
Journal of Computer and Communications, 2025, 13(2), 28-36
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2025.132003 Feb. 20, 2025 28 Journal of Computer and Communications

Portable Software Environment for
Ultrahigh-Resolution ELM Development on
GPUs

Dali Wang1*, Peter Schwartz1, Fengming Yuan1, Franklin Eaglebarge2, Danial Riccuito1,
Peter Thornton1, Chris Layton1, Qinglei Cao3

1Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
2Pellissippi State Community College, Knoxville, TN, USA
3Computer Science, Saint Louis University, St. Louis, MO, USA

Abstract
This paper presents our endeavors in developing the large-scale, ultra-high-
resolution E3SM Land Model (uELM), specifically designed for exascale com-
puters furnished with accelerators such as Nvidia GPUs. The uELM is a so-
phisticated code that substantially relies on High-Performance Computing
(HPC) environments, necessitating particular machine and software configu-
rations. To facilitate community-based uELM developments employing GPUs,
we have created a portable, standalone software environment preconfigured
with uELM input datasets, simulation cases, and source code. This environ-
ment, utilizing Docker, encompasses all essential code, libraries, and system
software for uELM development on GPUs. It also features a functional unit
test framework and an offline model testbed for comprehensive numerical ex-
periments. From a technical perspective, the paper discusses GPU-ready con-
tainer generations, uELM code management, and input data distribution across
computational platforms. Lastly, the paper demonstrates the use of environ-
ment for functional unit testing, end-to-end simulation on CPUs and GPUs,
and collaborative code development.

Keywords
E3SM Land Model, Ultrahigh-Resolution ELM, Portable Software Environment,
GPU-Ready Environment

1. Introduction

Advanced Earth system models (ESM) are crucial for providing insights into

How to cite this paper: Wang, D.L., Schwartz,
P., Yuan, F.M., Eaglebarge, F., Riccuito,
D., Thornton, P., Layton, C. and Cao, Q.L.
(2025) Portable Software Environment for
Ultrahigh-Resolution ELM Development on
GPUs. Journal of Computer and Communi-
cations, 13, 28-36.
https://doi.org/10.4236/jcc.2025.132003

Received: January 16, 2025
Accepted: February 17, 2025
Published: February 20, 2025

Copyright © 2025 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2025.132003
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/jcc.2025.132003
http://creativecommons.org/licenses/by/4.0/

D. L. Wang et al.

DOI: 10.4236/jcc.2025.132003 29 Journal of Computer and Communications

climate variations and enhancing our comprehension of the interplay between
natural and human systems and the Earth’s climate. The Energy Exascale Earth
System Model (E3SM) is a fully integrated ESM that employs code tailored for the
US Department of Energy’s (DOE) supercomputers to tackle the most pressing
Earth system science issues [1]. Within the E3SM framework, the E3SM Land
Model (ELM) models the interactions between terrestrial land surfaces and other
Earth system components, contributing to our understanding of hydrologic cy-
cles, biogeophysics, and terrestrial ecosystem dynamics [2].

The ELM software is a complex system of a half million lines of code that uti-
lizes highly customized datatypes, approximately 2000 global arrays, and over
1000 subroutines [3] [4]. Significant progress has been made in the past couple of
years in developing a large-scale, ultrahigh-resolution ELM (uELM) simulation
utilizing Exascale computers for high-fidelity land simulation at continental and
global levels. For example, a novel computational model and framework for uELM
simulation on hybrid architectures in exascale computers have been developed [5]
[6]. Several uELM porting strategies have been formulated and a functional unit
test (FUT) framework has been established [7]. This FUT framework dissects the
code, enabling swift code generation and verification, and has facilitated the com-
pletion of several individual ELM modules [8]. However, uELM is a complex code
with a significant dependency on HPC environments, including machine archi-
tecture, compilers, and a range of external libraries. The development of uELM
on Exascale computers, equipped with GPUs, still presents a considerable chal-
lenge, imposing much more stringent requirements on machine and software
configurations, such as compiler and OpenACC implementation.

