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Abstract 
The rapid development of artificial intelligence (AI) technology is profoundly 
reshaping all walks of life, especially in the medical field. AI provides innova-
tive tools for medical diagnosis, treatment, and management and lays a solid 
foundation for personalized medicine and precision medicine. This paper re-
views the latest progress in the application of AI technologies such as machine 
learning (ML) and deep learning (DL) in ophthalmic diseases. 
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1. Introduction 

In the 21st century, the rapid development of artificial intelligence (AI) technology 
has quietly infiltrated all walks of life, especially in the medical field. From basic 
medical research to the application of clinical diagnosis and treatment, from dis-
ease diagnosis to prognosis evaluation, from disease prevention to health manage-
ment, AI technology is empowering the medical field at a great speed so that the 
model of medical services [1]. 

The examination results of ophthalmology are mostly in image or digital form, 
which is an important prerequisite for the application of AI. At present, AI algo-
rithms in the field of ophthalmology are mainly supervised learning. Traditional 
machine learning techniques such as support vector machines (SVM) and random 
forest (RF) show robust computing power and excellent performance in processing 
clinical data in digital or text forms. They have also been applied to small samples 
of ophthalmic image processing in the early stage. With the exponential growth of 
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clinical data, the big data information in ophthalmic images has too high compu-
tational complexity and low efficiency for traditional machine learning algo-
rithms. The ability of neural networks in feature learning and image processing of 
complex structures of large samples and high-dimensional data makes it one of 
the popular AI technologies in the field of ophthalmology. Transfer learning tech-
nology can transfer the trained model parameters to the new model, thus signifi-
cantly reducing the sample size required for new model training and improving 
the efficiency of model optimization [2]. 

In China, the development of ophthalmologists is not balanced, the overall 
technical level is low, and the proportion of ophthalmologists is unreasonable [3]. 
AI can significantly improve diagnostic efficiency. It provides innovative tools for 
screening, diagnosis, treatment, and prognosis management of various eye dis-
eases and shows excellent potential in personalized medicine and precision med-
icine [4]. 

This review summarized the main progress of AI in the field of ophthalmology 
in recent years. 

2. Myopia 

With the popularization of digital technology and the increase of people’s expo-
sure to electronic equipment, the incidence of myopia has increased rapidly [5]. 
According to statistics, there are more than 1.4 billion myopia patients in the 
world [6], and the overall myopia rate of adolescents in China is much higher than 
the world average. The development of ophthalmologists in China is not balanced, 
and traditional medical methods have been difficult to meet the needs of myopia 
prevention and control. AI technology has gradually become an important tool in 
myopia prevention and control. AI can process a large amount of visual data 
through deep learning, pattern recognition, and computer vision and extract val-
uable information. It has been applied in the prevention, screening, treatment of 
myopia and diagnosis of pathological myopia [7]. 

2.1. Personalized Treatment 

Using AI technology to provide precise and personalized treatment for school-age 
children will likely prevent myopia development. Recently, some new smart wear-
able devices have appeared on the market, which can detect children’s and ado-
lescents’ eye postures and habits in real time. The representative device is the 
“cloud clip” developed by the Aier Eye Institute of Central South University [8]. 
Research shows that wearing a cloud clip can effectively prevent lousy posture and 
close reading and writing behavior and can still be maintained for some time after 
stopping wearing, slowing down myopia’s formation and progress [9]. 

2.2. Myopia Screening 

At present, the most important means of myopia screening in China is in the an-
nual physical examination of primary and secondary schools, professionally 
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trained nurses or technicians enter the school for naked eye vision examination, 
and then refer children with abnormal vision to the hospital for further optometry 
to confirm the diagnosis [10]. Some new technologies assisted by AI can remotely 
monitor the refractive status of adolescents in real time through mobile intelligent 
devices, which is conducive to the large-scale promotion and popularization of 
myopia screening, effectively reducing the time cost and labor cost, and is of great 
significance to the public health prevention and control of myopia [11]. 

Jaeb Visual Acuity Screener is an open and free myopia screening software [12]. 
Parents can use a home computer to screen children for myopia at home. SVone 
is an external device that can be connected to a common smartphone on the mar-
ket and can be used for refractive screening at any time [13]. 

