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Abstract 
In this paper, we consider the fear effect and gestation delay, and then establish 
a delayed predator-prey model with cannibalism. Firstly, we prove the well-
posedness of the model. Secondly, the existence and stability of all equilibri-
ums of the system are studied. Thirdly, the Hopf bifurcation at the coexistence 
equilibrium is investigated, and the conditions for the occurrence of Hopf bi-
furcation at the unique positive equilibrium point of the system with delay are 
determined. Finally, the numerical simulation results show that as the time 
delay increases, the equilibrium loses its stability, and the system has periodic 
solution. 
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1. Introduction 

Predation serves as the primary determinant of prey mortality. During the course of 
evolution, prey has developed a variety of sophisticated strategies, such as detecting, 
eluding, or combating predators, while actively searching for new food sources 
[1]-[3]. A growing body of research has demonstrated that the mere presence of 
predators can exert a substantial influence on the physiological traits and behavioral 
patterns of prey. In other words, the presence of a predator has a greater effect on 
the prey than the predator directly hunting. Zanette et al. [4] studied the effects of 
predators on the reproductive habits of songbirds and found that the presence of 
fear factors influenced the birth and survival rates of songbirds. Wang et al. [5] pro-
posed a specific mathematical model to characterize the role of the fear effect on 
predator-prey systems:  
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where prey and predator density are denoted by 0u ≥  and 0v ≥ , k  reflects the 
fear level of the prey due to perceiving the risk of predation, 0r  is the natural birth 
rate of prey in the absence of predators, ( ),f k v  is the cost of the antipredation 
defense of the prey due to fear and it is monotonically decreasing in k  and v , 
d  is the natural death rate of prey, a  is the density-dependent death rate of the 
prey due to intraspecies competition, ( )g u  is the functional response function 
which is independent of v , and m  is the predator death rate. It obtained some 
results on how the fear effect affects the dynamic behavior of predator-prey models 
through mathematical analysis and numerical simulations. For more related research, 
see [6]-[10]. 

Certain predator populations are capable of consuming their own kind to gain 
energy, enabling them to survive in the absence of prey. And we study such mod-
els by considering cannibalism. In some primates [11], fish [12], carnivorous 
mammals [13] and spiders [14], cannibalism [15], also known as intraspecific pre-
dation, involves eating offspring or siblings. This phenomenon is sometimes re-
ferred to as the “lifeboat mechanism” because it prevents the extinction of pred-
ator communities. Depending on the rate of cannibalism, cannibalism can have a 
positive or negative impact on the population. Many scholars have been inspired 
to study and produce many remarkable research results. Therefore, for some pred-
ators, it makes more sense to include predators in a stage structure model as well. 
Deng et al. [16] proposed a Lotka-Volterra prey-predator with predator cannibal-
ism:  

 
1

2
2

2 1

d 1 ,
d
d ,
d

u uru a uv
t K
v b va uv b v cv
t vβ

  = − −   

 = + − −

 

where parameter r  represents the intrinsic growth rate of the prey, K  represents 
the carrying capacity of the prey in the environment, 1a  represents the rate of pre-
dation, 2a  represents the rate at which prey biomass is converted into predator 
birth, 1b  represents the rate at which cannibalism is converted into predator birth, 
c  represents the rate at which predators die, 2b  represents the rate at which can-
nibalism occurs within predator individuals, and β  represents the cannibalism 
half-saturation constant. The final term and the second term in the second equation 
of the system represent the phenomena of cannibalism. 

The existence of delay is common in ecosystem. In ecology, physics, biology and 
other fields, delayed differential equations are more useful than conventional equa-
tions. In ecosystem, changes in growth and development, reproduction processes, 
and environmental factors can produce time lags, and population conditions are 
affected by time lags. Considering the time delay factor in the predator model can 
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better reflect the actual situation of the ecosystem. In many current studies, the en-
ergy obtained by predators through food does not immediately affect the reproduc-
tion of predator groups, and this effect can be described by the Holling-type func-
tional response function, which often displays time delay. In the delayed predator-
captor model, delay may affect the stability or instability of prey density due to pre-
dation (see [17]-[20]). Due to new ecological evidence and theoretical advances, 
researchers are making new advances in modeling various aspects of biological 
interactions. Holling [21] proposed a more accurate point of view that has become 
one of the most widely used ecologies. Hussien et al. [22] considered the existence 
of cannibalism in the predator population, considered the pregnancy delay of the 
predator population, and added the predator refuge constant to obtain the follow-
ing model:  

 
( ) ( )

( )
( )
( )

1

1
2

2 2
1

2 2

d 1 ,
d

1d ,
d 1

u u a uvru
t K u

a u t v t b m vv b v cv
t u t m v

β

τ τ
β τ β

  = − −  + 


− − − = + − − + − + −

 (1) 

where parameter 2b  represents the cannibalism coefficient of the predator pop-
ulation, 2β  represents the half-satiation constant of cannibalism, and m  repre-
sents the predator refuge constant. The results show that reducing the cannibalism 
rate will destroy the coexistence equilibrium point and make the system close to 
periodic dynamics. On this basis, the Holling Type II functional response, based on 
the traditional Lotka-Volterra model, is a function of increases, concave, smooths 
out, and saturation at high prey numbers. Many authors have studied predator-prey 
models that use this functional response function, both with and without time delay, 
and even with spatial dependence (see [23] [24]). 

