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Abstract 
We estimate the electromagnetic form factor of the transverse part of cross 
section Tσ  and provide a correction for the electromagnetic form factor of 
the longitudinal component of cross section Lσ  for the charged pion within 
the frame work of hadronic operator. To achieve this, we consider a slightly 
deformed curve deviating from a straight line and construct a set of differential 
equations by comparing them to the equation determining charged pion wave 
function in a straight line case. By solving these equations, we employ the Fou-
rier transform of these wave functions. 
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1. Introduction 

Recently, surprising experimental results have been reported in hadron Physics. 
One notable finding pertains to the electromagnetic form factor of the neutral 
pion, 0π . Typically, the t dependence of neutral pion, is parametrized by Regge-
like function. However, this parametrization is no longer valid at 21GeVt− > , 
where a Gaussian-like behavior as published by Dlamini et al. [1] is observed. 
These results seem to be confirmed by the electromagnetic form factor of the 
charged pion π + , reported by Huber and Horn [2] [3], whose results remain 
Regge-like despite of using the same technique, specifically, error analysis, as in 
Ref. [1]. In both sets of experiments, their technique seems to perform well for the 
Longitudinal-Transverse separation of a differential cross section. In the differen-
tial cross section of t-dependent generalized parton distribution (GPD), Lσ , lon-
gitudinal part, reflects t-channel contribution, that is, quasi-elastic mechanism so 
that it reflects strong interaction between quark and antiquark due to exchanging 
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gluons. Meanwhile, the transverse component Tσ , reflects contributions beyond 
the t-channel, highlighting non-gluon exchange interaction [4]. Therefore, precise 
L-T separation is crucial for accurately determining t-channel contributions. In 
this regard, techniques used by Ref. [1]-[3] seem reliable based on their results. 
Although past Rosenbluth separation (L-T separation) was inadequate [5]-[8], we 
can expect to have reliable  Tσ  data near future. Thus, it is meaningful to esti-
mate Tσ  by various ways. In this paper, we show an attempt to estimate Tσ  in 
the frame work of hadronic operator proposed by Suura [9]. 

2. Formulation and Evaluation 

Previously we derived the pion electromagnetic form factor from straight string 
that corresponds to the electric field line of color neutral charge, similar in shape 
to the electric field line of an electric dipole. The key difference is that gluons select 
only one path at a time, whereas in the electric dipole scenario, the entire electric 
field line exists simultaneously. Additionally, the probability of selecting a path be-
comes a weighting factor and only a slightly deformed line, deviating from a straight 
line, can be chosen. We point that, in most cases, gluons opt for a straight line path. 

The most important assumption is that this curve corresponds to a state whose  

energy eigenvalue is pion mass ( )
2

1 0
2

g LE δ
 

= 
 

. We showed that the pion wave  

function is obtained from the equation for 3χ , which is a solution for the vector 
component as described in Ref. [10]. Furthermore, the kinetic term of 3χ  has 
exact same form as in the two-dimensional case, meaning that the correction ex-
plore pertains solely to 3χ , the charged pion (vector channel solution). 

By considering the energy eigenvalue as the pion mass squared, that is  

( )
2

1
0 0

2
g L

P δ= , the equation for 3χ  from Ref. [10] becomes as 

22 2
23 3 1

3 32 2
| |1 1 0
2

g L r
r rr r

χ χ χ χ
 ∂ ∂

+ − − = ∂∂  
             (1) 

Note that 1L  is replaced by 1L  following to erratum [11]. 

