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Abstract 
We consider the partially linear multiplicative model with monotonic con-
straint for the analysis of positive response data. We propose a constrained 
least product relative error (LPRE) estimation procedure for the model by 
means of B-spline basis expansion. We have also established asymptotic prop-
erties of the proposed estimators under regularity conditions. We finally pro-
vide numerical simulations and a real data application to assess the finite sam-
ple performance of the developed methodology. 
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1. Introduction  

Linear multiplicative models are popular tools for analyzing data with positive 
responses. However, the linear structure of models is too restrictive on the regres-
sion relation, which may lead to a high risk of model misspecification when deal-
ing with more complicated data. To compensate for this defect, scholars have pro-
posed many general and powerful multiplicative models that allow nonparametric 
or semi-parametric modeling. Examples of these models include the partially lin-
ear multiplicative model, which takes the following structure: 

 ( )( )Texp ,Y f U= +X β   (1.1) 

where Y  is the response, ( )T
1, , pX X=X   is a p -dimensional random co-

variates vector, ( )T
1, , pβ β= β  is a p -dimensional vector of unknown pa-

rameter, ( )f ⋅  is an unknown smooth function, covariate U  ranges over a 
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non-degenerate compact interval,   is the model error term. Both Y  and   
defined in model (1.1) are positive. By applying logarithmic transformation to 
model (1.1), the above model becomes the usual partially linear model  

( )* T *Y f U= + +X β   with ( )* logY Y=  and ( )* log=  . By allowing the re-
sponse variable to depend linearly on some covariates and nonlinearly on re-
mains through an unknown smooth function, the partially linear model enjoys 
both interpretation property of parametric modeling and flexibility of nonpara-
metric modeling. 

For logarithmic transformation of model (1.1), the absolute error based meth-
ods such as the least squares method and the least absolute deviation approach 
can be used to estimate β  and ( )f ⋅ , however it may lose the intuitive explana-
tory sense for the transformed models. In many statistical applications, consider-
ation of the relative error sometimes are more attractive than that of the absolute 
error for positive response data analysis. For example, under nonlinear regression 
framework, Khoshgoftaar et al. [1] studied the strong consistency of the estima-
tors in the case of both squared relative error and absolute relative error. Park and 
Stefanski [2] derived the form of the best mean squared relative error prediction 
and adopted it into county-level gasoline usage prediction. Inspired by these, 
Chen et al. [3] proposed least absolute relative error (LARE) criterion for linear 
multiplicative models and they further applied proposed method to a study of 
stock returns in Hong Kong Stock Exchange. Xia et al. [4] discussed the interpre-
tation of LARE criterion through a case study of stock price data from the views 
of buyers and sellers, they aimed to investigate the variable selection problem of 
linear multiplicative model with a diverging number of covariates. For model 
(1.1), Zhang and Wang [5] proposed the semi-parametric LARE criterion for es-
timating both parametric and nonparametric parts with help of kernel smoothing 
technique. However, the optimization of LARE criterion is non-smoothing and 
the computation is complicated. To this end, Chen et al. [6] developed the least 
product relative error (LPRE) criterion, the LPRE objective function is infinitely 
differentiable and strictly convex which makes the computation very convenient, 
while possess favourable statistical properties for resulting estimators. They fur-
ther demonstrated the effectiveness of the LPRE estimation over some existing 
estimations under certain conditions. For model (1.1), Zhang et al. [7] proposed 
a profile LPRE estimation method for parametric components. This method has 
also been extended to other semi-parametric multiplicative models for estimation 
and inference, the recent literature include but is not restricted to Hu [8] for var-
ying coefficient multiplicative models, Liu and Xia [9] for single index multiplica-
tive models, Ming et al. [10] for multiplicative additive models, Zhang et al. [11] 
for varying coefficient single index multiplicative models. For more intuitive ex-
planation of the advantages of the LPRE method, see the discussion of real 
monthly income for any two people in Ming et al. [10]. 