We have created a portable software environment to promote rapid uELM de-
velopment and support community-based uELM development using GPU. It is
the first effort to allow seamless uELM deployment on hybrid computer architec-
tures with both CPUs and GPUs. The software environment includes all necessary
HPC system packages, libraries, and software tools for uELM development. It is
also preconfigured with input datasets, simulation cases, and source code.

This paper is structured as follows: it delves into the creation of GPU-ready
containers, the management of uELM code, and the sharing of input data across
various computational platforms. Lastly, the paper presents the use cases of the
software environment for code development on GPUs (e.g., functional unit test-
ing and end-to-end simulation), utilizing diverse computational resources.

2. Portable Software Environment for uELM Development

We describe a software environment that utilizes OS-level virtualization (Docker
technologies) to contain all the code, libraries, and system software needed for
uELM development over NVIDIA GPUs. Then we explain the code and container
management, and data sharing among several computational platforms.

2.1. GPU-Ready uELM Container Creation

The process consists of five steps:

https://doi.org/10.4236/jcc.2025.132003

D. L. Wang et al.

DOI: 10.4236/jcc.2025.132003 30 Journal of Computer and Communications

1) Identify a Docker image with Nvidia GPU support: To take advantage of the
power of GPUs for our research, we need a base Docker system that supports
GPU. After attempting to customize docker images for Nvidia GPU support with-
out success, we decided to focus on identifying and evaluating preconfigured
NVidia-docker images (nvcr.io) that already include compatible NVHPC pro-
gramming environments and the necessary CUDA driver support. This allows us
to efficiently run our simulations and computations on Nvidia GPUs across mul-
tiple computational resources.

2) Customize a Docker image for ELM simulation: On the top of the base
Docker system, we integrate the ELM code, including the Offline ELM Model
Testbed (OLMT) for automatic configuration and simulation of ELM at the site
level. We accomplished this by leveraging our previous experience in developing
customized docker images from https://ngee-arctic.ornl.govthe NGEE-Arctic pro-
ject. Through a multi-step procedure for creating docker images, we successfully
generated a new docker image for site-based ELM simulation on CPU.

3) Integrate a FUT tool for the standalone uELM module creation: We have
developed a software tool (named SPEL [7] [8]) we developed to enable uELM
code generation and optimization over GPUs using Compiler directives within a
FUT framework [9]. We use SPEL functions to instrument code segment into the
ELM source code to capture and save the input and output data streams from a
target ELM functional unit from a reference ELM simulation on CPUs. Then we
create standalone uELM functional unit modules, in which, SPEL constructs a
unit test driver that handles the initialization and reading of input parameters and
data streams, executes a target uELM functional unit module, and saves the output
datastreams, and compares the output datastreams with the output streams from
the reference solution to verify the correctness and robustness of the standalone
uEML module.

4) Deploy SPEL for GPU-ready uELM code porting and optimization: SPEL
also provides functions to facilitate uELM GPU code generation and optimization.
Users have the flexibility to develop their own strategies for quickly porting the
GPU code, efficiently utilizing GPU resources, and maximizing the performance
of individual uELM functional units. Additionally, users can combine several in-
dividual uELM functional units to generate an aggregated functional unit for fur-
ther testing via SPEL.

5) Conduct end-to-end uELM code development on GPUs: The unit test of
uELM via SPEL creates a good foundation for end-to-end code development on
GPUs with compiler directives. Here, we enumerate four prevalent issues encoun-
tered during the process using NVHPC packages: a) The function of passing the
array index to subroutines is flawed. We need to restructure the routines associ-
ated with the index and now pass the array elements explicitly as arguments. b)
The atomic operations (atomic directive) are inconsistent, even though they might
function within the FUT environment. We need to make sure these atomic opera-
tions are over the primitive datatypes. c) The most common error encountered is a

https://doi.org/10.4236/jcc.2025.132003
https://ngee-arctic.ornl.govthe/

D. L. Wang et al.

DOI: 10.4236/jcc.2025.132003 31 Journal of Computer and Communications

fatal error, which complains that the variable (be it local or global) is only partially
present on the device. Given that we lack direct access to the underlying algo-
rithms and libraries, we are compelled to explore various methods to circumvent
this issue. and s) The CUDA Debugger (within NVHPC) does not perform as ef-
ficiently as its CPU counterparts and demands excessive GPU memory. Conse-
quently, we have automated the generation of variable checking and verification
functions (in FORTRAN) using Python scripts.