In Equation (1), we can consider the term 
22

1 2
2

1
2

g L
r

r
 

− −   
 

 as potential 

term. Actuary 2
1
r

−  term comes from kinetic term and 
22

1 2

2
g L

r
 

−  
 

 term  

comes from interaction potential due to gluon exchange. However, in following 
process, we will treat both terms as potential terms for the time being. Although 
an electric field line is different from a part of arc, we are considering only a slight 
deviation from a straight line, utilizing an arc segment with a large radius 2ρ  
instead of the exact electric field line. In this context, r  is described as 2r ρ ϕ= . 
The important point here is that this coordinate system differs coordinate system, 
where 2 2

1 1 1x yρ = + . Thus, we describe 2ρ  as 2 2
2 2 2x yρ = + . Under our 
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assumption, the equation for the curved line is described as follows. 

( )
222 2

1 2
2 22 2 2 2

1 22 2 2

1 1 1 , 0
2

g L
r X

r
ρ ϕ

ρ ρρ ρ ϕ

  ∂ ∂ ∂ + + − − =  ∂∂ ∂   
        (2) 

The description of r-terms serves as potentials through which we obtained the 
eigenvalue corresponding to the pion mass squared. This is because we are con-
sidering correction to the electromagnetic form factor within the same eigenvalue 
framework. Thus, in this equation, we consider r-terms as constants while keeping 
in mind the relationship of 2 2r ρ ϕ= . 

To analyze Equation (2), we divide the domain into two regions: (i) the region  

where 2
1

2
Br r

g L
< =  and (ii) Br r> . In region (i), we approximate the poten-

tial as 2
1
r

−  while in region (ii), the potential is 
22

1 2

2
g L

r
 

−  
 

. Thus, the equa-

tions we need to address become 
Region (i) 

( )
2 2

1 2 22 2 2 2
2 22 2 2

1 1 1 , 0X
r

ρ ϕ
ρ ρρ ρ ϕ

 ∂ ∂ ∂
+ + − = ∂∂ ∂ 

            (3) 

Region (ii) 

( )
222 2

1 2
2 2 22 2 2

2 22 2 2

1 1 , 0
2

g L
r X ρ ϕ

ρ ρρ ρ ϕ

  ∂ ∂ ∂ + + − =  ∂∂ ∂   
        (4) 

First, we solve Equation (4) to derive the dimensionless electromagnetic form 
factor. 

Equation (4) can be transformed into the following form. 

( )
222 2

12 2
2 2 2 22 2

2 22 2

1 , 0
2

g L
r Xρ ρ ϕ

ρ ρρ ϕ

   ∂ ∂ ∂  + − + =   ∂ ∂  ∂   
       (5) 

In this form, we can use the method of separation of valuables. By setting 
( ) ( ) ( )2 2 2 2 2 2 2,X X Xρ ϕ ρ ϕ= , Equation (5) becomes as 

( ) ( )

( ) ( )

222 2
1 22

2 22
2 2 2 22

2
2

2 2 22
2 2 2

1
2

1

g L
r X

X

X l
X

ρ
ρ

ρ ρ ρρ

ϕ
ϕ ϕ

  ∂ ∂ + −   ∂ ∂   
 ∂

= − = ∂ 

           (6) 

where 2
2l  is arbitrary constant. 

Equation (6) is written as the set of following equations. 

( )
22 22

1 2 2
2 22 2

2 22 2

1 0
2

g L lr X ρ
ρ ρρ ρ

  ∂ ∂ + − − =  ∂∂   
           (7) 
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( )
2

2
2 2 22

2

0l X ϕ
ϕ

 ∂
+ = ∂ 

                      (8) 

Taking 
1
2

2 2 2X Xρ
−

= , Equation (7) becomes 

( )
2222 2

1 2
2 22 2

2 2

1
4 0

2

lg L
r X ρ

ρ ρ

 −  ∂
− − =   ∂   

 

             (9) 

Changing valuable as 2 2ρ αρ= , Equation (9) becomes 

2222
1 2 2

22 2
2

2

2

1
4 0

2

lg L
r Xα

ρ ρ

 −  ∂
− − =   ∂  

 

            (10) 

Taking 2
1

1
g L r

α = , Equation (10) becomes 

( )
2

2 2

2 22 2
2 2

1
1 4 0
4

l
X ρ

ρ ρ

 − ∂
− − = ∂ 

 

                 (11) 

Equation (11) is in the standard form of the Whittaker equation with 0κ =  
and 2lµ =  [12]. 