It is worth noting that the above mentioned works on model (1.1) take unspecified 
form for nonparametric function ( )f ⋅ . In many applications the nonparametric 
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component ( )f ⋅  may be monotone constrained. For example, dose response 
curves in some clinical trials and growth curves in biomedical studies are known 
to be increasing. There are many references focused on monotone constrained 
partially linear model include but are not restricted to the following ones. Lu [12] 
used monotone B-spline to approximate the monotone nonparametric function 
and applied the generalized Rosen algorithm to compute the estimators jointly. 
Du et al. [13] studied the M-estimation of partially linear model under monotonic 
constraints. Sun et al. [14] investigated the isotonic partially linear error-in-vari-
able model with randomly right censored response. Boente et al. [15] considered 
robust estimators for generalized partially linear regression model in which the 
nonparametric component is assumed to be a monotone function. Zhang and 
Wang [16] proposed a kernel based method for the monotone estimation of the 
nonparametric function component. There is a growing literature on monotone 
constrained partially linear model, but no such work exists for the model (1.1) 
with monotonic constraint up to now. It is, therefore, our impetus for solving this 
problem. 

In this study, we extend the partially linear multiplicative model (1.1) to the 
situation in which the nonparametric component ( )f ⋅  is specified with mon-
otone constraint, and we assume that ( )f ⋅  is a nondecreasing function with-
out loss of generality. We investigate the LPRE-based estimators along with their 
theoretical results for the model (1.1) with monotonic constraint. Our work is 
also motivated by analyzing an environmental data set elaborated in Section 4, 
as we will see, there exists a monotonic relationship between concentration of 
NO2 and traffic volume. Thus, our main goal is to examine the association be-
tween the levels of air pollutants and the number of cars per hour although the 
air pollutants are always influenced by potential confounding effects from other 
variables. It is not a unique model that fits the current data set, but our studies 
provide a useful perspective in exploring hidden structures for environmental 
data modeling. 

The rest of this paper is organized as follows. In Section 2, we propose a con-
strained least product relative error estimation method for partially linear multi-
plicative model with monotonic constraint using spline approximation and con-
strained nonlinear programming, and then we provide the theoretical properties 
of the resulting estimators for both parametric and nonparametric components. 
In Section 3, we present some simulation studies to illustrate the merits of pro-
posed method compared with existing ones. In Section 4, we apply our method to 
a real data application. We conclude the paper by mentioning some possible ex-
tensions in Section 5. 

2. Estimation and Asymptotic Properties  

This section focuses on the constrained LPRE estimation of model (1.1) and delves 
into the algorithm for computation. We also state the main asymptotic results of 
developed estimators for both the parametric and the nonparametric terms. 
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2.1. Estimation  

Let { }, ,i i iY UX , 1, ,i n=   be independent and identically distributed (i.i.d.) 
copies of { }, ,Y UX , the sample version of model (1.1) is given by 

 ( )( )Texp .i i i iY f U= +X β   (2.1) 

To address the estimating issue of β  and ( )f ⋅  simultaneously, we adopt the 
B-spline basis functions approximation to covert the estimation problem of model 
(2.1) to the problem of regression coefficients estimating in the linear combina-
tions framework. We first provide a brief review about the construction of these 
basis functions. Without loss of generality, we assume that the compact support 
set of U  is [ ]0,1U = . Let ( ) ( )( )T

:1m nu B u m J= ≤ ≤B  be the B-splines ba-
sis functions of order q , where n nJ N q= +  and nN  is the number of interior 
knots for a knot sequence given as 
 1 1 1 20 1 .

n n nq q N q N q N qξ ξ ξ ξ ξ ξ+ + + + += = = < < < < = = =  
 

For nq Jι≤ ≤ , this knot sequence satisfies 

 1 1max min ,
nn q Jq J

Mι ι ι ιιι
ξ ξ ξ ξ+ +≤ ≤≤ ≤

− − ≤  

for some constants 0 M< < ∞ . We refer the interested readers to Huang [17] for 
more details. Under some smoothness assumptions, we can approximate ( )f ⋅  
by 

 ( ) ( ) ( )T

1
,

nJ

i m i m i
m

f U B U Uγ
=

≈ =∑ B γ  (2.2) 

where ( )T:1m nm Jγ= ≤ ≤γ . 
Follows Theorem 5.9 of Schumaker [18], the spline ( )f ⋅  is monotonically 

non-decreasing on U  if non-decreasing constraints are imposed on the coeffi-
cients ( )T:1m nm Jγ= ≤ ≤γ , i.e., 
 1 2 ,

nJγ γ γ≤ ≤ ≤
 

this ensures the nondecreasing property of nonparametric function ( )f ⋅ . 
Based on the above analysis, we can rewrite model (2.1) as 

 ( )( )T Texp ,i i i iY U≈ +X Bβ γ   (2.3) 

which transforms the model (2.1) into an almost equivalent linear multiplicative 
model. Let ( )( )TT T,i i iU= X BΠ , then following Chen et al. [6], we estimate the 
related coefficients ( )TT T,=ϑ β γ  by minimizing 

