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Abstract 
This paper delves into the baseline design under the baseline parameterization 
model in experimental design, focusing on the relationship between the K -
aberration criterion and the word length pattern (WLP) of regular two-level 
designs. The paper provides a detailed analysis of the relationship between 

5K  and the WLP for regular two-level designs with resolution 3t = , and 
proposes corresponding theoretical results. These results not only theoreti-
cally reveal the connection between the orthogonal parameterization model 
and the baseline parameterization model but also provide theoretical support 
for finding the K -aberration optimal regular two-level baseline designs. It 
demonstrates how to apply these theories to evaluate and select the optimal 
experimental designs. In practical applications, experimental designers can 
utilize the theoretical results of this paper to quickly assess and select regular 
two-level baseline designs with minimal K -aberration by analyzing the WLP 
of the experimental design. This allows for the identification of key factors that 
significantly affect the experimental outcomes without frequently changing 
the factor levels, thereby maximizing the benefits of the experiment. 
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1. Introduction 
1.1. Research Background 

Experimental design refers to the scientific and rational arrangement of experi-
ments after clarifying the factors to be examined and the research objectives, in 
order to achieve the best experimental results. This process is also called experi-
mental design. The purpose of experimental design is to explore the relationships 
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between variables through systematic methods, so as to optimize processes and 
improve product quality. 

The development of experimental design can be traced back to the early 20th 
century. British statistician R.A. Fisher published the first example of experi-
mental design in collaboration with W.A. Mackenzie in 1923, and proposed the 
basic ideas of experimental design in 1926. In 1935, Fisher [1] published his fa-
mous book “The Design of Experiments”, in which he proposed three principles 
that experimental design should follow: randomization, local control, and repli-
cation. These principles aim to reduce the impact of accidental factors, so that 
experimental data has an appropriate mathematical model, which can be used for 
data analysis with the method of variance analysis. 

In China, research on experimental design began in the 1950s, and there were 
new insights in the viewpoints, theories, and methods of orthogonal experimental 
design. The famous mathematician Professor Hua Luogeng actively advocated 
and popularized the “optimization method” in China, thus popularizing the con-
cept of experimental design. In 1978, mathematicians Wang Yuan [2] and Fang 
Kaitai [3] proposed the uniform design, which considers how to scatter the design 
points evenly within the experimental range, so as to obtain the most information 
with fewer experimental points. 

In the field of experimental design, with the continuous in-depth of scientific 
research and industrial applications, traditional orthogonal parameterization de-
sign methods have gradually shown limitations in some specific scenarios. Espe-
cially in experimental situations where it is necessary to screen key factors from 
many factors and hope to minimize changes to the existing process, baseline de-
sign has emerged, bringing new ideas and methods to the field of experimental 
design. 

Baseline design is an experimental design in which each factor has a specified 
baseline level (default or preferred level), measuring the impact of changes in one 
or more factor levels on the response while other factors remain at the baseline 
level. This design parameterization method is different from orthogonal parame-
terization, which measures the impact of changes in one or more factor levels on 
the response, averaged over all possible level combinations of all other factors. The 
goal of baseline design is to identify designs with the minimum K -aberration. 

1.2. Research Content 

Based on the results of Miller and Tang [4], this paper further develops the rela-
tionship between K-aberration and word length pattern. Use 2m p−  to represent 
a regular two-level design with m  factors and 2m p−  runs, and the two levels in 
the design are represented by 0, 1 respectively. For any regular 2m p−  design D , 
the set of all s  column submatrices of D  is denoted as ( )s DΩ , where s m≤ . 
Let ( )Wα  represent the total number of rows in W  where all elements are 1, 
where W  is a subdesign composed of some columns of D . Under the baseline 
parameterization model, for a regular 2m p−  design D , sK  represents the total 

https://doi.org/10.4236/ojapps.2025.152030


S. Y. Li 
 

 

DOI: 10.4236/ojapps.2025.152030 465 Open Journal of Applied Sciences 
 

deviation caused by all s  th-order factor interactions on the estimation of main 
effects in design D . Mukerjee and Hunter [5] proved that,  

( )( )2
1 24 ,sK N sT T= +  

where, ( )( )( )
2

1 sW DT Wα
∈Ω

=∑ , ( ) ( )( )( )* 0
1

2* 0
2 2

s sW W WT W Wα α
+∈Ω ∈Ω

= −∑ ∑ .  

Given the number of rows and columns of the design, the two-level orthogonal 
design that minimizes the sequence  

( )2 3, , , mK K K  

in lexicographic order is called the K -aberration optimal design. 
Based on the sK  expression as the theoretical foundation, this paper has thor-

oughly explored the research process of the sK  expression under various cir-
cumstances, analyzed the relationship between 5K  and the word length pattern 
for regular two-level designs with resolution 3t = , listed all possible defining 
word scenarios, and provided the expression results for 5K , offering correspond-
ing theoretical results for the design of such experiments. That is, by sequentially 
minimizing the sK  values up to 5K , the design method can be obtained more 
quickly. 