Then we can take solutions of Equation (11) as  

( ) ( )2 2

22
0, 2 0, 0, 1 2l l lW W W g L rρρ ρ

α
 = = 
 

. 

Rewriting 2
1 2g L rρ  as 2 2

1 2 1g L g L rρ , we observe that both  
2

1 2g L ρ  and 2
1g L r  are dimensionless. For three-dimensional Fourier  

transform the term ( )exp i ⋅q r  can be rewritten as 2
12

1

exp i g L
g L

 
 ⋅
 
 

q r .  

In this rewritten form, both momentum and configuration space are dimensionless. 
This suggests that Fourier transform should be taken with a scale transformation in 
spherical coordinates such as 2

1r g L r→  to maintain a dimensionless form. 
Consequently, the three-dimensional Fourier transform integral becomes 

( )( )2
2 2 2

1 1 1 10 2
2 1

d qg L g L r J g L r
g L

∞
 
 
 
 

∫              (12) 

where ( )1
2

J z  is Bessel function equal to spherical Bessel ( )0j z . 
This means we work in dimensionless spherical coordinates. 

Above consideration gives that we have to use scale changed 2ρ  as 2
1 2g L ρ  

because of keeping the relation 2 rρ ϕ =  such as 2 2
1 2 1g L g L rρ ϕ = . 

The solution of Equation (11) is ( )2

2 2
0, 1 2 1

2

1
lW g L g L rρ

ρ
 but for solu-

tion, we can multiply arbitrary constant. Then we choose 

1
4

2
1

1
g L

 
  
 

 as 
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multiplying constant. However, 2ρ  of 
2

1
ρ

 part of solution is not 2
1 2g L ρ  

so that final integration for 2ρ  is ( )
20

2
1 2d g L

ρ
ρ

∞

∫ . 

Here we calculate an area made by a curved line. 
Area made by curved line is calculated by the following formula. 

 

 
 

0
2

0

dArea 2 d 2 1
d

x yx y
x

 = π +  
 ∫  

Using 2
1 2g Lρ ρ= , ( ),x y  coordinate is described as sinx ρ ϕ= ,  

0cos cosy ρ ϕ ρ ϕ= − . 

Then area becomes by noticing d tan
d
y
x

ϕ= −  

( )

( )( )

( )

0sin2
0

2 3 3
0 0 0 0

33

0

0

1Area 4 d cos cos cos
cos

14 sin sin cos sin 4
3

14 2
24

ρ ϕ
ρ ϕ ϕ ϕ ϕ

ϕ

ρ ρ ϕ ϕ ρ ϕ ρ ϕ

ρ ϕ

= π −

= π − = π

= π

∫

 

To obtain the last line, we use the fact that under 0 1,ϕ   0 0sinϕ ϕ= , 
2
0

0cos 1
2
ϕϕ = −  and that 0 2

rρϕ =  is small because pion is small object although 

ρ  is large. 

This shows the area calculation contributes a quantity such as  

( ) ( )
3

23 312 2
1 2 12

1 2

g L r
g L g L r

g L
ρ

ρ

 
  =
 
 

. 

The solution of Equation (8) is easily obtained as 

( )2 eilX ϕϕ =                          (13) 

Thus ( )2
2 1X ϕ = . 