 
( ) ( )

( )
T T

T
1

exp exp
,

exp

n i i i i

i i i

Y Y

Y=

 − − × 
  

∑
ϑ ϑ

ϑ

Π Π

Π
 (2.4) 

subject to the constraint 1 2 nJγ γ γ≤ ≤ ≤
, which is equivalent to solve the fol-

lowing 

 ( ) ( ) ( ){ }T 1 T

1
exp exp ,

n

n i i i i
i

Y Y −

=

≡ − +∑ϑ ϑ ϑ Π Π  (2.5) 
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with constraint 1 2 nJγ γ γ≤ ≤ ≤
. 

Now we delve into the algorithm for solving (2.5), since minimization problem 
(2.5) requires constrained nonlinear programming, we use the constrOptim pack-
age in R software to ensure restrictive condition 1 2 nJγ γ γ≤ ≤ ≤

 and achieve 
this optimization. To use the constrOptim algorithm, we need to specify the gra-
dient of the objective function ( )n ϑ  in (2.5) given as, 

 ( ) ( ) ( ){ }T 1 T T

1
exp exp .

n
n

i i i i i
i

Y Y−

=

∂
= − −

∂ ∑
ϑ

ϑ ϑ
ϑ


Π Π Π  (2.6) 

Denote the final estimator in (2.5) as ϑ̂ , we call it monotone constrained LPRE 
estimator, then the estimator for ( )f ⋅  is given by ( ) ( )Tˆ ˆif U⋅ = B γ . 

2.2. Asymptotic Properties  

The asymptotic properties of the proposed estimators are studied in this subsec-
tion. Let 0β  and ( )0f ⋅  be the true values of β  and ( )f ⋅  in model (1.1). We 
use ⋅  to denote the 2L  norm for functions. For some positive series na  and 

nb , n na b  means limn n na b c→∞ =  for some nonzero constant 0c > . The 
following regularity conditions are required. 

(C1). The covariate iU  has a continuous density ( )
iUg u  which is bounded 

away from 0 and infinity on U  for every 1, ,i n=  . 
(C2). ( ) ( ) ( )r

Uf C⋅ ∈   for some integer 2r ≥ , and the spline order satisfies 
q r≥ . ( ) ( ) ( ) ( ){ }|r r

U UC Cϕ ϕ= ∈   denotes the space of r -th order smooth 
function. 

(C3). The matrix ( )TE XX  is nonsingular and its eigenvalues are uniformly 
bounded away from 0 and infinity. 

(C4). The error   satisfies ( )1 | ,E U−+ < ∞X  . 
(C5). The error   satisfies ( ) ( )1| , | ,E U E U−=X X  . 
Conditions (C1)-(C3) are standard for the nonparametric estimation in spline 

smoothing literature, which are essentially same as those in Shen et al. [19] and 
Guo et al. [20] Condition (C4) ensures the asymptotic normality of the estimator 
for parametric term, see Liu and Xia [9] and Hu [8]. Condition (C5) is needed for 
model identification and asymptotic variance of estimates, see Ming et al. [10] and 
Hu [8]. 

Theorem 1 Under conditions (C1)-(C5), if ( )1 2 1r
nN n + , then we have 

 ( ) ( ) ( )( )2 2 2 1
0 .ˆ r r

pf u f u O n− +− =  

Theorem 1 indicates that the nonparametric estimates obtained by our pro-
posed method achieve the optimal convergence rates. The following Theorem 2 
states that the estimator β̂  is asymptotically normal. 

Theorem 2 Under the same assumptions of Theorem 1, β̂  converges in prob-
ability to the true value 0β , i.e. 

 ( ) ( )1 1
0 0, ΛΣ ,ˆ Σdn N − −→−β β  

where d→  denotes convergence in distribution, ( ){ }T 1Σ E −= +XX    and 
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( ){ }2T 1Λ E −= −XX   . 
Since the proofs of Theorems 1-2 follow along the same ideas as the proofs of 

Theorems in Ming et al. [10] although part of details differs, we omit the proofs 
in this paper. 