2. The Relationship between K-Criterion and  
Word Length Pattern 

In the study of experimental design, we find that 1T  and 2T  are closely related 
to the subarrays W  or *W  of the regular 2m p−  design. According to the defi-
nition of 1T  in the formula, when the subarray W  composed of any s  col-
umns in design D  does not contain defining words, when calculating 1T , the 
contribution of W  to 1T  is 2sN . When the subarray W  composed of any 
s  columns in design D  contains defining words, that is, several columns in 
W  form defining words, the situation becomes complicated. The existence of de-
fining words means that some column combinations in W  have special struc-
tures, which will affect the contribution of W  to 1T . In addition, similar situa-
tions need to be analyzed when calculating 2T . Therefore, investigating whether 
the subarray W  contains defining words is crucial for simplifying the calcula-
tion of sK . For the convenience of the subsequent analysis of the sK  formula, 
the following lemmas are given to provide theoretical explanations for all possible 
cases of defining words.  

2.1. Three Basic Lemmas 

Lemma 1. Suppose D  is a regular 2m p−  design with resolution t , let 
( )3tW D+∈Ω , then  

(i) When 3t = , W  contains at most three independent defining words;  
(ii) When 4 6t≤ ≤ , W  contains at most two independent defining words;  
(iii) When 7t ≥ , W  contains at most one defining word, 

where 3m t≥ + .  
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Proof:  
(i) When 3t = , { }1 2 3 4 5 6, , , , ,W m m m m m m= , ( )6W D∈Ω , then the number 

of independent defining words contained in W  is as follows:  
(a1) W  does not contain independent defining words;  
(a2) W  contains one independent defining word, the length of which may be 

3 or 4 or 5 or 6;  
(a3) W  contains two independent defining words, their lengths may be 3 and 

3 or 3 and 4;  
(a4) W  contains three independent defining words, all of whose lengths are 

3.  
Situations (a1) and (a2) are obvious. In situation (a3), when the lengths of the 

two independent defining words are 3 and 3, there are two cases for their compo-
sition, that is, they contain a common column (for example, 1 2 3 3 4 5m m m m m m= ) 
and do not contain a common column (for example, 1 2 3 4 5 6m m m m m m= ); when 
the lengths of the two independent defining words are 3 and 4, their composition 
is that they contain a common column (for example, 1 2 3 3 4 5 6m m m m m m m= ). In 
situation (a4), if the length of one of the independent defining words exceeds 3, 
then it is impossible to have two other independent defining words with lengths 
≤3. Therefore, when W  contains three independent defining words, the length 
of the independent defining words can only be 3. Since 6 factors form 3 independ-
ent defining words, there must be a common column between every two inde-
pendent defining words. Let 1 2 3, ,m m m  be the common column factors between 
the three independent defining words, ∗  represents an unknown factor, then 
the relationship between the three independent defining words can be obtained 
as: 1 3 1 2 2 3m m m m m m∗ ∗ ∗= = , such arrangement can supplement the ∗  place 
with the other three factors. Since these three independent defining words will 
generate a non-independent defining word with a length of 3, so when 3t = , W  
cannot contain four independent defining words.  

(ii) When 4t = , { }1 2 3 4 5 6 7, , , , , ,W m m m m m m m= , ( )7ΩW D∈ , then the num-
ber of independent defining words contained in W  is as follows:  

(a1) W  does not contain independent defining words;  
(a2) W  contains one independent defining word, the length of which may be 

4 or 5 or 6 or 7;  
(a3) W  contains two independent defining words, their lengths may be 4 and 

4 or 4 and 5.  
Situations (a1) and (a2) are obvious. In situation (a3), the independent defining 

words with lengths 4 and 4 may have one common column or two common col-
umns. The independent defining words with lengths 4 and 5 have two common 
columns. Consider whether W  may contain three independent defining words. 
Suppose W  contains three independent defining words, all of which have a 
length of 4, and two of the independent defining words have two common col-
umns, denoted as 3 4m m , and there is the following defining relationship, that is, 

1 2 3 4 3 4 5 6m m m m m m m m= , which can generate a non-independent defining word 
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1 2 5 6m m m m , so that the other independent defining word has at most two common 
columns with these three defining words, thus two additional factors need to be 
added, exceeding the range of seven factors. Therefore, when 4t = , W  contains 
at most two independent defining words. The cases of 5t =  and 6t =  can be 
proved in the same way.  

(iii) When 7t = , W  cannot have two independent defining words. Selecting 
two independent defining words with a length of 7 from 10 factors will inevitably 
obtain a non-independent defining word with a length 6≤ , which does not con-
form to the condition of resolution 7, so when the resolution is 7, W  contains at 
most one independent defining word. The cases of 7t >  can be proved in the 
same way.  