In natural ecosystems, long-term monitoring of predator populations can re-
veal patterns related to cannibalism and density. Rudolf [25] studied dragonfly 
predation models, providing the first experimental evidence for the indirect ef-
fects of cannibalism behavior and density constraints on prey. The study of bio-
logical populations and the analysis of related ecological phenomena have certain 
relevance to the study of the relationship between cannibalism and density in fish 
populations. To some extent, it shows the importance and significance of long-
term monitoring of predator populations in natural ecosystems. Meanwhile, prey 
animals are not only affected by the immediate presence of predators (fear effect), 
but predators also sometimes resort to cannibalism when resources are scarce. 
Moreover, biological processes such as reproduction and development take time, 
which is captured by the time-delay factor. The previous study did not couple 
these parts in the same model to accurately describe how these factors interact 
over time and affect the stability and dynamics of the predator-prey system. 
Therefore, assuming that young individuals have density limitations due to their 
dependence on nutritional or biological resources. We propose the following 
model:  
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( ) ( )
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d ,
d

x ax xycx
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x t y ty yr d y
t x t m y n

ϕ

ϕ τ τ σ
τ

 = − − + +
 − − = + − −
 − + +

 (2) 

with the initial conditions  

 ( ) ( ) ( ) ( ) [ ]0 00, 0, ,0 .x x y yθ θ θ θ θ τ= ≥ = ≥ ∈ −  (3) 

The rest of this paper is organized as follows. In Section 2, we establish the well-
posedness of solutions of system (2). In Section 3, we investigate the existence and 
stability of equilibrium and the existence of Hopf bifurcation are investigated. In 
Section 4, we analyze the stability of Hopf bifurcation. In Section 5, we conducted 
some numerical simulations. Finally, a brief conclusion is given in Section 6.  

2. Well-Posedness 

In this section, we will prove the well-posedness of model (2) and obtain the follow-
ing theorem.  

Theorem 1. For any initial value ( ) 2,x y +∈ , system (2) has a unique solution 
satisfying (3), which exists globally in ( )0,+∞ , is nonnegative, and remains bounded. 
Moreover, the region  

 ( ) ( )2: , ,0 Fx y H t
G+

 Π = ∈ ≤ ≤ 
 

  

is both positively invariant and attractive for (3), where  

 ( ) ( )2
2

2 1: , : , 0 .
4

a G
H t x y F G r d

c
ϕ

ϕ ϕ
+

= + = < < −  

Proof. According to [26] (Lemma 4), we derive that every solution of (2) with 
the initial condition (3) is positive, that is, any solutions remain positive when 

0t∀ >  in the region 2
+ . The following is a proof of well-posedness. 

Firstly, similar to the Lyapunov function as in [22], let  

 ( ) ( ) ( )1 2, ,H t g x t g y tτ τ= − +  

where 1 2,g g  are positive constants. After calculation, the  

 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 2 1 12
1 2

2 2 1 12
1 1 2

1

.

g ax t g g x t y t
H g cx t g r d y

by x t m

g g x t y t
g ax t g cx t g r d y

x t m

τ ϕ ϕ τ τ
τ

τ

ϕ ϕ τ τ
τ τ

τ

− − − −
′ < − − + + −

+ − +

− − −
< − − − + + −

− +

 

Set 1 2 2 1,g gϕ ϕ= = , then  

 ( ) ( ) ( )2
2 2 1 .H ax t cx t r d yϕ τ ϕ τ ϕ′ < − − − + −  

Choose a constant 0G >  such that  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 2 1 2 1

2
2 2 1 ,

H GH ax t cx t r d y G x t G y t
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ϕ τ ϕ τ ϕ ϕ τ ϕ

ϕ τ ϕ τ ϕ
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= + − − − + − +
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take G d r< − , then ( ) ( ) ( ) ( )( )2
2 2H GH a G x t cx t F x tϕ τ ϕ τ τ′+ < + − − − = − . 

Since ( )( ) 22 0F x t cτ ϕ′′ − = − < , so that ( )( )F x t τ−  has a maximum value of 

( )2
2

4
a G

c
ϕ +

. 