We have achieved a threefold speedup on a fully loaded computing node within
Summit [5]. The code is integrated into our standard container images.

2.2. Standard uELM Containers

We have developed Docker images for various computing resources (machine
type, compiler, and library) with exemplary uELM configurations and simulation
cases. These images are managed via Dockerhub, enabling developers to establish
their Dockerhub accounts and pull these images into their local computing sys-
tems. Developers can initiate the container as a model user, construct new cases
using the E3SM’s Common Infrastructure for Modeling Earth (CIME) or OLMT,
and initiate simulations effortlessly. They also have the option to modify the code
to make it GPU-ready with NVHPC/OpenACC, using SPEL (e.g., verification
functions). Users can choose to exit and halt the container or detach from it while
allowing it to run. They can later reattach to the running container for further
action. Users can also create new Docker images with code changes or uELM cases
for subsequent developments.

The containers are designed for uELM development on CPU-only or hydrid
CPU/GPU systems. Each container is incorporated with the complete E3SM
source code, which includes CIME and a collection of external models. They also
contain the necessary input data for exemplary small simulation cases, along with
useful tools like OLTM and SPEL. Most importantly, the container is equipped
with all the necessary software libraries and environments for uELM code devel-
opment and simulation right out of the box.

Several important file directories of a standard uELM container are listed in
Table 1, including the source code, input data and output directories, and tools
that are used for uELM simulation case creation and code development.

Table 1. File structure of a standard uELM container.

E3SM E3SM source code (with uELM)

inputdata input data and domains for uELM

output/cime_case_dirs uELM simulation cases directory

output/cime_run_dirs uELM simulations output directories

tools scripts/utilities used by SPEL and OLTM

app/SPEL_OpenACC SPEL working directory (with a LakeTemperature example)

https://doi.org/10.4236/jcc.2025.132003

D. L. Wang et al.

DOI: 10.4236/jcc.2025.132003 32 Journal of Computer and Communications

2.3. uELM Code Management and Data Sharing

The E3SM project employs GitHub as its version control system. Our container
does not have a source control system. Users can establish an E3SM local reposi-
tory on their computing resources initially, then map a local git folder to the uELM
container with the “-volume” or “-mount” option. To circumvent potential folder
privilege issues, it is advisable to initiate the uELM container as a “root” user. Fol-
lowing code alterations, users may disengage from the container and commit the
modifications to the local E3SM repository. Alternatively, users can initiate a sep-
arate shell session and execute git commands outside the container while it re-
mains running.

uELM simulations may require a substantial input dataset and generate volu-
minous outputs. It is impractical to incorporate large inputs and outputs into the
container. Instead, users can utilize the “-volume” or “-mount” options to mount
local data directory with the uELM container. In addition, if all computational
resources are located within the same network, it is possible to share the uELM
input and output data directory through Network File System (NFS). (Refer to
Figure 1 or Section 2 for more details). Figure 1 illustrates the major components
of the portable software environment and its deployments on computational re-
sources within ORNLs open research domain.

The creation of the uELM software environment does not require powerful
computing systems and can be implemented with a diverse range of computers,
including laptops and PCs. Docker images can be deployed across a multitude of
high-performance workstations or computational resources.

Figure 1. Portable Software Environment and its deployment in computational resources.