Lemma 2. Consider a regular matrix D , which is an orthogonal matrix of 
strength 2. If this design is used to create a baseline design, then the values of 1T  
and 2T  in the expression satisfy the following conditions:  

(i) When 2v t≤ − , 
2

1 2
v
m v

NT C  =  
 

, 2 0T =  

(ii) When 1v t= − , 
2

1
1 12

t
m t

NT C −
−

 =  
 

, 
2

2 2 22 tt
NT t B−

 
=  

 
 

(iii) When v t=  and t  is odd  

( )

( ) ( ) ( )( )

2
0 1

1 2

2
0 1

2 12

3
2

1
2

t
m t tt

t t tt

NT C A A

NT t A t m t A t m t A+

= − +

= + + − + −

 

(iv) When v t=  and t  is even  

( )

( ) ( ) ( )( )

2
0 1

1 2

2
0 1

2 12

3
2

1
2

t
m t tt

t t tt

NT C A A

NT t A t m t A t m t A+

= + + −

= + + − + −

 

Proof:  
(i) For any regular two-level design, let W  be the submatrix composed of any 

v  columns of the design matrix. Let t  be the resolution of the design, then 
when 1v t≤ − , ( ) 2vw Nα = . Substituting it into the expressions of 1T  and  

2T , we can get 
2

1 2
v
m v

NT C  =  
 

, ( )* 1 0 *

2

2 1
2 0
2 2

v v v vw w w

N NT + +∈Ω ∈Ω

 = − = 
 

∑ ∑ , proved.  

(ii) When 1v t= − , ( ) wα  still satisfies the above condition, that is,  

( ) 12tw Nα −= , so 
2

1
1 12

t
m t

NT C −
−

 =  
 

. 

But for 2T , * 1vw +∈Ω  that is, * tw ∈Ω , then it is necessary to consider 
whether this t  columns contain defining words. Let ( ) ( )2kJ w w N= Φ − , 
where ( )wΦ  represents the value of the sum of the rows of the W  matrix mod-
ulo 2 and then added together. When W  is a non-defining word matrix, 
( ) 2w NΦ = , ( ) 0kJ w = . When W  is a defining word matrix, ( ) 0wΦ =  or 
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N , ( )kJ w N= . Therefore, when this t  columns do not contain defining 
words, ( ) 0kJ w = , ( )* 2tw Nα = , ( )0 12tw Nα −= , it can be concluded that 

2 0T =  when this t  columns contain defining words, ( )kJ w N= . Among 
them, this submatrix contains ( )( ) 2t

tN J w−  2t  designs and ( )( ) 2t
tJ w  

half of the 2t  designs, that is, 0 2t  designs and 12tN −  half of the 2t  designs. 
Whether the 12tN −  half of the 2t  designs contain all 1 rows needs to consider 
the parity of t  and the φ  value of the defining words. The following four situ-
ations are divided:  

(a1) When t  is odd, ( ) 0Nwφ = , that is, there is no all 1 row, ( )* 0wα = , 

( )0 12tw Nα −= , ( ) ( )* 0 12 2tw w Nα α −− = − ;  
(a2) When t  is odd, ( ) 1Nwφ = , that is, there is an all 1 row, ( )* 12tw Nα −= , 

( )0 12tw Nα −= , ( ) ( )* 0 12 2tw w Nα α −− = ;  
(a3) When t  is even, ( ) 0Nwφ = , that is, there is an all 1 row, 

( )* 12tw Nα −= , ( )0 12tw Nα −= , ( ) ( )* 0 12 2tw w Nα α −− = ;  
(a4) When t  is even, ( ) 1Nwφ = , that is, there is no all 1 row, ( )* 0wα = , 

( )0 12tw Nα −= , ( ) ( )* 0 12 2tw w Nα α −− = − .  
The ( ) ( )* 02 w wα α−  obtained in the four situations are all 12tN − , so we 

can get:  

( )

( )

* 0 1 *

*

*

2

2 2 2

2

2 2

2*2

2 2

2

2 2

2

2

2

2

t t

t

t

t
w w w

t
w

t

t
w

tt

NT

Nt

J wNt
N

Nt B

−
−

∈Ω ∈Ω

−
∈Ω

−
∈Ω

−

=

=

 
 =
 
 

=

∑ ∑

∑

∑

 

(iii) The calculation of 1T  needs to consider three situations:  
 
Table 1. Calculation situations of 1T . 

Defining word situation ( )Wα  Wn  

This t  columns do not contain  
any defining words 2t

N  0 1
t t

m
A A

t
 

− − 
 

 

This t  columns form defining  
words and 0Nφ =  0 0

tA  

This t  columns form defining  
words and 1Nφ =  12t

N
−  1

tA  

Wn : The number of W in each situation. 

 
According to Table 1, the calculation result of 1T  can be obtained.  
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( )

2 2
0 1 0 1

1 1

2
0 1

2

0
2 2

3
2

t t t tt t

t
m t tt

m N NT A A A A
t

N C A A

−

      = − − ⋅ + ⋅ + ⋅      
     

= − +

 

The calculation of 2T  needs to consider four situations:  
(a1) *W  is a defining word with a length of 1t +  and 0Nφ = ;  
(a2) *W  is a defining word with a length of 1t +  and 1Nφ = ;  
(a3) *W  contains a defining word with a length of t  and 0Nφ = ;  
(a4) *W  contains a defining word with a length of t  and 1Nφ = ; 

 
Table 2. Calculation situations of 2T . 

Situation ( )*Wα  ( )0Wα : 0W
n  Wn  

(a1) 
2t
N  : 1

2t
N t +  0

1tA +  

(a2) 0 : 1
2t
N t +  1

1tA +  

(a3) 0 0 :1  and :
2t
N t  ( ) 0

tm t A−  

(a4) 
2t
N  1 :1

2t
N
−  and :

2t
N t  ( ) 1

tm t A−  

*W
n : The number of each ( )0Wα  value corresponding to *W . Wn : The number of *W  

in (a1)-(a4). 
 