Applying differential inequality theory results, we obtain  

 ( ) ( ) ( ) ( )( )0 1 e 0 , 0 e , 0.Gt GtFH t H x y t
G

− −≤ ≤ − + ≥  

As t →+∞ , we have ( )0 FH t
G

< ≤ . Therefore, all the solutions of system (2) 
are confined in the region  

 ( ) ( )2: , ,0 .Fx y H t
G+

 Π = ∈ ≤ ≤ 
 

  

This completes the proof. 

3. Equilibria and Its Stability 

In this section, we will show all equilibrium of the model (2) and analyze its sta-
bility. 

First, we can easily obtain the following results:  
1) The trivial equilibrium point ( )0 0,0A ;  

2) The predator-free point ( )1 1,0A x , where 1
ax
c

=  always exist in 2
+ ;  

3) The prey-free point ( )2 20,A y , where 
( )

2
r d n

y
r dσ
−

=
− +

, exists if r d rσ− < < ;  

4) The coexistence equilibrium point ( )3 3 3,A x y  satisfying  

 
( )

23 1 3 3
3

3 3
2

2 3 3 3
3

3 3

0,
1

0.

ax x ycx
by x m

x y yr d y
x m y n

ϕ

ϕ σ

 − − = + +

 + − − = + +

 

By solving the above equations, we get  

 
( ) ( )

( ) ( )
3

3
2 3 2

.
my r d mn d r

x
r d y n r d
σ

ϕ σ ϕ
− + + −

=
+ − − + + −

 

The equilibrium point exists only if 2r d rϕ σ< < − +  and 3y  satisfies the 
equation  

 3 2 0,Ay By Cy D+ + + =  

where  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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2
1 2

22 2 2
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,
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B amn d r d r mn d r d r

cm d r d n d r d r

C mn d r d r c m d r n d r d r

D n d r cm d r

σ ϕ σ σ ϕ ϕ

σ ϕ ϕ σ

σ ϕ ϕ

ϕ σ ϕ ϕ

ϕ

 = − + − + − − − + − − 
= − + − + + − − + −

− − − − − − +

= − − + − − − − − +

= − − −
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According to the Descartes rule of sign and ( )0A d r
D
< ≠ , we find that it exists 

at least one positive root. 
Next, we will discuss the stability of the equilibrium point. To study its local 

stability, we linearize the system at equilibrium point ( ),i ix y  to obtain the Jaco-
bian matrix. 

Let ( ) ( ) ( ) ( ) ( ), , 0,1, 2,3i ix t x t x y t y t y i= − = − = , and for simplicity, we still de-
note them as ( ) ( ),x t y t . The linearized system is  

 
( ) ( )

( ) ( ) ( )

10 01

010 100 001

d ,
d
d ,
d

x F x t F y t
t
y G x t G y t G y t
t

τ τ

 = +

 = − + + −


 

where  

 
( ) ( )

( ) ( )

1 1
10 012 2

2
2 2

010 100 0012 2

2 , ,
1 1

2, , .

i i i
i

i ii i

i i i i

ii i

my abx xaF cx F
by x mx m by

my y n y xG G r d G
x mx m y n

ϕ ϕ

ϕ σ σ ϕ

= − − = − −
+ ++ +

+
= = − − =

++ +

 (4) 

Then, the characteristic equation of the above system at ( ),i ix y  can be deter-
mined by  

 
( ) ( )

( ) ( )

1 1
2 2

2
2 2

2 2

2
1 1

0
2e e

i i i
i

i ii i

i i i i

ii i

my abx xa cx
by x mx m by

my y n y xd r
x mx m y n

λτ λτ

ϕ ϕλ

ϕ σ σ ϕλ− −

− + + +
+ ++ +

=
+

− + − + −
++ +

 (5) 

Theorem 2. The trivial equilibrium point ( )0 0,0A  is unstable for all 0τ ≥ .  
Proof. Substitute 0A  into the characteristic Equation (5) to obtain  

 
0

0,
0

a
d r

λ
λ

−
=

+ −
 

and further derive the eigenvalues 1 20,a r dλ λ= > = − . Then, if r d>  then 0A  
is a source and if r d<  then 0A  is a saddle point. So, 0A  is always unstable for 
all 0τ ≥ . 

Theorem 3. Assume that 
( )( )

2
d r a cm

a
ϕ

− +
<  and  

( )

( ) ( )
2

222

10 arccos
d r a cm

aa d r
a cm

τ τ
ϕϕ

− + 
′≤ < =  

   − − + 

. Then, the predator-

free equilibrium point ( )1 1,0A x  is asymptotically stable.  