3. Numerical Simulations 

In this section, we carry out numerical simulations to investigate the finite sample 
performance of the proposed method. We generate the random samples from the 
following model: 

 ( )( )1 1 2 2exp , 1, , ,i i i i iY X X f U i nβ β= + + =   

where 100,200,500n = , ( )T
1 2,i i iX X=X , 1iX  and 2iX  follows a bivariate 

normal distribution with mean 0, variance 1, and covariance 0.5, the true param-
eters 1 1β =  and 2 3.5β = , we set ( ) ( )31i if U U= −  and the variable iU 's are 
sampled uniformly on [ ]0,2 . The following three cases for the random error   
are considered: 

Case I. The log normal distribution ( ) ( )log ~ 0,1N . 
Case II. The log uniform distribution on ( )2,2− , ( ) ( )log 2,2U∼ − . 
Case III. ( )~ 0.5,U κ  with κ  being chosen such that ( ) ( )1E E=  . 
To implement the developed method, we need to choose the number of interior 

knots appropriately. We fix the spline order as cubic, as this is the most commonly 
used choice in the spline literature. As recommended by Ming et al. [10], nN  was 
set as ( )1 2 3qn +  , this choice is small enough to avoid over-fitting with suitable 
sample size not too small and big enough to approximate smooth functions, and 
the results are similar for nN  varying on a set of candidate values. In this article, 
we propose a data-driven approach to select it. We use the Bayesian information 
criterion (BIC) to choose the optimal number of interior knots nN  by minimiz-
ing the following BIC function 

 ( ) ( ) ( ) ( ) ( )T 1 T

1

log1 ˆ ˆBIC log exp exp ,
n

n
n i i i i

i

N q n
N Y Y

n n
−

=

+  = − + +   
∑ ϑ ϑΠ Π  

on the range 1 9 1 98 1nn N n≤ ≤   + , where a   denotes the closest integer to 
a . Then the optimal nN  can be derived as ( )arg min BIC

n

opt
n n

N
N N= . 

In our simulation experiments, 500 repetitions are carried out for each error 
configuration. We compute the means of absolute biases (ABISEℓ) for each esti-
mated parametric coefficient β̂



, 1,2=  and mean squared error (MSE) for 
the estimated β̂ . To assess the performance of estimator ( )f̂ ⋅  for the mono-
tone function ( )f ⋅ , we apply the square root of average square error (RASE) of 
( )f̂ ⋅ , which is defined as 

 ( ) ( ) ( )( )
grid

1 2
2

1grid

ˆ ˆ1RASE ,
n

i i
i

f f u f u
n =

  = − 
  

∑  

where { }grid, 1, 2, ,iu i n=   are the grid points at which the function ( )f ⋅  is 
evaluated, and we simply set gridn  equals to the sample sizes in each simulation. 
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Meanwhile, we compare our proposed monotone constrained LPRE estimator 
(M-LPRE) with three conventional competitors, including: 1) transformation 
least squares estimator using data ( ){ }log , ,i i iY UX  and regular B-spline ap-
proximation without monotone constraint (TLS); 2) transformation least squares 
estimator using monotone B-spline approximation (M-TLS); 3) classical LPRE es-
timator without monotone constraint (see Ming et al. [10]). Tables 1-3 list the 
means and standard deviations (in parentheses) of ABISEℓ, 1,2= , MSE and 
RASE for the estimators with different sample sizes and cases. 

 
Table 1. The simulation results (×10−2) of ABISEs, MSEs and RASEs for Case I. 

n Methods ABIAS1 ABIAS2 MSE RASE 

100 

TLS 9.7389 (7.2943) 9.6925 (7.3219) 2.9539 (3.5008) 21.738 (6.7734) 

M-TLS 9.7247 (7.2827) 9.6772 (7.2483) 2.9358 (3.4886) 17.877 (6.1711) 

LPRE 10.153 (7.7417) 10.073 (7.9802) 3.2795 (4.0361) 22.906 (7.1748) 

M-LPRE 10.085 (7.6489) 10.086 (7.8772) 3.2375 (4.0039) 18.662 (6.4405) 

200 

TLS 6.7492 (5.4977) 6.6565 (4.7724) 1.4275 (1.6476) 15.429 (5.0271) 

M-TLS 6.7855 (5.4965) 6.6675 (4.7479) 1.4315 (1.6459) 13.096 (4.8426) 

LPRE 7.0469 (5.6828) 7.0415 (5.0957) 1.5738 (1.8380) 16.335 (5.3119) 

M-LPRE 7.0928 (5.7057) 7.0122 (5.0885) 1.5781 (1.8394) 13.790 (4.9359) 

500 

TLS 4.2335 (3.1922) 4.4513 (3.2366) 0.5836 (0.6642) 9.7130 (3.2102) 