2.3. Myopia Prediction 

The smartphone application developed by Ma et al. predicted that the sensitivity 
and specificity of myopia in the future were 0.83 and 1.00, respectively [14]. Also, 
the prediction model of juvenile myopia progression established by Yang et al. has 
good performance and accuracy [15]. 

2.4. Diagnosis of Pathological Myopia 

Hemelings et al. developed a model based on a deep learning algorithm using color 
fundus photography, which can successfully diagnose pathological myopia and clas-
sify fundus lesions caused by it [16]. Moreover, Li et al. trained four independent 
deep learning models using OCT image reports [17]. Sogawa et al. also used OCT 
images to construct convolutional neural network models to assist in the diagnosis 
and identification of pathological myopia fundus complications [18]. 

3. Corneal-Related Diseases 

AI also shows great potential in the field of corneal-related diseases. A number of 
studies have applied AI to keratoconus and infectious keratitis. 

3.1. Keratoconus 

Keratoconus (KC) is a non-inflammatory corneal dilatation eye disease that often 
leads to corneal asymmetry, progressive thinning, and irregular astigmatism ulti-
mately leading to visual loss. The lack of early diagnostic tools has led to a low 
diagnostic rate of KC [19]. As a new generation of diagnostic tools, AI can use 
multimodal ophthalmic imaging to analyze multiple parameters to improve the 
diagnosis and treatment of early KC in the case of poor sensitivity of a single in-
strument or single parameter diagnosis of early KC. The early diagnosis of kera-
toconus is complex, and it is necessary to comprehensively analyze the corneal 
topography and biomechanical characteristics in the evaluation process. The AI 
model based on corneal topography (EyeSys System 2000, Tomey, Orbscan, Pen-
tacam) and anterior segment optical coherence tomography can help the early di-
agnosis of keratoconus [20] [21]. 
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3.2. Keratitis 

Microbial keratitis (MK) is one of the leading causes of corneal blindness world-
wide [22]. However, the analysis of the severity of keratitis in clinical practice is 
highly subjective and relies heavily on the diagnosis of the observer, which is time-
consuming and labor-intensive [23]. Therefore, there is an urgent need for an AI-
based algorithm to quickly and accurately diagnose microbial keratitis. In 2018, 
Wu et al. used an adaptive robust binary pattern (ARBP) combined with a support 
vector machine algorithm to construct an automatic diagnosis algorithm to diag-
nose and identify microbial keratitis accurately [24]. This method has good ad-
vantages compared with the results of corneal scraping. Unlike the algorithms that 
identify keratitis diseases alone, the deep learning system developed by Wu et al. 
can identify keratitis and other ocular surface diseases, identify information re-
lated to diagnosis, and provide treatment recommendations. Although there are 
not many studies on AI based on keratitis, AI has shown good feasibility in the 
diagnosis of keratitis [25]. 

4. Cataract 

Cataract is the leading cause of visual impairment worldwide and one of the most 
serious causes of blindness [26]. With the progress of China’s aging population 
and the increase of the elderly population, by 2050, China’s cataract blindness 
cases are expected to reach 20 million. Early diagnosis and surgical treatment of 
cataracts are essential to improving patients’ quality of life with low vision [27]. 
With the continuous improvement of AI’s ability to classify images and videos, 
people can screen and diagnose cataracts without the intervention of clinicians, 
further reducing the cost of cataract diagnosis and treatment and improving the 
efficiency of cataract diagnosis and treatment [28]. 