Proof. Substitute 1A  into the characteristic Equation (5) to obtain  

 

1 1
1 1

1

2 1

1

2
0,

0 e

xa cx abx
x m

xd r
x m

λτ

ϕλ

ϕλ −

− + +
+

=
+ − −

+
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where 1
ax
c

= , after calculation, one eigenvalue is obtained as 1 0aλ = − < , and 

the other eigenvalue is obtained from the following equation  

 2 e 0,ad r
a cm

λτϕλ −+ − − =
+

 

For 0τ = , it is obtained 2
2

ar d
a cm
ϕλ = − +
+

, if and only if 
( )( )

2
d r a cm

a
ϕ

− +
< , 

the eigenvalue is negative, but when the previous assumption is not met, the ei-
genvalue 2λ  is positive and the equilibrium point 1A  is the saddle point. 

Now, when 0τ > , by [19] proposition 1, let 2, au d r v
a cm
ϕ

= − =
+

, the eigen-

value 2λ  has a negative real part when u v<  and  

( )

( ) ( )
2

222

1 arccos
d r a cm

aa d r
a cm

τ τ
ϕϕ

− + 
′< =  

   − − + 

 is satisfied. Otherwise, 

the eigenvalue 2λ  has a positive real part. 

Therefore, for any 0τ ≥ , if 
( )( )

2
d r a cm

a
ϕ

− +
< , the predator-free equilibrium 

point is locally asymptotically stable, while it is an unstable point for 0 τ τ ′< <  
when the assumption doesn’t hold. 

This proves the theorem. 

Theorem 4. Assume that 
2

1

1

amu ub
n
ϕ

ϕ
−

>  and 
( )21

ur d
u

σ
> +

+
, where  

0r du
r d

σ − +
= >

−
. Then, the prey-free equilibrium point ( )2 20,A y  is locally as-

ymptotically stable for all 0τ ≥ .  
Proof. Substitute 2A  into the characteristic Equation (5) to obtain  

 

( )

1 2

2
2

2 2 2 2
2

0
1

0,
2e

i

a y
by m

y y n yd r
m y n

λτ

ϕλ

ϕ σ σλ−

− +
+

=
+

− + − +
+

 (6) 

where 
( )

2
r d n

y
r dσ
−

=
− +

. The characteristic Equation (6) becomes  

 2 0,A Bλ λ+ + =  (7) 

after calculation, we get  

 
( )

( )

2
2 2 1 2

2
22

2
2 2 1 2

2
22

2 ,
1

2 ,
1

y n y a yA d r
by my n

y n y a y
y n

B d r
by m

σ σ ϕ

σ σ ϕ

+
= − + − +

++

  +
= − + − +    ++   

 

In order to obtain the presence of negative real parts in the eigenvalues, it holds 
when 0A >  and 0B > , that is  
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 ( )

2

2
2

1 2

2

,

,
1

nd r
y n

y a
m by

σσ

ϕ


− + >

+

 > +

 

direct computation gives the following two expressions  

 
( )

2
1

2
1

and ,
1

amu u ub r d
n u
ϕ σ

ϕ
−

> > +
+

 

where 0r du
r d

σ − +
= >

−
. 

Therefore, the prey-free equilibrium point 2A  is locally asymptotically stable 
if the above assumptions hold. 

This proves the theorem. 
Theorem 5. The following results hold:  
1) If 2 22C B A+ <  and 2 2B D> , or ( ) ( )22 2 2 22 4 0C B A B D+ − − − <  holds, 

then the equilibrium point 3A  is locally asymptotically stable for any 0τ > ;  
2) If 2 2 2 22 ,C B A B D+ > >  and ( ) ( )22 2 2 22 4 0C B A B D+ − − − >  holds, 

then the equilibrium point 3A  is locally asymptotically stable for [ ]00,τ τ∈ , 3A  
is unstable when 0τ τ> ;  

3) If 2 2B D<  or 2 22C B A+ >  and ( ) ( )22 2 2 22 4C B A B D+ − = −  holds, 
then the equilibrium point 3A  is locally asymptotically stable for [ ]00,τ τ∈ , 3A  
is unstable when 0τ τ> .  