According to Table 2, the calculation result of 2T  can be obtained.  

( ) ( ) ( )( )
2

0 1
2 12 1

2 t t tt
NT t A t m t A t m t A+= + + − + −  

(iii) is proved, and the result of (iv) can be obtained in the same way.  
Lemma 3. The φ  value of the defining word with a length of 5 obtained by 

the combination of independent defining words with lengths 3 and 4 containing 
a common column is determined. Let the φ  values of the above defining words 
with lengths 3 and 4 be 1φ  and 2φ  respectively, and the φ  value of the defining 
word with a length of 5 obtained by the combination be 3φ , the following results 
can be obtained:  

(i) If 1φ  and 2φ  are both 0N , then 3φ  is 0N ;  
(ii) If 1φ  and 2φ  are both 1N , then 3φ  is 0N ;  
(iii) If one of 1φ  and 2φ  is 0N  and the other is 1N , then 3φ  is 1N .  
Proof:  
Let { }1 2 3 4 5 6, , , , ,W m m m m m m= , the defining relationship is  

1 2 3 3 4 5 6 1 2 4 5 6I m m m m m m m m m m m m= = = , let { }1 1 2 3, ,W m m m= ,  
{ }2 3 4 5 6, , ,W m m m m= , where the three factors in 1W  form a defining word with a 

length of 3, 1 2 3m m m , the four factors in 2W  form a defining word with a length 
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of 4, 3 4 5 6m m m m , their common column is 3m . 

1 0Nφ =  indicates that there are an even number of 1 s in each row of the three 
columns 1 2 3, ,m m m , 2 0Nφ =  indicates that there are an even number of 1 s in 
each row of the three columns 3 4 5 6, , ,m m m m . When the column 3m  is 1, the 
corresponding two columns 1 2,m m  have an odd number of 1 s, and 4 5 6, ,m m m  
have an even number of 1 s. When the column 3m  is 0, the corresponding two 
columns 1 2,m m  have an even number of 1 s, and 4 5 6, ,m m m  have an even num-
ber of 1 s, that is, 1 2 4 5 6, , , ,m m m m m  have an even number of 1 s, so when 1φ  and 

2φ  are both 0N , then 3φ  is 0N . Thus, (i) is proved, and (ii) and (iii) can be 
proved in the same way.  

2.2. The Relationship between K5  and WLP When the  
Resolution t 3=  

This section mainly studies the relationship between 5K  and WLP in regular 
2m p−  designs with resolution 3t = . By discussing the defining words contained 
in ( )5W D∈Ω  and ( )6W D∈Ω , the analysis process of 1T  and 2T  is given, 
and finally the relationship between 5K  and WLP in regular 2m p−  designs with 
resolution 3t =  is obtained.  

Theorem 1. Suppose D  is a regular 2m p−  design with resolution 3t = , then  

( )5 1 22
4 5K T T

N
= +  

where  

( )( )

( )

5

2
1

2 2
1,1 1 0 0,0 1,1 0,1 1
3 3 4 3 3 3 5

2
5
1

3 4 3
8 16 2

32

w

T w

N N mA A m A A A A A

N I

α
∈Ω

=

 −      = ⋅ + ⋅ + − − − − +            

 + ⋅ 
 

∑

 

( ) ( )( )

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )
( )
( )

( )
( )

2
0 1 0 1

2 6 6 5 55

0 1 0 1
4 4 3 3

0,0 0,1 1,10,0 0,1 1,1
3 3 3 3 3 3

0,0,0 1,0,0 1,1,0 1,1,1 0,1 1,0
3 3 3 3 3,4 3,4

6 5 5
2

4 3
4 3

2 3

10 2 10 6 Δ Δ Δ

21 21 5 75 8 12

NT A A m A A

m m
A A A A

A A A A A A

A A A A A A

   = + + − +    
− −   

+ + + +   
   

− − + + − +

− − − + − +

 

Proof: First, calculate the expression of 1T , let  
{ } ( )1 2 3 4 5 5, , , , ΩW m m m m m D= ∈ , then there are ten possible situations for the 

columns in W :  
(a1) W  contains two independent defining words with a length of 3 and 

0Nφ = ;  
(a2) W  contains two independent defining words with a length of 3 and 

1Nφ = ;  
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(a3) W  contains two independent defining words with a length of 3, one of 
which has 0Nφ =  and the other has 1Nφ = ;  

(a4) W  only contains one defining word with a length of 3 and 0Nφ = ;  
(a5) W  only contains one defining word with a length of 3 and 1Nφ = ;  
(a6) W  only contains one defining word with a length of 4 and 0Nφ = ;  
(a7) W  only contains one defining word with a length of 4 and 1Nφ = ;  
(a8) W  only contains one defining word with a length of 5 and 0Nφ = ;  
(a9) W  only contains one defining word with a length of 5 and 1Nφ = ;  
(a10) W  contains 5 independent columns.  
The reason why (a1), (a2), (a3) appear independently from other situations is 

that two defining words can combine to form other situations, and to avoid re-
peated calculations, they are listed separately. The defining words in (a1) and (a2) 
can combine to form an independent defining word with a length of 4 and 

0Nφ = . The defining words in (a3) can combine to form an independent defining 
word with a length of 4 and 1Nφ = . 