4.1. AI Diagnosis of Cataract 

The clinical diagnosis of cataract depends on the degree and location of lens opac-
ity observed under the slit lamp biological microscope, combined with the pa-
tient’s visual acuity, medical history, and other information to make a diagnosis. 
At the same time, AI uses slit lamp microscope images and fundus images to make 
a diagnosis of cataracts [28]. In 2010, Xiang D et al. proposed the use of AI to 
identify slit lamp microscope images for the diagnosis of nuclear cataracts. A 38-
point shape model was used to detect the nuclear area in the lens, and meaningful 
and accurate features were extracted to compare with four standard photos for 
grading. The first system that can automatically detect the nuclear area in the slit 
lamp image was proposed and tested in a database of more than 5000 images. The 
results showed that up to 95% of the photos can be automatically diagnosed with-
out user intervention [29]. Then, in 2019, Zhang H et al. proposed a multi-feature 
superposition mode. Using the DL algorithm, the cataract was automatically di-
vided into six levels according to the fundus image, which required three pro-
cesses: First, the deep neural network performs feature extraction on the fundus 
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image; then, the texture features of the original image and blood vessel image are 
obtained. Finally, the superposition is used for multi-model training. The super-
position can use multiple classifiers for ensemble learning to reduce the compre-
hensive error, thereby improving the effect of cataract grading diagnosis. The ac-
curacy of the six-level classification of cataract by this method can reach 92.66% 
on average and up to 93.33%. Using this method to classify cataracts into four 
grades, the accuracy can reach 94.75%, which is at least 1.75% higher than the 
existing methods [30]. 

4.2. AI Optimization of Intraocular Lens Diopter Calculation 

With the improvement of people’s living standards, the high demand of human 
beings has promoted the rapid development of cataract surgery from vision res-
toration surgery to precise refractive surgery. After cataract surgery, patients gen-
erally accepted that the postoperative refractive goal is within 0.50 D of emmetro-
pia or mild myopia. Any single unoptimized formula can only reach 70% - 80%, 
and about 25% of patients deviate from the target diopter more than 0.50 D [31]. 
To this end, Siddiqui et al. proposed an AI-integrated intraocular lens calculation 
formula system, which integrates other formulas and is suitable for calculating 
typical and atypical axial length, corneal curvature and anterior chamber depth. 
Clinicians do not need to find the most matching calculation method from mul-
tiple formulas. It first uses axial length, corneal curvature, anterior chamber depth, 
lens constant, and target refractive value as input parameters and then adjusts the 
calculation with axial length, corneal curvature, and anterior chamber depth to 
achieve the purpose of optimizing the formula [32]. 

5. Glaucoma 

Glaucoma is an optic neuropathy characterized by progressive death of retinal 
ganglion cells (RGC) and their axons [33] [34]. In China, the prevalence of glau-
coma in people over 40 years old is about 2.6%, and the blindness rate is about 
30.0% [35]. The onset of glaucoma is insidious. Most patients are in the middle 
and late stages of the disease when they are diagnosed [33], and the optic nerve 
function has suffered severe irreversible damage. Therefore, early diagnosis and 
timely intervention significantly reduce visual function damage and improve 
prognosis in glaucoma patients. Existing evidence shows that various AI methods 
can improve the diagnostic accuracy of early glaucoma and reduce missed diag-
noses and misdiagnoses [34] [36]. AI has high sensitivity and specificity in detect-
ing glaucomatous optic neuropathy from fundus color photography, which is ex-
pected to improve the screening efficiency of glaucoma, expand the screening 
population, and simplify the work of ophthalmologists [37]. 