3. Case Studies and Demonstration

This section first presents federated computational resources for uELM develop-
ment, and then we describe the procedure to generate reference solutions from an
exemplary uELM simulation (FluxNet). After that, we illustrate how to use the
SPEL to port and optimize an individual uELM module (LakeTemperature) for

https://doi.org/10.4236/jcc.2025.132003

D. L. Wang et al.

DOI: 10.4236/jcc.2025.132003 33 Journal of Computer and Communications

GPUs. We present the process to conduct an end2end uELM code development
using user repository and datasets. Finally, we showcase how to use the software
environment as a collaborative platform for uELM code development.

3.1. Federated Computational Resources for uELM Development

We have established a federated uELM development environment at ORNL. It
consists of several laptops and PCs (such as MacBook Pros and Dell PCs). We
have also connected two powerful stations: a NVidia DGX-station (2 20-core Intel
Xeons, 256 GB Memory, 4 16 GB Nvidia V100, and 2TB storage), one virtual ma-
chine (5-core Intel Xeon, 128 GB Memory, one 32 GB NVidia V100 GPU, 3 TB
NFS storage) in ORNL open cloud managed with Red-hat OpenStack. The 3T NFS
data space is also accessible via the DGX station and an HPC cluster in CADES at
ORNL.

3.2. Reference Simulations: FluxNet Case on CPUs

The standard container encompasses an exemplary case that employs observa-
tional forcing data to drive the uELM simulations at 42 FluxNet sites globally
(https://fluxnet.org). It incorporates all the necessary input datasets (e.g. domain,
forcing, and surface properties), along with batch scripts, for configuration, con-
struction, and automatic launch of the simulation. Additionally, a data duplica-
tion function is integrated, enabling users to replicate the 42 datasets to generate
larger simulations as required for testing the parallel computing performance and
scalability of the uELM code over HPC resources. Specifically, users can use the
“OLMT_docker_42fluxnetsites_example.sh” script to create three simulation cases
under the “/output/cime_case_dirs”. They are ad-spinup for model initialization,
transit run (from 1980 to present), and future projection. Each case contains files
and tools for case setup, build, and submission scripts, as well as input namelists.
These simulations are used as reference solutions for both SPEL FUT test (Section
3.3) and end2end uELM development on GPUs (Section 3.4).

Figure 2 illustrates the location of these 42 FluxNet Site (left) and sample

Figure 2. Location of 42 FluxNet Site (left) and sample TSOI_10CM monthly mean and variation using the uELM outputs from
these sites.

https://doi.org/10.4236/jcc.2025.132003
https://fluxnet.org/

D. L. Wang et al.

DOI: 10.4236/jcc.2025.132003 34 Journal of Computer and Communications

output (soil temperature in top 10 cm of soil (TSOI_10CM)) of the uELM simu-
lations.

3.3. FUT Demonstration: Lake Temperature Module

We have incorporated the SPEL toolkit in the standard uELM development con-
tainer. The folder “/app/SPEL_OpenACC” houses Python utilities and FORTRAN
templates, which are designed to generate standalone functional unit testing pro-
grams for individual uELM modules. These include read and write codes for the IO
of uELM module testing, a verification code to compare outputs from unit testing
modules, and a FUT driver. Additionally, it contains a folder named “SourceFiles”
that includes the ELM Fortran source files and GPU-ready ELM test modules. An-
other folder, “scripts”, comprises SPEL Python scripts and a few FORTRAN mod-
ules to generate ELM test modules. The generated unit test modules are stored in
the “unit-tests” folder. Further information on the SPEL tool can be found in [7].

We have included a complete FUT case within the container to illustrate the pro-
cess of developing a functional unit test for a specific uELM module (LakeTem-
perature). Technically, the user employs the UnitTestforELM.py to generate the
LakeTemperature unit test code (FORTRAN), creates executables for both CPUs
and GPUs, and subsequently uses a verification code to ensure that the GPU code
yields identical bit4bit results as the CPU code.

3.4. End2End uELM Development: User Repo and Data

The standard container is utilized for end-to-end uELM development with users’
development branches (e.g., the latest GPU-ready uELM code that has shown a
threefold speed increase on a single Summit node). In this scenario, we check out
the latest uELM development branch into a local repository and subsequently
mount the local development branch into the standard uELM container by sub-
stituting the default uELM source code. We further create uELM cases, modify input
data, and create new docker images (e.g., wangdl1108/uelm_dev:e2e uELM_dev in
dockerhub).