Below are the proofs of the values of ( )wα  and the number of each W  in 
situations (a1)-(a10). 

For (a1), since there exists a defining word with a length of 3 and 0Nφ = , there 
cannot be an all-one row in W , ( )wα  is 0, the number is 0,0

3A . 
For (a2), two independent defining words with a length of 3 and 1Nφ =  can 

combine to form an independent defining word with a length of 4 and 0Nφ = . 
The cross column of the two independent defining words is affected by the other 
two columns of the defining words. When the other two columns of the defining 
words are all 1, the cross column must be 1, so there is an all-one row in this W , 
( )wα  is 8N , the number is 1,1

3A . 
For (a3) and (a4), the situation is the same as (a1), ( )wα , the numbers are  
0,1
3A  and 0 0,0 0,1

3 3 3

3
2

2
m

A A A
− 

− − 
 

 respectively. In situation (a4), each W  has  

and only has one defining word with a length of 3 and 0Nφ = . The number of 

such defining words is 0
3A , ( )5W D∈Ω , that is, selecting 5 factors from m  

factors that meet the conditions of (a4), which is 0
3

3
2

m
A

− 
 
 

. To avoid the ap-

pearance of repeated situations, it is necessary to remove the situations where  
0Nφ =  in (a1) and (a2). Since (a1) contains two 0Nφ =  defining words in W ,  

the final number in situation (a4) is 0 0,0 0,1
3 3 3

3
2

2
m

A A A
− 

− − 
 

. 

For (a5), each *W  contains a defining word with a length of 3 and 1Nφ = , so 
the number of all-one rows in the defining word, combined with the other two  

independent columns, is 
16
N

. In this situation, each *W  contains 6 0W , two of  

which are combinations of the defining word and one independent column, their  

( )0Wα  is 
16
N

, and the other four 0W  are independent columns, their 
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( )0Wα  is 
32
N

. The number is based on 1
3

3
2

m
A

− 
 
 

 and needs to remove the 

non-independent defining words with a length of 5 and 0Nφ =  generated in 

(a9), (a10), (a15), (a16), (a18). Thus, the number is 1 1,1 0,1
3 3 3

3
2

2
m

A A A
− 

− − 
 

. 

For (a6), each W  contains a defining word with a length of 4 and 0Nφ = , so 
the number of all-one rows in the defining word is 8N , and the number of all-
one rows combined with another independent column is 16N , that is, ( )wα  
is 16N , the number is ( ) 0 0,0 1,1

4 3 34 2m A A A− − − . 
For (a7), since there exists a defining word with a length of 4 and 1Nφ = , there 

cannot be an all-one row in W , ( )wα  is 0, the number is ( ) 1 0,1
4 34m A A− − . 

For (a8), since there exists a defining word with a length of 5 and 0Nφ = , there 
cannot be an all-one row in W , ( )wα  is 0, the number is 0

5A . 
For (a9), W  contains an all-one row, five factors form a defining word, so 
( )wα  is /16N , the number is 1

5A . 
For (a10), since W  contains 5 independent columns, ( )wα  is 32N . Se-

lecting 5 factors from m  factors has 5
mC  possibilities, removing all previous sit-

uations, the number is  

( ) ( )0,0 1,1 0,1 0 1 1 0 1
3 3 3 3 3 4 5 5

3
2 2 2 4

5 2
m m

A A A A A m A A A
−   

+ + + − + − − − −   
   

, denoted as 5
1I . 

Summarizing the above situations, we obtain Table 3: 
 
Table 3. Calculation of 1T  in Theorem 1. 

Situation ( )Wα  Wn  

(a1) 0 0,0
3A  

(a2) 8N  1,1
3A  

(a3) 0 0,1
3A  

(a4) 0 0 0,0 0,1
3 3 3

3
2

2
m

A A A
− 

− − 
 

 

(a5) 16N  1 1,1 0,1
3 3 3

3
2

2
m

A A A
− 

− − 
 

 

(a6) 16N  ( ) 0 0,0 1,1
4 3 34m A A A− − −  

(a7) 0 ( ) 1 0,1
4 34m A A− −  

(a8) 0 0
5A  

(a9) 16N  1
5A  

(a10) 32N  5
1I  

Wn : The number of W  in each situation. 