5.1. Glaucoma Screening 

Currently, glaucoma screening techniques mainly include intraocular pressure ex-
amination and fundus photography. AI is primarily combined with fundus 
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photography in the early screening of glaucoma. Fundus photography is the most 
rapid and simple method to judge glaucoma optic nerve damage. At the same 
time, intraocular pressure examination is the gold standard for glaucoma screen-
ing, and it can also be used as an essential auxiliary diagnostic basis for fundus 
photography [38]. In recent years, there have been many DL studies on glaucoma 
recognition by fundus photography, which are mainly applied to fundus image 
recognition from two aspects: one is to obtain an apparent cup-disc ratio (C/D) 
from the fundus image or directly classify the recognized image as a whole to de-
tect the presence of glaucoma lesions; based on the first aspect of the study, Li 
Developed a DL network (ResNet101) that uses color fundus images to recognize 
glaucomatous optic neuropathy (GON). In this study, 34279 fundus images were 
used to train and test the DL model. The results showed that the sensitivity was 
0.957, the specificity was 0.929, and the area under the receiver operating charac-
teristic curve (AUC) was 0.992. This is a study based on a large database with high 
credibility. This DL algorithm can efficiently and low-costly provide experts with 
auxiliary diagnostic advice and help primary medical institutions conduct large-
scale glaucoma screening. The other is to predict the OCT (Optical Coherence 
Tomography) detection value by identifying the fundus image through the “ma-
chine-to-machine” mode, such as by predicting the thickness of the retinal nerve 
fiber layer (RNFL). Based on the second aspect of the study, the principle of this 
kind of model is to accurately predict the measurement parameters of OCT exam-
ination by identifying fundus images which can more accurately identify glau-
coma lesions [39]. In a study by Medeiros et al., a CNN was trained using OCT 
data from 32,820 fundus photographs to evaluate the fundus photographs and 
predict the average RNFL thickness detected by OCT. The predicted RNFL thick-
ness has a high similarity to the actual measured RNFL thickness. The AUC of 
using these expected values to distinguish glaucoma from normal eyes is 0.944, 
while the AUC measured using the actual RNFL value is 0.940, and the results are 
almost the same. Therefore, the “machine-to-machine” model can promote the 
combination of multimodal data and strengthen the connection between multiple 
glaucoma examinations [40]. China has put forward uniform standards for data 
acquisition, algorithm model construction, and hardware requirements of AI 
glaucoma fundus photography-assisted screening systems [41]. With the rapid 
development of AI in fundus image recognition ability, combined with more 
standard clinical guidelines, early screening of glaucoma will be more efficient, 
high-accuracy, and low-cost. 

5.2. Accurate Diagnosis of Glaucoma 

Fundus photography is very convenient and economical and is suitable for assist-
ing large-scale glaucoma screening in grassroots areas. However, further accurate 
diagnosis requires the combination of OCT and visual field examination results. 
Both methods are objective criteria for judging glaucoma damage. At the same 
time, some studies combine OCT with the diagnosis of visual field examination, 
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analyze the function and structure, and propose the objective criteria for glau-
coma diagnosis from the structure and function [42], and obtain more reasonable 
and accurate diagnostic results. 

5.2.1. Optical Coherence Tomography (OCT) 
In recent years, numerous studies have utilized deep learning techniques applied 
to OCT images and data to detect glaucoma. The input data modes for these deep 
learning models can be categorized into three main types: first, inputting quanti-
tative parameters, thickness maps, deviation maps, and similar data obtained by 
traditional OCT detection and automatically segmented by computer. For exam-
ple, Lee et al. integrated DL by inputting the thickness and deviation maps of 
RNFL and GCIPL and extracting features from them. The AUC of the algorithm 
is 0.990, which achieves excellent performance and can accurately distinguish 
glaucoma and normal eyes [43]. Second, inputting is performed using undivided 
two-dimensional scans. Thompson et al. used the undivided two-dimensional 
scanning image for DL algorithm training to identify glaucoma and healthy eyes 
efficiently. Compared with traditional OCT, their algorithm has better diagnostic 
performance for glaucoma structural changes [44]. Third inputting is done using 
undivided three-dimensional scans. In the study based on unsegmented 3D scan 
images, the DL algorithm can make full use of the relevant information of glaucoma 
lesions [45]. In addition, Maetschke et al. developed an undivided OCT three-di-
mensional scanning image specifically designed to identify qingguang [46]. 

5.2.2. Vision 
Visual field examination is an essential basis for the diagnosis of glaucoma. In the 
early study of Li et al. 4012, pattern deviation probability maps were input to clas-
sify glaucoma, and CNN was used for testing, training and verification. The results 
showed that the AUC was 0.876, better than the other two glaucoma classification 
criteria. At the same time, the accuracy rate was also higher than that of glaucoma 
doctors and experts. The specificity and sensitivity were 0.826 and 0.932, respec-
tively. An unsupervised algorithm called prototype analysis appears to quantita-
tively classify and independently analyze the defect patterns of the field of view. 
This method is similar to traditional statistical analysis [47]. In the study con-
ducted by Elze et al., unsupervised learning was applied to analyze 13,321 Humph-
rey visual fields. The aim was to identify various patterns of visual field defects 
and to detect those associated with retinal nerve fiber layer (RNFL) damage. The 
results obtained can help quantify different subtypes of visual field defects related 
to glaucoma [48]. Moreover, in subsequent studies, factors such as non-glauco-
matous visual field defects and lens edge artifacts were excluded to enhance the 
accuracy of the results [49]. 