Proof. Substitute 3A  into the characteristic Equation (5) to obtain  

 
( ) ( )

( ) ( )

1 3 3 1 3
3 2 2

3 33 3

2
2 3 3 3 2 3

2 2
33 3

2
1 1

0.
2e e

my abx xa cx
by x mx m by

my y n y xd r
x mx m y n

λτ λτ

ϕ ϕλ

ϕ σ σ ϕλ− −

− + + +
+ ++ +

=
+

− + − + −
++ +

 

The above characteristic equation becomes  

 ( )2 e 0,A B C D λτλ λ λ −+ + + + =  (8) 

where  

 

( ) ( )

( ) ( )

( ) ( )

2
3 3 1 3

32 2
33 3

2
3 3 1 3

32 2
33 3

2 3

3

2 3 2 3 3
3 2 2

3 3 3 3

2 2 ,
1

2 2 ,
1

,

2 .
1 1

y n y myaA d r cx
byy n x m

y n y myaB d r cx
byy n x m

xC
x m

x abm x yaD cx
by x m by x m

σ σ ϕ

σ σ ϕ

ϕ

ϕ ϕ

+
= − + − + +

++ +

  +
= − + − + +  
   ++ +  

= −
+

 
= − + + + + + 

 

For 0τ = , the characteristic equation is  

 ( )2 0.A C B Dλ λ+ + + + =  (9) 
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According to the Routh-Hurwitz criteria, if and only if 0, 0A C B D+ > + > , 
Equation (9) has two roots and both of its real parts are negative. Hence, 3A  is 
locally asymptotically stable. 

Now, when 0τ > , assuming ( )0iλ ω ω= >  is a root of Equation (8), substi-
tuting iω  into it yields  

 ( ) ( ) ( )( ) ( )2 cos sin 0,i A i B C i D iω ω ω ωτ ωτ+ + + + − =  

then, by separating the real and imaginary parts of the above equation, it is ob-
tained that:  

 
2sin cos ,

cos sin .
C D B
C D A
ω ωτ ωτ ω
ω ωτ ωτ ω

 + = −


− = −
 (10) 

By calculation, we obtain:  

 4 2 0,E Fω ω− + =  (11) 

where 2 22E C B A= + −  and 2 2F B D= − . 
In the following, we will analyze the roots of Equation (11).  
1) If 2 22C B A+ <  and 2 2B D> , or ( ) ( )22 2 2 2

1Δ 2 4 0C B A B D= + − − − <  
holds, then Equation (11) has no positive roots.  

2) If 2 2 2 22 ,C B A B D+ > >  and ( ) ( )22 2 2 2
2Δ 2 4 0C B A B D= + − − − >  

holds, then Equation (11) has two positive roots, which are 2ω+  and 2ω− , respec-
tively, where  

 
( ) ( )

( ) ( )

22 2 2 2 2 2 2

22 2 2 2 2 2 2

1 2 2 4 ,
2
1 2 2 4 ;
2

C B A C B A B D

C B A C B A B D

ω

ω

+

−

 = + − + + − − −  
 = + − − + − − −  

 

3) If 2 2B D<  or 2 22C B A+ >  and ( ) ( )22 2 2 2
3Δ 2 4 0C B A B D= + − − − =  

holds, then Equation (11) has a positive root about, which is  

( ) ( )22 2 2 2 2 2 21 2 2 4
2

C B A C B A B Dω+
 = + − + + − − −  

;  

In summary, it can be assumed that Equation (11) has two positive roots, de-
noted as ( )1,2i iω = , which can be substituted into the equation to obtain 

 
( )

2

2

2 2

cossin ,

cos .

i i
i

i

i i
i

i

D B
C

D B CA
C D

ω ωτωτ
ω

ω ω
ωτ

ω

 − −
=




− − = +

 

Then, kτ  can be expressed as  

 ( ) 2

2 2
1 arccos 2 , 1,2, 0,1,2,i i

k
i i

D B CA
k i k

C D
ω ω

τ
ω ω

 − −
= + π = =  + 


 

Denote  
 0 min , 0.k kτ τ= ≥  

This proves the theorem. 
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4. Hopf Bifurcation Analysis 

In this section, the possibility of occurrence of Hopf bifurcation at the coexistence 
equilibrium point is discissed. Through the analyses in the preceding sections, we 
have known that Hopf bifurcation will occur under the appropriate conditions. 
According to Theorem (5), Equation (8) has a pair of purely imaginary roots 0iω±  
at 0τ τ= , and all other roots have non-zero real parts. Therefore, let  
( ) ( ) ( )iλ τ ρ τ ω τ= ±  be the pair of complex conjugate roots of Equation (8) at 

kτ τ= , where ( ) ( ) ( )0, 1,2, 0,1,2,k k i i kρ τ ω τ ω= = = =  . 
According to the stability theory of time-delay differential equations, it can be 

concluded that when 0τ τ< , the system is stable and when 0τ τ> , the real part 
of the eigenvalues of the linearized system is discussed. 

Theorem 6. If 0τ τ= , a Hopf bifurcation occur at the positive equilibrium 
point 3A .  