 
Thus, the expression of 1T  is obtained. 
Next, calculate the expression of 2T . When 3t = , ( )6W D∈Ω  has the fol-

lowing twenty situations: 
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(a1) W  contains only one defining word with a length of 6 and 0Nφ = ;  
(a2) W  contains only one defining word with a length of 6 and 1Nφ = ;  
(a3) W  contains only one defining word with a length of 5 and 0Nφ = ;  
(a4) W  contains only one defining word with a length of 5 and 1Nφ = ;  
(a5) W  contains only one defining word with a length of 4 and 0Nφ = ;  
(a6) W  contains only one defining word with a length of 4 and 1Nφ = ;  
(a7) W  contains only one defining word with a length of 3 and 0Nφ = ;  
(a8) W  contains only one defining word with a length of 3 and 1Nφ = ;  
(a9) W  contains two independent defining words with a length of 3 and 

0Nφ = , sharing one common column;  
(a10) W  contains two independent defining words with a length of 3 and 

1Nφ = , sharing one common column;  
(a11) W  contains two independent defining words with a length of 3, one 

with 0Nφ =  and the other with 1Nφ = , sharing one common column;  
(a12) W  contains two independent defining words with a length of 3 and 

0Nφ = , without sharing any common column;  
(a13) W  contains two independent defining words with a length of 3 and 

1Nφ = , without sharing any common column;  
(a14) W  contains two independent defining words with a length of 3, one 

with 0Nφ =  and the other with 1Nφ = , without sharing any common column;  
(a15) W  contains three independent defining words with a length of 3, each 

pair sharing one common column, divided into the following four cases:  
(1) W  does not contain any defining word with 1Nφ = ;  
(2) W  contains only one defining word with 1Nφ = ;  
(3) W  contains only two defining words with 1Nφ = ;  
(4) W  contains only three defining words with 1Nφ = .  
(a16) W  contains one independent defining word with a length of 3 and 

0Nφ =  and one independent defining word with a length of 4 and 0Nφ = , shar-
ing one common column;  

(a17) W  contains one independent defining word with a length of 3 and 
0Nφ =  and one independent defining word with a length of 4 and 1Nφ = , shar-

ing one common column;  
(a18) W  contains one independent defining word with a length of 3 and 

1Nφ =  and one independent defining word with a length of 4 and 0Nφ = , shar-
ing one common column;  

(a19) W  contains one independent defining word with a length of 3 and 
1Nφ =  and one independent defining word with a length of 4 and 1Nφ = , shar-

ing one common column;  
(a20) W  contains 6 independent columns.  
Next, using Lemma 2’s calculation method, the values of ( )*wα  and ( )0wα  

and the number of each W  in situations (a1)-(a20) are proved. 
For (a1), each *W  contains a defining word with a length of 6 and 0Nφ = , so  

the number of all-one rows in the defining word is 52
N

. In this situation, each 
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*W  contains 6 0W  which are all independent columns, that is, ( )0Wα  is 52
N

.  

The number is based on 0
6A  and needs to remove the non-independent defining 

words with a length of 6 and 0Nφ =  generated by two independent defining words 
with a length of 3 in (a12) and (a14). Thus, the number is ( ) ( )0,0 1,10

6 3 3Δ ΔA A A− − ; 
For (a2), since there exists a defining word with a length of 6 and 0Nφ = , there 

cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W  contains  

6 0W  which are all independent columns, that is, ( )0Wα  is 52
N

. The number  

is based on 1
6A  and needs to remove the non-independent defining words with a 

length of 6 and 1Nφ =  generated by two independent defining words with a 
length of 3 in (a13). Thus, the number is ( )0,10

6 3ΔA A− ; 
For (a3), since there exists a defining word with a length of 5 and 0Nφ = , there 

cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W  con-
tains 6 0w , one of which is a defining word, its ( )0Wα  is 0, and the other five  

0w  are independent columns, their ( )0Wα  is 52
N

. The number is based on  

( ) 0
55m A−  and needs to remove the non-independent defining words with a 

length of 5 and 0Nφ =  generated by two independent defining words with lengths 
of 3 and 4 in (a16) and (a19). Thus, the number is ( ) ( )

( )
( )
( )0,0 1,10

5 3,4 3,45m A A A− − − ; 
For (a4), each *W  contains a defining word with a length of 5 and 1Nφ = , 

so the number of all-one rows in the defining word, combined with another  

independent column, is 52
N

. In this situation, each *W  contains 6 0W , one of 

which is a defining word, its ( )0Wα  is 42
N

, and the other five 0W  are inde-

pendent columns, their ( )0Wα  is 52
N

. The number is based on ( ) 1
55m A−  and  

needs to remove the non-independent defining words with a length of 5 and 
1Nφ =  generated by two independent defining words with lengths of 3 and 4 in 

(a16) and (a19). Thus, the number is ( ) ( )
( )

( )
( )0,1 1,01

5 3,4 3,45m A A A− − − ; 
For (a5), each *W  contains a defining word with a length of 4 and 0Nφ = , so 

the number of all-one rows in the defining word, combined with the other two  

independent columns, is 52
N

. In this situation, each *W  contains 6 0W , two of  

which are combinations of defining words with a length of 4 and one independent  

column, their ( )0Wα  is 42
N

, and the other four 0W  are independent col-

umns, their ( )0Wα  is 52
N

. The number is based on ( ) 1
55m A−  and needs to  

remove the non-independent defining words with a length of 4 and 0Nφ =  gen-
erated in (a9), (a10), (a15), (a16), (a18). Thus, the number is  

( )
( )