Next we solve the Equation (3). In this case, recalling 2 2r ρ ϕ=  we change the 
Equation (3) as 

( )
2 2

2
2 1 2 22 2 2 2

22 2 2 2

1 1 , 0Xρ ρ ϕ
ρρ ρ ϕ ϕ

  ∂ ∂ ∂
+ + − =  ∂ ∂ ∂  

            (14) 
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For Equation (14) we can use separation of valuable methods to solve equations. 
By setting ( ) ( ) ( )1 2 2 1 2 1 2,X X Xρ ϕ ρ ϕ=  Equation (5) becomes 

( ) ( ) ( ) ( )
2 2

2 2
2 1 2 1 2 12 2 2

1 2 2 2 1 22 2 2

1 1 1 1X X l
X X

ρ ρ ϕ
ρ ρ ρ ϕρ ϕ ϕ

    ∂ ∂ ∂
+ = − + = −    ∂∂ ∂    

 (15) 

where 2
1l−  is arbitrary constant. 

Equation (15) becomes the set of the following equations. 

( )
22

1
12 2

2 22 2

1 0l X ρ
ρ ρρ ρ

 ∂ ∂
+ + = ∂∂ 

               (16) 

( )
2

2
1 1 22 2

2 2

1 0l X ϕ
ϕ ϕ

 ∂
− − = ∂ 

                (17) 

To solve Equation (17), changing variable as 2 2ϕ αϕ=  and setting 
1

1
2l

α = , 

Equation (17) becomes 

( )
2

1 22 2
2 2

1 1 0
4

X ϕ
ϕ ϕ

 ∂
− − = ∂ 

                (18) 

Equation (18) is Whittaker equation with 50,
2

κ µ= = ±  [12]. For solution 

of Equation (18), we choose ( ) ( )2 1 25 50, 0,
2 2

52
2

M M lϕ ϕ µ
− −

 
= = −  

 
. Recalling 

the relation that rρϕ = , the solution of Equation (18) can be represented as 
2

1
1 15 5 2, ,22 2 1 2

2 2
l l

g L rrM l M l
g Lρ ρ− −

    =      
. 

To find a solution of Equation (16), we set ( )1 2 2
nX ρ ρ=  and institute this into 

Equation (16). Then determining equation for n  becomes 

( ) 21 0n n n l− + + =  

This gives 1n il= ± . Thus, a solution of Equation (16) is that ( ) 1
1 2 2

ilX ρ ρ=  so 
that ( ) 2

1 2 1X ρ = . 
Recalling scale changed Fourier Transform of Equation (12), the electromag-

netic form factor is obtained as the following equation. 

( )

( )( )

( )( ) ( )

0

2

2
1 2

2
25 12 2 2

1 1 1 1 150 2 20, 22 1 2 1

2

5
2 2 2 2 2

1 1 0, 1 2 1 1 122 2 11

d

d 2

1d

B

B

r

lr

F g L

g L r qg L r g L r M l J g L r
g L g L

qg L r g L r W g L g L r J g L r
g Lg L

π ρ
ρ

ρ

ρ
ρ

∞

−

∞

=

        ×     
    

 
 +
 











∫

∫

∫

       (19) 
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Note that in Equation (19) we include the contribution of area consideration. 
Recall that the wave function in region (i) originates from the potential that is 

in the kinetic term of the equation for 3χ  while the wave function of region (ii) 
arises from the interaction potential term of the equation for 3χ . According to 
the definition mentioned in Sec.1, the form factor for region (i) corresponds to 
the transverse form factor TFπ  and the form factor for region (ii) corresponds to 
the longitudinal form factor LFπ . To derive an approximate form of TFπ  and 

LFπ , we extend Br  to ∞  in region (i) and to 0 in region (ii). 
Therefore TFπ  and LFπ  are obtained as follows. 