5.2.3. OCT Combined with Visual Field 
The application of single-modality AI based on OCT or visual field has made 
some progress, and the application of multi-modality AI combined with OCT and 
visual field has also achieved initial results. Various studies have shown that the 
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diagnostic performance of AI test learning on structure and function is better than 
that of AI test learning on structure or function alone [50] [51]. Therefore, a series 
of multimodal AI studies based on the combination of OCT and visual field have 
emerged. In the study of Xiong et al., a new DL algorithm based on OCT and 
visual field-paired data input was developed. For the first time, the superiority of 
the dual-modality diagnostic algorithm over the single-modality was verified on 
the large sample of OCT-visual field-paired data. Due to the complementarity of 
OCT and visual field, the dual-modality algorithm can accurately identify glau-
coma patients. It is the world’s first big data examination of joint function (visual 
field) and structure (OCT). The AUC reaches 0.943, which is better than any sin-
gle modality detected in the same period [52]. 

6. Fundus Diseases 

With the increasing aging of the population in China, the prevalence of fundus 
diseases is increasing year by year. Fundus is the only part of the whole body that 
can be observed directly and intensively with the naked eye to arteries, veins and 
capillaries. Many systemic diseases can be reflected from the fundus, such as dia-
betes, hypertension, kidney disease and so on. Early diagnosis of fundus diseases 
is very important [53]. 

6.1. Diabetic Retinopathy 

Diabetic retinopathy (DR) is the leading cause of visual loss and preventable 
blindness in adults aged 20 - 74 [54]. Therefore, through early screening of DR, it 
is found that patients who need systematic ophthalmic examination and treatment 
are expected to avoid permanent visual loss. AI-related research on DR is the ear-
liest, largest and most mature in the field of ophthalmology, especially in DR 
screening, progress risk assessment, and remote diagnosis and treatment [55]. 

6.1.1. Application of AI Model in DR Screening 
Previously, AI systems relied on “hard coding” for image processing and detecting 
specific lesions. In the past decade, the assistance of deep learning algorithms has 
enabled AI systems to learn and improve independently according to the ever-
expanding image database, which has improved the sensitivity and specificity of 
diagnosis [56]. Compared with traditional machine learning, the advantages of 
deep learning are reflected in high automation. First, it does not need to manually 
extract data and convert it into machine algorithms, relying on large data sets to 
generate representative data directly. Secondly, there is no need to set precise 
rules, and automatic operation without monitoring can be achieved by learning 
many examples of expected behaviors. A convolutional neural network is a widely 
used deep learning model. It can receive input images and assign various features 
to analyze retinal color images automatically [57]. The model has also been ap-
plied to frequency domain optical coherence tomography (SD-OCT), and its ac-
curacy in identifying high-reflective lesions exceeds traditional methods [58]. 
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However, although the automatic analysis model of retinal images can help im-
prove the cost-effectiveness of DR screening, the acceptance of AI systems by pa-
tients and medical workers, medical ethical issues and false negatives are caused 
by insufficient algorithm learning capabilities [59]. 

6.1.2. Risk Prediction Model of DR Progress 
The model for predicting the risk of DR occurrence and progression is based on 
the creation of a specific learning system, which can summarize and analyze the 
condition of a large number of different patients and the targeted treatment meth-
ods adopted by ophthalmologists [60] [61]. The popularization and application of 
electronic medical records have enabled the establishment of a health information 
database equipped with massive high-resolution images and promoted the further 
development of deep learning or AI models. This work is expected to optimize the 
care of complex chronic diseases such as diabetes and to predict the risk factors of 
DR in a personalized manner [62]. 

6.1.3. Remote Diagnosis and Treatment 
The rapid development of science and technology provides technical support for 
remote diagnosis and treatment. Yeh et al. evaluated the effect of fundus images 
taken by handheld mobile devices on isolated islands where medical resources are 
scarce. The results showed that the device is easy to operate, which helps to expand 
the scope of DR screening, improve the patient’s medical compliance, and meet 
the needs of DR telemedicine screening and referral in remote areas [63]. How-
ever, image resolution and rating need to be improved. At the same time, the AI 
rating system will be applied to the rapid primary screening of retinal images. 
Only the images with positive primary screening need to be further evaluated, 
graded, and processed by ophthalmologists to establish a telemedicine model with 
low workload and high income [64] [65]. 