Proof. Firstly, we will verify the transversality conditions. Take the derivative of 
both sides of characteristic Equation (8) with respect to τ , we get  

 ( ) ( )d2 e e e ,
d

A C C D C Dλτ λτ λτλλ τ λ λ λ
τ

− − − + + − + = +   (12) 

Next,  

 

( )
( )

( ) ( )

1

2

2 ed
d e

2

A Ce C D
C D
A C

C DA B

λτ λτ

λτ

λ τ λλ
τ λ λ

λ τ
λ λ λλ λ λ

− − −

−

+ + − +  =  + 
+

− + −
++ +

=
 

Hence,  

 

( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

00

1

2

2 4 2 2 2 2 2 2
0 0

2 4 2 6 2 2 2
0 0 0

2 2 2

2 4 2 6 2 2 2
0 0 0

d 2Re Re
d

2 2
Re

2

Re
2

i

A C
C DA B

C A C D A B D

A B B C D

A B C

A B B C D

λ ωτ τ

λ τ λ τ
τ λ λ λλ λ λ

ω ω

ω ω ω ω

ω ω ω ω

−

==

     +
   = − + −  ++ +       

 + + + −
 =
  − + + +  
 +
 −
  − + + +  

 

Clearly, 
( )

0

1
d

Re 0
d

τ τ

λ τ
τ

−

=

  
  ≠ 
   

. 

Therefore, the transversality conditions are satisfied, that is, the system has 
Hopf bifurcation at the positive equilibrium point 3A . 

This proves the theorem. 
Next, we will explore the properties of the Hopf bifurcation, including the di-

rection and stability. The direction of the periodic trajectory of the bifurcation of 
the positive equilibrium point 3A  at the critical of delay 0τ  and the stable pe-
riodic solution will be given through the center manifold and normal form the-
ory.  
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Theorem 7. The following statements hold:  
1) If ( )2 20 0µ µ> < , then a supercritical (subcritical) Hopf bifurcation occurs 

at 0τ ;  
2) If ( )2 20 0β β> < , then the bifurcating periodic solution is asymptotically 

stable (unstable);  
3) If ( )2 20 0T T> < , then the period of the bifurcating periodic solution in-

creases (decreases).  
Proof. Linearizing the system (2) in [ ]( )20,1 ,C C +=  , yields the following 

time-delay differential equation:  

 ( ) ( )' , ,t t tU L u F uµ µ= +  (13) 

where ( ) ( ) ( )( ) ( ) ( ) [ ]T
1 2, , , 1,0tu t u t u t u u tθ θ θ= = + ∈ −  and 2:L Cµ +→ , 

2:F R C +× →  , with  

 ( ) ( ) ( )
( ) ( ) ( )

( )
10 01 1 1

0 0
100 010 0012 2

0 00 1
,

0 0 1
F F

L
G G Gµ

φ φ
φ τ µ τ µ

φ φ
−      

= + + +       −      
 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
11 1 12 1 2 22 2

0 2 2
011 1 101 2 111 1 2

0 0 0 0
, ,

1 0 1 1
F F F

F
G G G

φ φ φ φ
µ φ τ µ

φ φ φ φ
 + +

= +   − + + − − 
 

where 10 01 100 010 001, , , ,F F G G G  are given in Equation (4), 

 

( ) ( ) ( )

( ) ( )
( )

( )

( )

1 1
11 123 2 2

2
2

22 0113 3

101 3

2
111 112 2112

2 2 , ,
1

2 , ,
1

2 22 ,

, 0 0.

my ab mF C F
x m by x m

ab x myF G
by x m

y y n
G

y n y n
mG G G

x m

ϕ ϕ

ϕ

σσ

ϕ

= − = − −
+ + +

= = −
+ +

+
= − +

+ +

= = = =
+

 

According to the Riesz representation theorem, there exists a bounded variation 
function ( ),ϖ θ µ  in [ ]1,0θ ∈ −  such that  

 ( ) ( ) ( ) [ ]( )0 2
1
d , , 1,0 , ,L Cµ φ ϖ θ µ φ θ φ +−

= ∈ −∫   

In fact, it can be chosen  

 ( ) ( ) ( ) ( )10 01
0

100 010 001

0 0
, 1 ,

0
F F

G G G
ϖ θ µ τ µ δ θ δ θ

    
= + − +    

    
 

where ( )δ θ  is Dirac delta function and is defined as  

 ( )
0, 0,
1, 0.

θ
δ θ

θ
=

=  ≠
 

For [ ]( )21,0 ,Cφ +∈ −  , define  

 ( ) ( )
( ) [ )

( ) ( )0

1

d
, 1,0 ,

d

d , , 0,
J

φ θ
θ

θµ φ θ
ϖ µ θ φ θ θ

−


∈ −

= 
 =∫
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and  

 ( ) ( ) [ )
( )

0, 1,0 ,
, , 0.