( )
( ) ( ) ( ) ( ) ( )0,0 1,0 0,0,0 1,0,0 1,1,0 1,1,10 0,0 1,1

4 3 3 3 3 3 33,4 3,4

4
3 3

2
m

A A A A A A A A A
− 

− − − − − − − − 
 

, denoted  

as 5aN ; 
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For (a6), since there exists a defining word with a length of 4 and 1Nφ = , there 
cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W  con-
tains 6 0W , two of which are combinations of defining words with a length of 4 
and one independent column, their ( )0Wα  is 0, and the other four 0W  are  

independent columns, their ( )0Wα  is 52
N

. The number is similar to the analy-

sis in (a5), which is ( )
( )

( )
( ) ( ) ( )0,1 1,1 1,0,0 1,1,01 0,1

4 3 3 33,4 3,4

4
2 2

2
m

A A A A A A
− 

− − − − − 
 

, denoted as  

6aN ; 
For (a7), since there exists a defining word with a length of 3 and 0Nφ = , there 

cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W  con-
tains 6 0W , three of which are combinations of defining words with a length of 3 
and two independent columns, their ( )0Wα  is 0, and the other three 0W  are  

independent columns, their ( )0Wα  is 52
N

. The number needs to remove (a9),  

(a11), (a12), (a14), (a15), (a16), (a17), which is  
( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )0,0 0,1 0,0,0 1,0,0 1,1,0 0,0 0,10 0,0 0,1

3 3 3 3 3 3 3 3 3,4 3,4

3
2 2Δ Δ 3 2

3
m

A A A A A A A A A A
− 

− − − − − − − − − 
 

,  

denoted as 7aN ; 
For (a8), each *W  contains a defining word with a length of 3 and 1Nφ = , so 

the number of all-one rows in the defining word, combined with the other three  

independent columns, is 52
N

. In this situation, each *W  contains 6 0W , three  

of which are combinations of defining words with a length of 3 and two independent  

columns, their ( )0Wα  is 42
N

, and the other three 0W  are independent columns, 

their ( )0Wα  is 52
N

. The number is similar to the situation of (a8), which is  

( ) ( ) ( ) ( ) ( )
( )
( )

( )
1,1 0,1 1,0,0 1,1,0 0,0,0 1,01 0,1 1,1 1,1)

3 3 3 3 3 3 3 3 3,4 3,4

3
2 2Δ Δ 2 3

3
m

A A A A A A A A A A
− 

− − − − − − − − − 
 

,  

denoted as 8aN ; 
For (a9), since there exists a defining word with a length of 3 and 0Nφ = , there 

cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W  con-
tains 6 0W , their ( )0Wα  are all 0, and there is no all-one column in the case 
without common columns. The number is 0,0

3A ; 

For (a10), *W  contains an all-one row, ( )*Wα  is 42
N

. In this situation, each 

*W  contains 6 0W , the ( )0Wα  in the case without common columns is 
8
N

, 

and the ( )0Wα  in the other five cases is 42
N

. The number is 1,1
3A ; 

For (a11), since there exists a defining word with a length of 3 and 0Nφ = , 
there cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W   

contains 6 0W , two of which have ( )0Wα  as 42
N

, and four have ( )0Wα  as  
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0. The number is 0,1
3A ; 

For (a12), since there exists a defining word with a length of 3 and 0Nφ = , 
there cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W  
contains 6 0W  which are all 0. The number is ( )0,0

3ΔA ; 

For (a13), *W  contains an all-one row, ( )*Wα  is 52
N

. In this situation, each 

*W  contains 6 0W  which are all 42
N

. The number is ( )1,1
3ΔA ; 

For (a14), since there exists a defining word with a length of 3 and 0Nφ = , 
there cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W   

contains 6 0W , three of which are 0, and the other three are 42
N

. The number is  

( )0,1
3ΔA ; 

For (a15), three independent defining words with a length of 3 will generate a 
non-independent defining word with a length of 3, the φ  value of which is deter-
mined by the φ  values of the three independent defining words. As long as there 
exists a defining word with a length of 3 and 0Nφ = , there cannot be an all-one 
row in *W , so the ( )*Wα  values of situations (1), (2), and (3) are all 0, and  

the ( )*Wα  value of situation (4) is 
8
N

. When there are two or more defining  

words with 0Nφ = , each *W  contains 6 0W  which are all 0, so the ( )0Wα  
of situations (1) and (2) are all 0. In situation (3), each *W  contains 6 0W , one of  

which is 
8
N

, and the other five are 0. In situation (4), each *W  contains 6 0W  

whose ( )0Wα  are all 
8
N

. Their numbers are denoted as ( )0,0,0
3A , ( )1,0,0

3A ,  

( )1,1,0
3A , ( )1,1,1

3A  respectively; 
For (a16), since there exists a defining word with a length of 3 and 0Nφ = , 

there cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W   

contains 6 0W , three of which are 0, and the other three are 42
N

. The number is  

( )
( )0,0
3,4A ; 
For (a17), since there exists a defining word with a length of 3 and 0Nφ = , 

there cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W   

contains 6 0W  whose ( )0Wα  are all 42
N

. The number is ( )
( )0,1
3,4A ; 

For (a18), according to Lemma 3, a defining word with a length of 3 and 1Nφ =  
and a defining word with a length of 4 and 0Nφ =  will generate a defining word  

with a length of 5 and 1Nφ = , ( )*Wα  is 42
N

. In this situation, each *W  con-

tains 6 0W , five of which are 0, and the other one is 42
N

. The number is ( )
( )1,0
3,4A ; 

For (a19), since there exists a defining word with a length of 4 and 1Nφ = , there 
cannot be an all-one row in *W , ( )*Wα  is 0. In this situation, each *W  contains  

6 0W , three of which are 0, and the other three are 42
N

. The number is ( )
( )1,1
3,4A ; 
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Table 4. Calculation of 2T  in Theorem 1. 