2
1 max

2
1 0

2

5
1 150 20, 22 1

d d 2
g L

T g L

r qF r r M l J r
g L

ρ
π ρ

ρ
ρ−

∞
 ′   ′ ′ ′ ′=  ′     

∫ ∫        (20) 

( )
2

1 max
2 21 0

25
0, 10 2

2 1

1d d
g L

L lg L

qF r r W r J r
g L

ρ
π ρ

ρ ρ
ρ

∞
 
 ′ ′ ′ ′ ′ ′=

′  
 

∫ ∫         (21) 

where 2
1 2g Lρ ρ=′ , 2

1r g L r′ = . 
Note that for upper the limit of 2ρ  we use maxρ  instead of ∞ . This reason 

is as follows. We consider a slightly deformed case. However, as Suura mentioned 
in Ref. [9], in QCD, a linear string may change shape but remains linear. This 
means string mostly stays as a straight line, and if it becomes a curved line, it 
should not be asymptotically approached a straight line. Therefore, setting maxρ  
is reasonable. 

First, we evaluate Equation (21) by using following integral formula as follows. 
There is a formula as [13] 

( ) ( ) ( )
( ) ( ) ( )

( )

2 1
, ,0

1 2 1

2

4 3 2

d

1 1 2 2
2

3 3 1
2 2

3 3 31, , 1 , 1 ; , ,1 ;
2 2 2

xx W ax W ax J yx

y a

yF
a

ρ
κ µ κ µ ν

ν ν ρρ µ ρ µ ρ

κ ρ κ ρ ν

ρ ρ ρ µ ρ µ κ ρ κ ρ ν

−
−

− − − −

∞

Γ + + Γ + − Γ +
=

   Γ + + Γ − + Γ +   
   

 
× + + + + + − + + − + + − 

 

∫

  (22) 

under the condition 0y > , Re Re 1ρ µ> > − , Re 0a > . 

Because our case is 0κ = , we can apply this formula with 11
4

ρ = , 2 1lµ = = , 

a ρ= ′ , 1
2

ν = , 
2

1

qy
g L

= . Note that we choose 2 1l =  because l2 is arbitrary  

constant. 4 3F  is a generalized hyper geometric series. Generalized hyper geomet-
ric series p qF  is defined as [13] 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2
1 2 1 2

0 1 2

, , , ; , , , ;
!

k
pk k k

p q p q
k qk k k

zF z
k

α α α
α α α β β β

β β β

∞

=

= ∑


 



 

where ( ) ( ) ( )1 1i i i ik
kα α α α= + + − . 

Then 2 1
4 3a Fρ− −  becomes 
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( ) ( )

22

3 2

112 2
2

11

0

4
1 15 17 19 11 17 17 3, , , ; , , ;

4 4 4 4 4 4 2

15 17 19 11
14 4 4 4 1

17 17 3 !
4 4 2

kk k
k k k k

k

k k k

qF

q

k

ρ ρ

ρ

+∞

=

 ′ 
−  ′ ′   

       
        ′−         =  ′       

     
     

∑

        (23) 

We denote q′  as 
2

1

qq
g L

′ = . 

Changing a variable as 1ρ
ρ

′ = , thus integral range becomes 0 to  

02
1 0

1
g L

ρ
ρ

=  and after integration for ρ  Equation (23) becomes 

( ) ( )
1322
2

0

0

15 17 19 11
14 4 4 4

1317 17 3 ! 2
24 4 2

kk k
k k k k

k

k k k

q
I

k k

ρ
+

∞

=

       
        ′−       =

      +     
     

∑      (24) 

Then LFπ  is described as 

( ) 1313 22
22

0 max
0

15 17 19 11
14 4 4 4 

17 17 3 13! 2
4 4 2 2

k k
kkk k k k

L
k

k k k

q
F const q

k k
π ρ ρ

∞ ++

=

       
        ′  −       ′= − 

         +       
       

∑

(25) 

where 0
0

1ρ
ρ

=
′

 and max
max

1ρ
ρ

=
′

. 