K
f

θ
µ φ θ

µ φ θ
∈ −

=  =
 

Then, system (13) is equivalent to the following abstract operator equation:  

 ( ) ( ) .t t tu J u K uµ µ′ = +  (14) 

For [ ] ( )( )*21,0 ,Cψ +∈ −  , the adjoint operator *J  of ( )J µ  is defined as  

 ( )
( ) [ )

( ) ( )

*

0 T
1

d
, 1,0 ,

d

d , , 0,
J

t t

ψ ξ
ξ

ξψ ξ
ϖ µ ψ ξ

−


− ∈ −= 
 − =∫

 

and define the bilinear inner product as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0

1 0
, 0 0 d d ,

θ
ψ ξ φ θ ψ φ ψ ξ θ ϖ θ φ ξ ξ

−
= − −∫ ∫  (15) 

where ( ) ( ),0ϖ θ ϖ θ=  and *, ,J Jψ φ ψ φ= , ( )0J J=  and ( )* * 0J J=  are 
adjoint operators. The eigenvalue corresponding to J  is 0 0iω τ± . It is easy to know 
that 0 0iω τ±  is also the eigenvalue of the conjugate operator *J . 

Let  

 ( ) ( ) ( ) ( ) [ ]0 0 0 0
TT * *1, e and 1, e , , 1,0 ,i iq qω τ θ ω τ ξθ η ξ η θ ξ= = ∈ −  

where 
0 0

0 0

010

100 001

e
e

i

i
G

G G

ω τ

ω τη
−

=
+

, 
0 0

* 01

100 001e
i

F
G G ω τη −= −

+
. ( )q θ  and ( )*q ξ  are the 

eigenvectors of ( )0J  and ( )* 0J  to the eigenvalues 0 0iω τ  and 0 0iω τ− , respec-
tively. Moreover, determine the parameter value of D , such that:  

 ( ) ( )* *, 1 and , 0.q q q qη θ = =  (16) 

According to Equation (15), we have  

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

0 0 0 0

0 0

*

0T T* *
1 0

* *
0 010 001

,

1, 1, 1, e d 1, e d

1 e .

i i

i

q q

D D

D G G

θ ω τ ξ θ ω τ ξ

ω τ

η θ

η η η ϖ η ξ

ηη τ η η

−

−
= −

 = + + + 

∫ ∫  

Therefore, due to (16), it is obtained that  

 
( )

( )

0 0

0 0

1* *
0 010 001

1* *
0 010 001

1 e ,

1 e .

i

i

D G G

D G G

ω τ

ω τ

ηη τ η η

ηη τ η η

−

−

 = + + + 

 = + + + 

 

According to the theory in [27], we can obtain the property of Hopf bifurcation. 
Calculating the direction of the Hopf bifurcation and the stability coefficient of 
the periodic solution at the positive equilibrium point 3A :  

( )0 0 0 02 2* 2
20 0 11 12 111 101 0112 e e ,i ig D F F G G Gω τ ω ττ η η η η− − = + + + +   

( ) ( )( )*
11 0 11 12 011 101 1112 2 2 ,g D F F G G Gτ η η η ηη η η = + + + + + +   
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( )0 0 0 02 2* 2
02 0 11 12 111 101 0112 e e ,i ig D F F G G Gω τ ω ττ η η η η = + + + +   

( ) ( ) ( ) ( )

( ) ( )( ) ( )

21 0 12 11 20 20 11

*
0 11 20 11 1 111 2 101 3 011

1 12 0 0 0 0
2 2

2 0 2 0 ,

g D F H H H H

D F H H Q G Q G Q G

τ η η

τ η

  = + + +    
 + + + + + 

 

where  

 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

0 0 0 0 0 0 0 0

0 0 0 0

1 20 11 11 20

2 20 11

3 20 11

1 11 e 1 e 1 e 1 e ,
2 2

0 2 0 ,

1 e 2 1 e ,

i i i i

i i

Q H H H H

Q H H

Q H H

ω τ ω τ ω τ ω τ

ω τ ω τ

η η

η η

− −

−

= − + − + − + −

= +

= − + −

 

with  

 
( ) ( ) ( )

( ) ( ) ( )

0 0 0 0 0 0

0 0 0 0

220 02
20 1

0 0 0 0

11 11
11 2

0 0 0

0 e 0 e e ,
3

0 e 0 e ,

i i i

i i

ig igH M

ig igH M

ω τ θ ω τ θ ω τ θ

ω τ θ ω τ θ

θ η η
ω τ ω τ

θ η η
θτ ω τ

−

= + +

= − + +
 

and  

( ) 0 0 0 00 0 0 0

1
0 10 01 12 11

1 2 22 2
111 101 011010 0 100 001

2
2 ,

e ee 2 e i ii i

i F F F F
M

G G GG i G G ω τ ω τω τ ω τ

ω η
η ηω

−

− −

− −  + 
=      + +− − +   

 

 ( )
( )

( )

1
10 01 11 12

2
010 100 001 011 101 111

2
.