6.2. Choroidal Neovascularization in Pathological Myopia 

The incidence of pathological myopia (PM) has increased in recent years, the lead-
ing cause of visual impairment worldwide. Choroidal neovascularization (CNV) 
is one of the most serious complications of PM. It can cause macular lesions in 
the fundus, resulting in decreased vision, dark spots, visual deformation, visual 
field defects, etc. Optical coherence tomography angiography (OCTA) plays a vi-
tal role in diagnosing of CNV secondary to PM, clearly show the location and size 
of neovascularization. The existing research has effectively analyzed the standard 
choroidal structure and the automatic segmentation and quantitative analysis of 
blood vessels. Due to the presence of projection artifacts and signal attenuation, 
the accurate quantification and identification of PM-CNV is relatively difficult. 
However, deep learning networks are still performing strongly [66] [67]. How-
ever, due to the lack of a large amount of data to train a deep learning network, 
intelligent architecture and input selection are required. The network design uses 
a lot of input. 
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6.3. Retinopathy of Prematurity 

Retinopathy of prematurity (ROP) is a vascular proliferative blinding eye disease 
that occurs in premature infants and low birth weight infants [68]. Early ROP 
screening and diagnosis are highly dependent on ophthalmologists. With the 
rapid development of modern medical imaging technology and the rise of tele-
medicine, artificial intelligence (AI) has been further applied in the field of ROP. 
The research and application of AI in ROP are mainly manifested in ROP staging, 
zoning, and severity of lesions [69]. 

6.3.1. AI in the Application of ROP Staging 
Peng et al. proposed a new ROP staging method based on deep learning neural 
network model. The model classifies the 1 - 5 stages of ROP, and uses 1173 
RetCam images for verification. The accuracy is 97%, which proves that the accu-
racy of this model is highly accurate [70]. 

6.3.2. AI Application in ROP Partition 
Zhao et al. used CNN to perform deep learning on 9800 RetCam images. An al-
gorithm model that can automatically identify the ROP I area was constructed 
with an accuracy rate of 91% by identifying and locating the location of the optic 
disc and the macular. This model is expected to reduce the workload of ophthal-
mologists and timely identify aggressive ROP (A-ROP) at the rear of area I or area 
II [71]. Peng et al. achieved automatic partitioning of ROP through a semi-super-
vised feature calibration adversarial learning model. This model is divided into a 
generation network and a composite network, and the feature calibration module 
is embedded in it to improve classification performance. This algorithm model 
was evaluated on 1013 fundus images of 108 patients, and good classification re-
sults were obtained [72]. 

6.3.3. Application of AI in Assessing the Severity of ROP 
To quantify the severity of ROP, Campbell et al. used a “ROP Plus Severity Quan-
titative Rating Scale” derived from AI deep learning to score the degree of vascular 
changes in each posterior fundus image, where 1 - 3 points represent no plus, 4 - 
6 points represent pre-Plus, and 7 - 9 points represent plus [73]. Campbell et al. 
compared the scores calculated by the “ROP plus severity quantitative score table” 
with the diagnosis results of 34 members of the ROP International Classification 
Alliance, and analyzed the ROP staging plus lesions. The kappa weighted value 
and Pearson correlation coefficient were 0.67 and 0.88, respectively, indicating 
that in the diagnosis of ROP staging plus lesions, the results of the ROP Plus Se-
verity Rating Scale were highly consistent with the results of international ROP 
experts [74]. 