We followed the E3SM development guide during the development and testing
of uELM. Initially, we utilized the ELM master branch (comes with the container)
to generate baseline solutions via a series of developer tests. Subsequently, we
mounted local uELM development branch and the local “inputdata” into the
docker (see subsection 2.3) and initiated the same developer tests on CPUs to es-
tablish new baselines (called uELM_ref). We then compare uELM_ref with the
baselines derived from the master branch to ensure that the uELM code modifi-
cations were either “bit4bit” or “climate change-related”. The next step involved
repeating the uELM developer testing on GPUs and confirming that the newly
generated simulation result was equivalent to the uELM_ref on CPUs.

3.5. uELM Software Environment: Collaborative Platform

The software environment offers a unique platform for interactive, collaborative

https://doi.org/10.4236/jcc.2025.132003

D. L. Wang et al.

DOI: 10.4236/jcc.2025.132003 35 Journal of Computer and Communications

uELM code development. We have established a Virtual Machine (VM) on the
ORNL OpenCloud, equipped with a static IP address. We have also imple-
mented a unified user ID, “cloud”, and user access is managed by the Public
key infrastructure (PKI) systems. This allows authorized users to access the VM
from any approved computer using the “cloud” account. One user can initiate
the uELM software environment (container), and others can connect (attach)
to the running container. This enables everyone to interact and collaborate
through their own computers to co-develop the uELM simultaneously. This
setup proves highly beneficial for uELM development in a geographically dis-
tributed manner.

4. Conclusions

Recent advancements have led to the development of uELM simulations that uti-
lize Exascale computers for high-fidelity land simulation at global levels. To sup-
port this, a portable software environment has been created for deployment on
hybrid computer architectures.

The uELM software environment, inclusive of SPEL and representative simu-
lation cases, is designed to aid users in uELM development on both CPUs and
GPUs. This software environment is executable with a variety of devices including
laptops, PCs, and HPC workstations. Furthermore, it can serve as an interactive,
collaborative platform for uELM development.

Our current focus is on NVIDIA GPUs and OpenACC due to their compatibil-
ity with our target machine, the Summit supercomputer at ORNL. The insights
leaned will be utilized to create equivalent portable software for uELM deploy-
ment using OpenMP on Frontier, the inaugural US Exascale computer, equipped
with AMD CPUs and GPUs. Additionally, we are working on a multi-user uELM
development environment in HPC clusters using Apptainer.

Software availability: This study refers to the E3SM code, inclusive of the
uELM code, which can be found at uELM git repository, including uELM refer-
ence code and uELM GPU-ready code. The standard uELM development envi-
ronment is hosted at dockerhub with a short user guide.

Acknowledgements

This research leverages previous efforts that were supported as part of the Energy
Exascale Earth System Model (E3SM) project and the Next Generation Ecosystem
Experiment-Arctic (NGEE-Arctic) project, funded by DOE’s Office of Science,
Office of Biological and Environmental Research. This research used resources of
the Oak Ridge Leadership Computing Facility and Computing and Data Environ-
ment for Science (CADES) at the Oak Ridge National Laboratory, which are sup-
ported by the DOE’s Office of Science under Contract No. DE-AC05-00OR22725.
Mr. Franklin Eaglebarger is funded by the Community College Internships (CCI)
program in the US Department of Energy (DOE) through the Oak Ridge Institute
for Science and Education.

https://doi.org/10.4236/jcc.2025.132003

D. L. Wang et al.

DOI: 10.4236/jcc.2025.132003 36 Journal of Computer and Communications

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Golaz, J.-C., Caldwell, P.M., Van Roekel, L.P., Petersen, M.R., Tang, Q., Wolfe, J.D.,

Abeshu, G., Anantharaj, V., Asay-Davis, X.S., Bader, D.C., et al. (2019) The Doe e3sm
Coupled Model Version 1: Overview and Evaluation at Standard Resolution. Journal
of Advances in Modeling Earth Systems, 11, 2089-2129.