2 2
F F F F

M
G G G G G G

η η
ηη η η

−− − + +  
=   − − + + + +   

 

Based on the above analysis and the expressions for 20 11 02, ,g g g  and 21g , we 
get the following values:  

 
( )

( ){ }
( ){ }

( ){ } ( ){ } ( ){ }

2
2 102 21

1 20 11 11 2
0 0 0

1 2 0
2 1 2

0 0

Re 0
0 2 , ,

2 3 2 Re

Im 0 Im
2 Re 0 , .

Cgi gC g g g

C
C T

µ
ω τ λ τ

µ λ τ
β

ω τ

 
= − − + = − 

  ′ 
′+

= = −

 

The above parameters determine the Hopf bifurcation. 

5. Numerical Simulation 

In this section, we will show some numerical simulation results to support the 
above research. 

For this purpose, we choose the initial value condition ( ) ( )0 0, 1,1.5x y =  and 
refer to some parameters in [22] to obtain the following parameters  

 1
* *

2

0.6, 0.05, 0.5, 0.35, 0.5,

0.3, 0.2, 0.3, 0.1, 2.

a b c m

r d n

ϕ

ϕ σ

= = = = =

= = = = =
 (17) 

In this case, there is a unique coexistence equilibrium point ( )0.4056,1.0468 , 
and 0 1.402τ = . 

Firstly, fixed parameter (17), we obtained the solution and phase diagram of the 
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positive equilibrium point, as well as the Hopf bifurcation diagram, as shown be-
low. 

 

 

Figure 1. The Hopf bifurcation diagram. 
 

 

Figure 2. Solution and phase diagram of system. 
 
From Figure 1, we can find that the system has a Hopf bifurcation as the pa-

rameter τ  passing the bifurcation point 0 1.402τ =  (see Figure 1). From Figure 
2, the solution of the system is approached to the coexistence equilibrium point 

( )3 0.4056,1.0468A =  starting from the initial point (see Figure 2). 
Next, we analyze the impact of the parameters σ  and n  on the system. 
1) Taking *0.05σ σ= < , other parameters are the same as in (17), the numer-

ical simulations are as follows. 
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Figure 3. The system solution and phase diagrams of cannibalism rate in small-parameter predator individuals. 
 

We can see from Figure 3 that the cannibalism rate σ  of the rate at which canni-
balism occurs within predator individuals below a specific value destabilizes the co-
existence equilibrium point and the system has periodic solution (see Figure 3). 

2) Taking *2.5n n= > , other parameters are the same as in (17), the numerical 
simulations are as follows. 

 

 

Figure 4. The system solution and phase diagrams of cannibalism rate in big-parameter predator individuals. 
 

From Figure 4, we know that increase the conversion rate causes destabilizing 
the coexistence equilibrium point and the system has a stable limit cycle (see Fig-
ure 4). 

Finally, we analyze the impact of the time delay τ  on the model, fixed parameter 
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in (17), we get the following results: 
1) Taking [ ]01.39 0,τ τ= ∈ , the numerical simulations are as follows. 
 

 

Figure 5. Solution and phase diagram of model when 1.39τ = . 
 
2) Taking 02.5τ τ= > , the numerical simulations are as follows. 
 

 

Figure 6. Solution and phase diagram of model when 2.5τ = . 
 
We can see from Figure 6 that when the pregnancy delay parameter is greater 

than 0 1.402τ = , the system has a Hopf bifurcation (see Figure 5 and Figure 6).  

6. Conclusions 

This paper proposes a predator-prey model that considers the existence of the fear 
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effect and the gestation delay, as well as cannibalism. Firstly, we prove the positiv-
ity and boundedness of the system (2). Secondly, it is obtained that the system (2) 
has four possible non-negative equilibrium points. The local stability of them is stud-
ied for 0τ ≥ , and the stability conditions are determined. The existence of Hopf 
bifurcation as a function of τ  is proved. The stability and direction of the bifur-
cated periodic dynamics are investigated using the center manifold and normal form 
theory. Finally, numerical simulation results present the influence of different model 
parameters on the dynamics of system. 

The research results indicate that cannibalism and delay pregnancy in predator 
populations have significant impacts on population dynamics. The final state and 
stability of a population mainly depend on predation behavior and parameter con-
figuration. The research findings provide a new perspective for understanding pop-
ulation interactions in ecosystems, emphasizing the crucial role of cannibalism and 
delayed pregnancy of predator populations in ecosystem stability and population 
dynamics. Future research can further explore the dynamic characteristics of pop-
ulation models under different predation relationships, which provide insight into 
species interactions and stability in ecosystems.  
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