7. Squint 

Strabismus is a disease in which both eyes cannot gaze at the same object at the 
same time when focusing due to abnormal coordinated movement of the 
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extraocular muscles or central dysfunction [75].Strabismus affects the appearance 
and may cause amblyopia or binocular stereopsis dysfunction. Timely screening, 
diagnosis, and treatment of strabismus is necessary. Currently, the clinical exam-
ination methods of strabismus are mainly manual measurement and judgment. 
With the development and popularization of artificial intelligence, many advances 
have been made in the application of artificial intelligence and related technolo-
gies in diagnosing and treating strabismus [76]. De Figueiredo et al. developed 
another application based on residual neural network (ResNet) 50, which can di-
agnose strabismus by identifying different fixation positions of patients. The sys-
tem was developed using different eye-gaze photos of 110 patients. The overall 
accuracy of the diagnosis of strabismus was between 0.42 and 0.92 and the accu-
racy was between 0.28 and 0.84 [77]. Fan et al. established a remote squint dataset 
and proposed a regression forecasting convolutional neural network (RF-CNN) 
framework. By segmenting the eye region of each image, the deep learning neural 
network is used to classify and identify the segmented region. The experimental 
results on the established remote squint dataset show that the proposed RF-CNN 
performs well in automatic squint detection in telemedicine applications. Strabis-
mus correction surgery is the most important treatment for strabismus. Artificial 
intelligence technology can predict the efficacy of surgery and help strabismus 
patients choose the best surgical treatment strategy [78]. Leite et al. proposed a 
new method to assist in designing strabismus surgery based on a decision tree 
repressor algorithm. This method adopts two different application methods: mul-
tiple single-target models and multi-target models. Finally, the efficiency of the 
method is represented by the average difference between the value indicated by 
the method and the standard value given by the physician. In the most accurate 
model of this study, the average error of extraocular muscle surgery was 0.66 mm 
[79]. 

8. Orbital Diseases and Ocular Tumor Diseases 

Orbital disease is a systemic disease that covers inflammation, tumors, vascular 
disease, metabolic disease, trauma, etc. Its differential diagnosis, staging and clas-
sification depend on imaging methods such as computed tomography (CT) and 
magnetic resonance imaging (MRI). Combining artificial intelligence with these 
imaging methods is expected to improve the accuracy and safety of diagnosing 
and staging of orbital diseases and ocular tumor diseases. Artificial intelligence 
has been widely used in diagnosing and predicting of thyroid-associated ophthal-
mopathy, orbital blowout fracture, melanoma, basal cell carcinoma, orbital ab-
scess, lymphoma, retinoblastoma, and other diseases [80]. 

8.1. Graves Eye Disease 

Graves ophthalmopathy (GO), also known as thyroid ophthalmopathy or thyroid-
associated ophthalmopathy, is an autoimmune disease. It is the most common 
orbital disease in adults [81], which can cause incomplete palpebral fissure 
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closure, diplopia, decreased vision, and limited eye movement and may even lead 
to blindness [82]. At present, deep learning technology has been widely used in 
the diagnosis, classification, staging, and prognosis evaluation of GO. Evaluating 
the activity of GO is very important for formulating of a disease treatment plan, 
and MRI has a significant reference value for the evaluation of activity [83]. Lin et 
al. adopted an algorithm that inherits and simplifies the traditional VGG16 net-
work structure. This method has good generalization ability, increases the depth 
of the network, and reduces the problems of gradient disappearance and gradient 
explosion. A deep learning model was established using the labeled MRI data to 
distinguish the patient’s active and inactive phases [84]. Differently, Yao et al. de-
veloped a two-stage deep learning method based on orbital 99Tcm-DT PA 
SPECT/CT images, which has high accuracy in distinguishing the activity of GO 
patients, low diagnostic cost, and a simplified examination process [85]. Thyroid 
dysfunction optic neuropathy (DON) is a serious complication of GO, which can 
lead to permanent visual loss [86]. Early diagnosis of DON is essential for the de-
velopment of treatment options and improvement of prognosis. Wu et al. pro-
posed a hybrid deep learning model to accurately identify suspected DON patients 
using CT. The hybrid model consists of a multi-scale multi-attention fusion mod-
ule and a deep convolutional neural network. The model can accurately identify 
suspected DON patients and has positive significance for the diagnosis and pre-
diction of suspected DON cases [87]. 