Actuary we cannot describe Equation (24) as a function, however, we are inter-
ested in the behavior at large momentum q′  case. Then after 3 times integration 
for 0ρ  rough estimation gives the form of Equation (24) as 

( )
19

3 2
022

0

1~
1

I const
q

ρ
ρ′+

                  (26) 

We show the rough derivation of Equation (26) in the Appendix. 
The dependence of Equation (24) is 2q −′  because Equation (24) is estimated 

at large q′ . 
Important point is that even differentiating 3 times with respect to 0ρ , q′  de-

pendence of each appeared term is 2q −′  as same as that of Equation (26). Thus 
total dependence of LFπ  at large q′  is 

3
2q

−
′  because of the term q′  in 

Equation (25). Because we obtained 1q−  behavior of LFπ  in the case of strait 
line in Ref. [10], we can consider that this result is actually correction. 

Next we estimate TFπ  by evaluating Equation (20). 
The definition of Whittaker function ( ),M zκ µ  is following [12]. 

( ) 1

1
2

, 1
1exp ,2 1;

2 2
zM z z F z

µ

κ µ µ κ µ
+    = − − + +   
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1 1F  is generalized hyper geometric series p qF  with 1p =  and 1q = . 

In our case 12 rz l
ρ
′

=
′

 and ρ′  is quite large so that taking only the first term 

of 1 1F  is sufficient to evaluate Equation (20). 

Then in our case Whittaker function of 150,
2

2 rM l
ρ−

′ 
 ′ 

 becomes 

5 1
2 2

1 1 150,
2

2 2 expr r rM l l l
ρ ρ ρ

− +

−

′ ′ ′     
= −     ′ ′ ′     

             (27) 

Then Equation (20) gives TFπ  as 

( )
2

1 max
2

1 0

5

0

1
5 5 11

1 1
2

2d d exp 2
g L

T g L

l rF r r l J q r
ρ

π ρ
ρ

ρ ρ

+
∞

−
− + ′   ′ ′ ′ ′= −   ′   

′
′∫ ∫    (28) 

Recalling that ( ) ( )
1 0
2

sin z
J z j

z
= = . 

Integral with respect to r′  part of Equation (28) becomes 

( )5 5
10

1 d exp 2 sinr
rI r r l q r

q ρ′

∞ − ′ ′ ′ ′ ′= − ′ ′ 
∫               (29) 

There is a formula of this type of integral as [13] 

( ) ( ) ( )

( )
1

0
2 2 2

d exp sin sin arctgxx x xλ
λ

λ δγ δ λ
γ

γ δ

−∞  Γ  
− =   

  +
∫       (30) 

For integral condition, Re 1λ > − , Re Imγ δ> . 
Arctg denotes arctangent. 
Applying the formula Equation (30) for Equation (29), Equation (29) becomes 

( )6 5
12 2

21

1 sin 6 5 arctg
2

2
r

qI const
l

l q

ρ

ρ

′ −

  ′ ′
= −        ′ +  ′  

       (31) 

Then we obtain for TFπ  as follows. 

( ) ( )

( )( )
( )

2
1 max

2
1 0

2
1 max

2
1 0

5 1
5 1

1 6 5
12 2

21

5

6 5
122 2

1

1 d 2 sin 6 5 arctg
2

2

1 d sin 6 5 arctg
2

4

g L
T g L

g L

g L

qF l
q l

l q

qconst
q l

l q

ρ
π ρ

ρ

ρ

ρ ρρ

ρ

ρ ρρ

ρ

−
− +

−

−

  ′ ′ ′
′= −   ′      ′ +  ′  

  ′ ′ ′
′= −   ′   ′ ′+

∫

∫

(32) 

Recalling the facts that ( )arctg q qη η′ ′=  and ( )sin q qη η′ ′ = ′ ′  when q′  ap-
proaches 0, TFπ  becomes constant at 0q′ → . For large q′ , Equation (32)  

shows 7 5q − +′  dependence because of the fact that ( )arctg
2

qη π′ =  at large q′ .  
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Actuary we cannot evaluate exact integration for remained part of integral, how-
ever, rough estimation can be given as follows. 