M-TLS 4.2227 (3.1807) 4.4396 (3.2398) 0.5811 (0.6617) 8.6214 (3.0531) 

LPRE 4.5267 (3.5264) 4.7574 (3.5601) 0.6818 (0.8095) 10.262 (3.3762) 

M-LPRE 4.5190 (3.5183) 4.7561 (3.5641) 0.6807 (0.8054) 9.0773 (3.2266) 

 
Table 2. The simulation results (×10−2) of ABISEs, MSEs and RASEs for Case II. 

n Methods ABISE1 ABISE2 MSE RASE 

100 

TLS 11.440 (8.1737) 10.838 (8.3276) 3.8423 (4.0262) 24.858 (7.9266) 

M-TLS 11.304 (8.1259) 10.723 (8.2529) 3.7665 (3.9514) 20.267 (7.0257) 

LPRE 9.8071 (7.1019) 9.3712 (7.2280) 2.8647 (3.0107) 21.389 (7.1301) 

M-LPRE 9.6380 (6.9635) 9.1854 (7.1033) 2.7601 (2.9055) 17.667 (6.2289) 

200 

TLS 8.0140 (5.8346) 7.7360 (5.9461) 1.9333 (2.0871) 17.735 (5.4551) 

M-TLS 7.9488 (5.8484) 7.6923 (5.8878) 1.9109 (2.0591) 15.221 (5.2409) 

LPRE 6.6634 (4.9784) 6.4300 (4.9792) 1.3522 (1.4655) 14.836 (4.7409) 

M-LPRE 6.6228 (4.9507) 6.3848 (4.9110) 1.3315 (1.4410) 12.852 (4.5762) 

500 

TLS 4.9159 (3.9014) 4.6336 (3.3834) 0.7225 (0.8453) 11.117 (3.5822) 

M-TLS 4.9090 (3.8962) 4.6229 (3.3747) 0.7198 (0.8477) 9.8016 (3.4976) 

LPRE 4.0294 (3.2317) 3.8389 (2.7915) 0.4917 (0.5751) 9.1923 (2.9412) 

M-LPRE 4.0156 (3.2192) 3.8274 (2.7830) 0.4884 (0.5754) 8.1851 (2.8816) 
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Table 3. The simulation results (×10−2) of ABISEs, MSEs and RASEs for Case III. 

n Methods ABISE1 ABISE2 MSE RASE 

100 

TLS 3.2162 (2.3359) 3.0322 (2.3445) 0.3047 (0.3208) 7.1122 (2.1965) 

M-TLS 3.2146 (2.3095) 3.0107 (2.3420) 0.3019 (0.3191) 6.4357 (2.0982) 

LPRE 3.1725 (2.3017) 2.9921 (2.3203) 0.2967 (0.3123) 7.0157 (2.1718) 

M-LPRE 3.1705 (2.2772) 2.9699 (2.3135) 0.2939 (0.3102) 6.3625 (2.0805) 

200 

TLS 2.2765 (1.6694) 2.1814 (1.6741) 0.1552 (0.1693) 5.1104 (1.5069) 

M-TLS 2.2662 (1.6723) 2.1767 (1.6696) 0.1544 (0.1685) 4.7502 (1.4204) 

LPRE 2.2435 (1.6464) 2.1490 (1.6455) 0.1505 (0.1639) 5.0379 (1.4909) 

M-LPRE 2.2334 (1.6478) 2.1434 (1.6398) 0.1497 (0.1630) 4.6889 (1.4076) 

500 

TLS 1.3782 (1.1084) 1.3298 (0.9610) 0.0581 (0.0688) 3.2795 (0.9612) 

M-TLS 1.3750 (1.1066) 1.3278 (0.9607) 0.0579 (0.0687) 3.1095 (0.9321) 

LPRE 1.3562 (1.0906) 1.3097 (0.9474) 0.0563 (0.0668) 3.2249 (0.9389) 

M-LPRE 1.3530 (1.0902) 1.3086 (0.9462) 0.0562 (0.0668) 3.0596 (0.9112) 

 
We can make the following observations: 1) M-TLS and M-LPRE estimators 

perform better than the corresponding TLS and LPRE estimators, respectively. 2) 
For Case I, as is anticipated, M-TLS estimators perform best, for Cases II-III, M-
LPRE generally outperform the others, this is because the error term of logarith-
mic partially linear multiplicative model is the standard norm distribution, makes 
least squares based estimator better, while Cases II-III make LPRE based estima-
tors efficient. 3) For a given error distribution case, it is obvious that the mean and 
standard deviation of ABISEℓ, 1,2= , MSE and RASE for all estimators decrease 
as the sample size increases, this result confirms the asymptotic consistency of the 
proposed estimation. Moreover, we present the estimated nonparametric curves 
and boxplots of MSEs and RASEs for the parameters and coefficient functions in 
Figure 1 under the Case II when the sample size 200n = . All these findings re-
flect the satisfactory performance of our proposed method under the considered 
settings. 

