that the bob can be considered a point mass, as established in Equation (2). 

 
Table 3. Damping coefficients corresponding to the third video of each bob. 

Frontal area, ±0.1 cm2 Damping coefficient γ , s−1 2R  
11.4 0.01874 0.9979 
13.1 0.01602 0.9979 
14.8 0.0201 0.9973 
16.6 0.01859 0.9976 
18.3 0.01901 0.9987 
20.0 0.02729 0.9979 
21.7 0.02225 0.9982 
23.5 0.02802 0.9982 
25.2 0.02861 0.9976 
26.9 0.02829 0.9968 
28.7 0.02936 0.9967 
30.4 0.02355 0.9983 
32.1 0.03467 0.9956 
33.8 0.04098 0.9952 

 

 

Figure 3. Plot of amplitude of pendulum oscillation with 0.33 mL =  and 0.02343γ = . 
The inset corresponds to the horizontal component of the oscillatory motion of the pendulum 
obtained by Tracker. 

 

To analyze the results for each frontal area, we considered the average value γ  
of the three tables. Figure 4 shows the plot of the natural logarithm of the damping 
coefficients γ  against the bob frontal area. The equation of the line that fits the 
data is the following: 

( )ln 0.0277 4.3497x xγ = −   , 

with a correlation coefficient 2 0.8746R = . In Figure 4, the fluctuations in the 
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values shown in Tables 1-3 can be observed, however the 2R  value indicates a 
good correlation with an exponential relation between the bob frontal area and 
the pendulum damping coefficient γ . With this model a better correlation coef-
ficient was obtained than with other nonlinear models. Other authors have also 
found a nonlinear relation between the bob frontal area and the damping coeffi-
cient [8]. 

 

 

Figure 4. Fit of the natural logarithm of the damping coefficient as a function of the frontal 
area. 

 
The residual damping coefficient is calculated by extrapolating the bob frontal 

area to zero: ( ) 1
lim exp 4.3497 0.0129 sγ −= − =  (see Figure 4). This value is two or-

ders of magnitude higher than the damping coefficient due to air drag on a string 
reported by Mohazzabi and Shankar [2] for a string with the same diameter, which 
we can attribute to the viscosity of PMMA. This result indicates that, in this specific 
case, assuming negligible air resistance on the string is valid. For this value: 

2 2
0 lim 0 4.449 Hzω ω γ ω= − ≅ = . 

The solution of Equation (9) with 2 lim2γ γ=  is illustrated in Figure 5, where 
it can be observed that the strain ( )tε  oscillates with the forcing frequency ω . 
The maximum strain is obtained each 2T , when 0θ = , and the strain decreases 
exponentially at the extremes of the oscillation. In this solution, we assumed that 
both oscillatory systems, the bob and the string, are coupled through viscosity. 

 

 

Figure 5. Plot of the strain as a function of time. 
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With this experiment, we can indirectly study the complex Young’s modulus 
of the string. The damping coefficient of the string coupled to the pendulum is 

2 0m Mγ γ=  where 0γ  is the property of the material (PMMA). We have used 
this hypothesis to calculate the maximum value of the loss factor of PMMA from 
Equation (18): 

lim4 0.011γη
ω

= =  

The real value of the Young’s modulus 3.030 GPaY ′ =  was measured previ-
ously, thus 0.033 GPaY ′′ = . This value is within the range found for the complex 
Young’s modulus of the PMMA in the low-frequency limit obtained through other 
methods [9]. Additionally, with the value of Y ′ , we calculate 2k  and consequently 
the value of 1

2 6504.36 sω −= , which confirms the hypothesis 2ω ω  in Equa-
tion (13) and Equation (14) of our theoretical model. 

These results demonstrate that the proposed theoretical model and experiment 
can be utilized to study the complex Young’s modulus of a PMMA fiber under the 
effect of an oscillating force in the longitudinal direction. 

5. Conclusions 

The damping of a pendulum due to an extensible and viscoelastic string was eval-
uated using a procedure in which the frontal area of the mass tends to zero. Even 
in this case, we found that the viscosity of the string significantly affects the damp-
ing of the pendulum. 

Through our theoretical model and experiment, we developed a method to eval-
uate the complex Young’s modulus of a viscoelastic material. Regarding the coupling 
of the two oscillatory systems through their viscosity, we hypothesized that their 
damping coefficients are related by the ratio of their masses. This hypothesis was 
experimentally verified for a specific material (PMMA). Our findings correspond 
to the range of values reported in the literature for low frequencies. 

Since the damping coefficient is related to the complex Young’s modulus, this 
method is a contribution to the study of the viscoelastic properties of materials. 
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