Changing variable as ( )2q xρ′ ′ = , integral without sin part becomes 

( )
( )

( )
( )
( )

( )
( )

( )

( )

2 2
max max

2 2
0 0

2
max

2
max

2
0

2
0

5 5
2

66 5 6 5
2 2 2

1

5 51

6 6

2

6 52 2

1
1 d 1~ d

2
4

1 1d

q q

q q

q
q

q
q

x
qx xx

q qx
l x x

xx x q
q q

τ ρ τ ρ

τ ρ τ ρ

τ ρ
τ ρ

τ ρ
τ ρ

′ ′

′ ′− −

′
− +′ − +

′
′

 
 ′ 

′ ′
+

 
′= = ∝ 

′ ′   

∫ ∫

∫

         (33) 

The second line is obtained by using the condition of large q′ , that is, large x . 
Multiply 1q −′  to this integration result shows TFπ  behaves 7 5q − +′  at large 

q′ . 
This estimation is an approximation but we can say the result is close. 
Important point is that we need the absolute value of Fπ  so that we can ignore 

the sign of Fπ . 

3. Results 

We obtain the following results for charged pion. 
Transverse electromagnetic form factor TFπ  is described as Equation (32). 

The behavior of TFπ  at 0q′ →  becomes constant, while that of TFπ  at large  

q′  becomes 
7 5

1
q

−
 
 ′ 

. 

Longitudinal electromagnetic form factor LFπ  is described as Equation (25).  
The behavior of LFπ  at 0q′ →  becomes 0, while that of LFπ  at large q′  be-

comes 

3
21

q
 
 ′ 

. Note that q′  denotes 
2

1

q
g L

. 
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Appendix  

Rough estimation of Equation (24). 
In order to find elementary function of 4 3F  at large q′  case, for simplicity, 

we take ∞  for upper limit of ρ′ . 

Recalling the definition of ( )kα , after cancelling one 17
4 k

 
 
 

, numerator of 

Equation (23) becomes 
15 3 3 7 11 3 7 11

4 4 4 44 4 4 4k k

k k k         = × + + + × ×         
         

 

11 7 7 7
4 44 4k k

k     = × +    
    

 

We can roughly cancel out 19
4 k

 
 
 

 by a remained 17
4 k

 
 
 

 of denominator. 

After 3 times integration for 0ρ  and cancellation of two 17
4 k

 
 
 

 terms, de-

nominator becomes 3 13 15 17 19! 2 2 2 2
2 2 2 2 2k

k k k k k      + + + + =      
      

 

( ) 46 13 15 17 191 2
4 4 4 4 4k

k

k k k k      + + + +      
      

. 

We can roughly cancel out 3
4 k

 
 
 

 and 7
4 k

 
 
 

 by ( )1 k
 and 6

4 k

 
 
 

, respec-

tively. Then summation becomes 

( ) ( )
1922 2

0 0

3 7 7 11
4 4 4 4 1

13 15 17 19
4 4 4 4

kk
k k k k

contant q
k k k k

ρ ρ

    + + + +    
     ′−

    + + + +    
    

∑  

We are interested in large q′  case. In this case, large k  part of summation 
contributes mainly to this summation. For the large k part of summation, we can 
approximate 

3 7 7 11
4 4 4 4 ~ 1

13 15 17 19
4 4 4 4

k k k k

k k k k

    + + + +    
    

    + + + +    
    

 

Also recalling the fact that series is infinite, we can approximate that the main 
contributing part of summation is described as 

( ) ( )22
01

kk

k k
q ρ

∞

=

′−∑  

Finally, we can say for small k  part as 
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Again we insist that this part is not main in large q′  case. Thus, we can de-
scribe approximated form of summation at large q′  case after 3 times integration 
as 

19
2

022
0

1constant
1 q

ρ
ρ′+

 

To obtain this form, we use the formula as 

( )
0

11
1

k k

k
x

x

∞

=

− =
+∑  
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