4. Real Data Application  

In this section, we illustrate the proposed approach by analysing the air pollution 
data set. This data set was collected by the Norwegian Public Roads Administra-
tion which is available at http://lib.stat.cmu.edu/datasets/NO2.dat. There are 500 
observations measured at Alnabru in Oslo, Norway, between October 2001 and 
August 2003. The purpose is to research how the concentration of the air pollution 
NO2 depends on the traffic volume and three meteorological elements, thus, it is 
appropriate to treat hourly values of the logarithm of the concentration of NO2 
(particles) as the response variable ( Y ). According to the suggestion proposed by 
Du et al. [13], we take the logarithm of the number of cars per hour as predictor  

https://doi.org/10.4236/ojs.2025.151006
http://lib.stat.cmu.edu/datasets/NO2.dat


J. Sun, M. T. Zhao 
 

 

DOI: 10.4236/ojs.2025.151006 89 Open Journal of Statistics 
 

 
Figure 1. Estimated nonparametric curves and boxplots of MSEs and RASEs for Case II when sample size 200n = . 
 

variable U , and the three covariate variables are temperature two meters above 
ground ( 1X , ˚C), wind speed ( 2X , m/s) and the temperature difference between 
25 and 2 m above ground ( 3X , ̊ C). In the subsequent analysis, we use exponential 
Y  as response variable for model (1.1), and then construct the model as follows: 

 ( )( )1 1 2 2 3 3exp .Y X X X f Uβ β β= + + +   

We use the first 420 samples from the data as the training data for modeling 
fitting and the remainder as test data for evaluating the prediction performance 
of the methods. We calculate the median of additive relative prediction error de-
fined as { }MAPE Median , 1, 8ˆ ˆ , 0ˆ

i i i i i iY Y Y Y Y Y i= − + − =   to measure the 
predictability, where îY  is the fitted value of iY . The obtained MAPEs along 
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J. Sun, M. T. Zhao 
 

 

DOI: 10.4236/ojs.2025.151006 90 Open Journal of Statistics 
 

with parameter estimator given in brackets are 0.6778 ( 1 0. 11ˆ 02β = − ,  

2 0. 32ˆ 14β = − , 3 0. 57ˆ 13β = ) and 0.6565 ( 1 0. 02ˆ 02β = − , 2 0. 07ˆ 14β = − ,  

3 0. 73ˆ 13β = ) for LPRE and M-LPRE methods, respectively. The estimated curves 
are displayed in Figure 2. As expected, the more cars would result in higher con-
centration of NO2, therefore it is reasonable to assume the monotonicity of ( )f ⋅ , 
and our proposed method coincides with this empirical evidence. 

 

 
Figure 2. Estimated nonparametric curves in the air pollution study data set. 

5. Conclusions  

In this paper, we propose a novel partially linear multiplicative model in which 
the nonparametric component is assumed to be a monotone function. We use 
monotone B-spline basis expansion to estimate the nonparametric function based 
on the constrained least product relative error criterion. We then provide a uni-
form convergence rate and asymptotic normality of the proposed spline estima-
tors. Numerical results suggest that the proposed estimation is promising over its 
competitors. 

The proposed method has some useful extensions. First, we can add a penalty 
term to achieve sparsity when irrelevant variables exist in the model. Second, we 
can set an intercept term in the model and allow it to vary for different subgroups 
from a heterogeneous population, we then study subgroup analysis problem using 
popular concave pairwise penalized approach. Third, it would be of interest to 
extend the proposed method to monotone partially linear single index multipli-
cative model and investigate its theoretical property. Fourth, as one of the review-
ers pointed out whether the optimization process is computationally feasible for 
large-scale data. We need pay efforts to constructing adaptive distributed algorithm 
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or use subsampling method to solve the constraint problem imposed by large-
scale data. For the relatively strong condition of monotonicity, pursuing constraint 
test on this aspect should be meaningful and interesting. We will pursue these 
detailed investigation issues in our future research. 
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