8.2. Uveal Melanoma 

Uveal melanoma is adults’ most common primary intraocular malignancy [88]. 
Timely and effective early screening and diagnosis are significant for prognosis 
[89]. Zhang et al. first used a deep learning method to automatically extract the 
iris color spectrum of the iris region based on the patient’s anterior photo using 
the U-net model to screen patients who may have uveal melanoma. This method 
has shown excellent screening results in the Chinese population. However, due to 
the obvious racial differences in iris coloration and the existence of environmental 
challenges such as standardized iris color illumination brightness, the widespread 
promotion and application of this method may be affected [90]. 

8.3. Retinoblastoma 

Retinoblastoma (RB) is the most common intraocular malignant tumor in chil-
dren [91]. In treating RB, it is essential to segment the eye’s standard structure 
and tumor tissue accurately. MRI and CT scans are often used for labeling in clin-
ical practice. Kumar et al. developed a classifier based on fundus photography us-
ing convolutional neural network CNN models (AlexNet and ResNet50) to detect 
RB and distinguish tumor and non-tumor regions to provide a simple and accu-
rate segmentation method. The final comparison results show that the model’s 
classification performance is more accurate than other existing models [92]. In 
addition, some teams can use artificial intelligence deep learning algorithms to 
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assess the severity of orbital abscess [93], evaluate whether the tumor invades the 
orbit to help doctors choose appropriate treatment options, and make high-pre-
cision pathological diagnosis of uveal melanoma [94] and eyelid malignant mela-
noma [95]. 

9. Application of Artificial Intelligence in Ophthalmic  
Treatment 

9.1. Artificial Intelligence-Guided Retinal Laser Therapy 

Panretinal photocoagulation (PRP) is recognized as an effective treatment for DR, 
but reports have found that about 33% of DR patients still have uncontrolled ne-
ovascularization after PRP, which may lead to complications such as retinal de-
tachment and vitreous hemorrhage, which may affect the final prognosis [96]. Fu 
et al. introduced a new technology called targeted retinal photocoagulation (TRP), 
which is mainly based on the selective photocoagulation of the far peripheral ret-
inal non-perfusion area (NPA) shown by fluorescein fundus angiography. This 
model is conducive to the precise positioning and implementation of TRP, which 
can effectively delay the progression of the disease [97]. 

9.2. Artificial Intelligence-Assisted Ophthalmic Drug Development 

The emergence of AI technology provides new and strong support for drug re-
search and development when new drug research and development is facing the 
triple dilemma of long cycle, high cost, and low success rate. In recent years, arti-
ficial intelligence has also been involved in the field of ophthalmic drug research 
and development, such as eye disease target discovery [98] [99], ophthalmic small 
molecule compound screening [100] [101], ocular pharmacokinetic model devel-
opment [102] [103], ophthalmic clinical trials [104], etc. Help ophthalmic drug 
research and development to achieve a leap from precision to intelligence. 

10. Conclusion 

The application of AI in medicine is in full swing and changing with each passing 
day. In the future development of intelligent ophthalmology, promoting clinical 
application and maintaining medical equity will become key issues. Promoting 
the clinical implementation of intelligent ophthalmic technology requires the co-
operation of governments, medical institutions, scientific research institutions, 
and enterprises to “jointly formulate policies, strengthen infrastructure construc-
tion, promote technology popularization and education, and promote medical 
and industrial cooperation” to achieve the comprehensive application and fair dis-
tribution of technology to provide patients with better and more convenient eye 
health services. At the same time, this review emphasizes the importance of med-
ical equity in applying of intelligent eye technology, especially for the problems of 
resource allocation, technical accessibility, and education and training. We must 
recognize that only through continuous monitoring and evaluation, close cooper-
ation of stakeholders, and learning from the experience of successful cases can we 
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promote the implementation of intelligent eye technology and maintain medical 
equity to ensure that intelligent eye technology benefits a broader range of people 
to fairness and accessibility of intelligent technology-assisted eye health services. 
Looking forward to the future, with the continuous development of intelligent 
ophthalmology technology, we can expect the popularization and application of 
intelligent ophthalmology technology. Governments, medical institutions, tech-
nology developers, and all sectors of society should strengthen cooperation to 
work together to promote the development of intelligent eye technology to ensure 
that technology can benefit more people and provide more equitable and high-
quality eye health services for patients around the world. 
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