[2] Burrows, S.M., Maltrud, M., Yang, X., Zhu, Q., Jeffery, N., Shi, X., et al. (2020) The
DOE E3SM V1.1 Biogeochemistry Configuration: Description and Simulated Eco-
system‐Climate Responses to Historical Changes in Forcing. Journal of Advances in
Modeling Earth Systems, 12, 9. https://doi.org/10.1029/2019ms001766

[3] Xu, Y., Wang, D., Janjusic, T., Wu, W., Pei, Y. and Yao, Z. (2017) A Web-Based Visual
Analytic Framework for Understanding Large-Scale Environmental Models: A Use
Case for the Community Land Model. Procedia Computer Science, 108, 1731-1740.
https://doi.org/10.1016/j.procs.2017.05.181

[4] Zheng, W., Wang, D. and Song, F. (2019) Xscan: An Integrated Tool for Understand-
ing Open Source Community-Based Scientific Code. In: Lecture Notes in Computer
Science, Springer International Publishing, Faro, 226-237.
https://doi.org/10.1007/978-3-030-22734-0_17

[5] Wang, D., Schwartz, P., Yuan, F., Thornton, P. and Zheng, W. (2022) Toward Ultra-
high-Resolution E3SM Land Modeling on Exascale Computers. Computing in Sci-
ence & Engineering, 24, 44-53. https://doi.org/10.1109/mcse.2022.3218990

[6] Yuan, F., Wang, D., Kao, S., Thornton, M., Ricciuto, D., Salmon, V., et al. (2023) An
Ultrahigh-Resolution E3SM Land Model Simulation Framework and Its First Appli-
cation to the Seward Peninsula in Alaska. Journal of Computational Science, 73, Ar-
ticle ID: 102145. https://doi.org/10.1016/j.jocs.2023.102145

[7] Schwartz, P., Wang, D., Yuan, F. and Thornton, P. (2022) SPEL: Software Tool for
Porting E3SM Land Model with Openacc in a Function Unit Test Framework. 2022
Workshop on Accelerator Programming Using Directives (WACCPD), Dallas, TX,
13-18 November 2022, 43-51. https://doi.org/10.1109/waccpd56842.2022.00010

[8] Schwartz, P., Wang, D., Yuan, F. and Thornton, P. (2022) Developing an Elm Eco-
system Dynamics Model on Gpu with Openacc. Computational Science-ICCS 2022:
22nd International Conference, London, UK, 21-23 June 2022, 291-303.

[9] Wang, D., Xu, Y., Thornton, P., King, A., Steed, C., Gu, L., et al. (2014) A Functional
Test Platform for the Community Land Model. Environmental Modelling & Soft-
ware, 55, 25-31. https://doi.org/10.1016/j.envsoft.2014.01.015

https://doi.org/10.4236/jcc.2025.132003
https://doi.org/10.1029/2019ms001766
https://doi.org/10.1016/j.procs.2017.05.181
https://doi.org/10.1007/978-3-030-22734-0_17
https://doi.org/10.1109/mcse.2022.3218990
https://doi.org/10.1016/j.jocs.2023.102145
https://doi.org/10.1109/waccpd56842.2022.00010
https://doi.org/10.1016/j.envsoft.2014.01.015

	Portable Software Environment for Ultrahigh-Resolution ELM Development on GPUs
	Abstract
	Keywords
	1. Introduction
	2. Portable Software Environment for uELM Development
	2.1. GPU-Ready uELM Container Creation
	2.2. Standard uELM Containers
	2.3. uELM Code Management and Data Sharing

	3. Case Studies and Demonstration
	3.1. Federated Computational Resources for uELM Development
	3.2. Reference Simulations: FluxNet Case on CPUs
	3.3. FUT Demonstration: Lake Temperature Module
	3.4. End2End uELM Development: User Repo and Data
	3.5. uELM Software Environment: Collaborative Platform

	4. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