Situation ( )Wα  ( )*Wα : *W
n  Wn  

(a1) 52
N  5 : 6

2
N  ( ) ( )0,0 1,10

6 3 3Δ ΔA A A− −  

(a2) 0 5 : 6
2
N  ( )0,10

6 3ΔA A−  

(a3) 0 5 : 5
2
N  and 0 :1  ( ) ( )

( )
( )
( )0,0 1,10

5 3,4 3,45m A A A− − −  

(a4) 52
N  5 : 5

2
N  and 4 :1

2
N  ( ) ( )

( )
( )
( )0,1 1,01

5 3,4 3,45m A A A− − −  

(a5) 52
N  5 : 4

2
N  and 4 : 2

2
N  5aN  

(a6) 0 5 : 4
2
N  and 0 : 2  6aN  

(a7) 0 5 : 3
2
N  and 0 :3  7aN  

(a8) 52
N  5 : 3

2
N  and 4 : 3

2
N  8aN  

(a9) 0 0 : 6  0,0
3A  

(a10) 42
N  :1

8
N

 and 4 : 5
2
N

 1,1
3A  

(a11) 0 4 : 2
2
N  and 0 : 4  0,1

3A  

(a12) 0 0 : 6  ( )0,0
3ΔA  

(a13) 52
N  4 : 6

2
N  ( )1,1

3ΔA  

(a14) 0 4 : 3
2
N  and 0 :3  ( )0,1

3ΔA  

(a15-1) 0 0 : 6  ( )0,0,0
3A  

(a15-2) 0 0 : 6  ( )1,0,0
3A  

(a15-3) 0 :1
8
N  and 0 :5  ( )1,1,0

3A  

(a15-4) 
8
N  : 6

8
N  ( )1,1,1

3A  

(a16) 0 4 : 3
2
N  and 0 :3  ( )

( )0,0
3,4A  

(a17) 0 4 :1
2
N  and 0 :5  ( )

( )0,1
3,4A  

(a18) 42
N  4 : 6

2
N  ( )

( )1,0
3,4A  

(a19) 0 4 : 3
2
N  and 0 :3  ( )

( )1,1
3,4A  

(a20) 62
N  5 : 6

2
N  5

2I  

Wn : The number of W  in each situation. 
 

For (a20), since *W  contains 6 independent columns, ( )*Wα  is 62
N

. In this 
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situation, each *W  contains 6 0W  whose ( )0Wα  are all 52
N

. Selecting 6  

factors from m  factors has 6
mC  possibilities, removing all previous situations, 

the number is denoted as 5
2I . 

Table 4 summarizes the above discussions. 
According to Table 4, the calculation result of 2T  can be obtained. 
The above completes the proof of Theorem 1. 

3. Applications 

To verify the effectiveness of the 5K  expression in orthogonal two-level frac-
tional factorial designs, a resolution 3 experimental scheme can be designed to 
assess its computational advantages and practical application value through sim-
ulation studies. 

Suppose we are studying a chemical reaction process and need to consider 9 
factors ( , , , , , , , ,A B C D E F G H I ) that affect the reaction efficiency. Due to the lim-
ited number of experimental runs, we choose a fractional factorial design, specif-
ically a 9 52 −  fractional factorial design, which means 9 factors and 9 52 −  exper-
imental runs. According to the design catalog proposed by Xu [6], we select one 
type of experiment with a word length pattern of (4, 14, 8, 0, 4, 1, 0), and its de-
fining relations are as follows: 

I ABE ACF ADG AGI

BCDH BCE BDEG CDEI CDFG BFGH CFHI

BDFI BCGI DEFH CEGH BEHI DGHI EFGI

ABCDI ACDEH ABDFH ABCGH

ADEFI ACEGI ABFGI AEFGH

ABCDEFGH ABDEGHI ABCEFHI ACDFGHI

BCDEFGH

= = = =

= = = = = = =

= = = = = = =

= = = =

= = = =

= = = =

=

 

Based on the defining relations, the K  expression is calculated, and the K  
value is minimized in sequence by using level permutation to seek the optimal 
design. According to Lemma 2, we can obtain 2 21K = , where 2K  is a constant.  

( )3 0 1
3 9 3 3

1 3 15 27
16

K C A A= + + , by which the φ  values of the defining words with  

length 3 can be set to 0N  to minimize 3K . Assuming that 4K  has reached the 
minimum value, we next consider 5K . Using C to represent the constant, the  

expression for 5K  is obtained as ( )
( )0,10 0,0

5 4 3 3,4
25 25 1
64 64 4

K A A A C= − − + , by which  

the φ  values of the defining words with length 4 can be set to 1N  to minimize 

5K . After verification, it can be concluded that this design is the optimal design 
under the K -aberration criterion. 
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