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Abstract 
This paper presents our endeavors in developing the large-scale, ultra-high-
resolution E3SM Land Model (uELM), specifically designed for exascale com-
puters furnished with accelerators such as Nvidia GPUs. The uELM is a so-
phisticated code that substantially relies on High-Performance Computing 
(HPC) environments, necessitating particular machine and software configu-
rations. To facilitate community-based uELM developments employing GPUs, 
we have created a portable, standalone software environment preconfigured 
with uELM input datasets, simulation cases, and source code. This environ-
ment, utilizing Docker, encompasses all essential code, libraries, and system 
software for uELM development on GPUs. It also features a functional unit 
test framework and an offline model testbed for comprehensive numerical ex-
periments. From a technical perspective, the paper discusses GPU-ready con-
tainer generations, uELM code management, and input data distribution across 
computational platforms. Lastly, the paper demonstrates the use of environ-
ment for functional unit testing, end-to-end simulation on CPUs and GPUs, 
and collaborative code development. 
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1. Introduction 

Advanced Earth system models (ESM) are crucial for providing insights into 
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climate variations and enhancing our comprehension of the interplay between 
natural and human systems and the Earth’s climate. The Energy Exascale Earth 
System Model (E3SM) is a fully integrated ESM that employs code tailored for the 
US Department of Energy’s (DOE) supercomputers to tackle the most pressing 
Earth system science issues [1]. Within the E3SM framework, the E3SM Land 
Model (ELM) models the interactions between terrestrial land surfaces and other 
Earth system components, contributing to our understanding of hydrologic cy-
cles, biogeophysics, and terrestrial ecosystem dynamics [2].  

The ELM software is a complex system of a half million lines of code that uti-
lizes highly customized datatypes, approximately 2000 global arrays, and over 
1000 subroutines [3] [4]. Significant progress has been made in the past couple of 
years in developing a large-scale, ultrahigh-resolution ELM (uELM) simulation 
utilizing Exascale computers for high-fidelity land simulation at continental and 
global levels. For example, a novel computational model and framework for uELM 
simulation on hybrid architectures in exascale computers have been developed [5] 
[6]. Several uELM porting strategies have been formulated and a functional unit 
test (FUT) framework has been established [7]. This FUT framework dissects the 
code, enabling swift code generation and verification, and has facilitated the com-
pletion of several individual ELM modules [8]. However, uELM is a complex code 
with a significant dependency on HPC environments, including machine archi-
tecture, compilers, and a range of external libraries. The development of uELM 
on Exascale computers, equipped with GPUs, still presents a considerable chal-
lenge, imposing much more stringent requirements on machine and software 
configurations, such as compiler and OpenACC implementation. 

We have created a portable software environment to promote rapid uELM de-
velopment and support community-based uELM development using GPU. It is 
the first effort to allow seamless uELM deployment on hybrid computer architec-
tures with both CPUs and GPUs. The software environment includes all necessary 
HPC system packages, libraries, and software tools for uELM development. It is 
also preconfigured with input datasets, simulation cases, and source code. 

This paper is structured as follows: it delves into the creation of GPU-ready 
containers, the management of uELM code, and the sharing of input data across 
various computational platforms. Lastly, the paper presents the use cases of the 
software environment for code development on GPUs (e.g., functional unit test-
ing and end-to-end simulation), utilizing diverse computational resources. 

2. Portable Software Environment for uELM Development 

We describe a software environment that utilizes OS-level virtualization (Docker 
technologies) to contain all the code, libraries, and system software needed for 
uELM development over NVIDIA GPUs. Then we explain the code and container 
management, and data sharing among several computational platforms. 

2.1. GPU-Ready uELM Container Creation 

The process consists of five steps: 
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1) Identify a Docker image with Nvidia GPU support: To take advantage of the 
power of GPUs for our research, we need a base Docker system that supports 
GPU. After attempting to customize docker images for Nvidia GPU support with-
out success, we decided to focus on identifying and evaluating preconfigured 
NVidia-docker images (nvcr.io) that already include compatible NVHPC pro-
gramming environments and the necessary CUDA driver support. This allows us 
to efficiently run our simulations and computations on Nvidia GPUs across mul-
tiple computational resources. 

2) Customize a Docker image for ELM simulation: On the top of the base 
Docker system, we integrate the ELM code, including the Offline ELM Model 
Testbed (OLMT) for automatic configuration and simulation of ELM at the site 
level. We accomplished this by leveraging our previous experience in developing 
customized docker images from https://ngee-arctic.ornl.govthe NGEE-Arctic pro-
ject. Through a multi-step procedure for creating docker images, we successfully 
generated a new docker image for site-based ELM simulation on CPU. 

3) Integrate a FUT tool for the standalone uELM module creation: We have 
developed a software tool (named SPEL [7] [8]) we developed to enable uELM 
code generation and optimization over GPUs using Compiler directives within a 
FUT framework [9]. We use SPEL functions to instrument code segment into the 
ELM source code to capture and save the input and output data streams from a 
target ELM functional unit from a reference ELM simulation on CPUs. Then we 
create standalone uELM functional unit modules, in which, SPEL constructs a 
unit test driver that handles the initialization and reading of input parameters and 
data streams, executes a target uELM functional unit module, and saves the output 
datastreams, and compares the output datastreams with the output streams from 
the reference solution to verify the correctness and robustness of the standalone 
uEML module. 

4) Deploy SPEL for GPU-ready uELM code porting and optimization: SPEL 
also provides functions to facilitate uELM GPU code generation and optimization. 
Users have the flexibility to develop their own strategies for quickly porting the 
GPU code, efficiently utilizing GPU resources, and maximizing the performance 
of individual uELM functional units. Additionally, users can combine several in-
dividual uELM functional units to generate an aggregated functional unit for fur-
ther testing via SPEL. 

5) Conduct end-to-end uELM code development on GPUs: The unit test of 
uELM via SPEL creates a good foundation for end-to-end code development on 
GPUs with compiler directives. Here, we enumerate four prevalent issues encoun-
tered during the process using NVHPC packages: a) The function of passing the 
array index to subroutines is flawed. We need to restructure the routines associ-
ated with the index and now pass the array elements explicitly as arguments. b) 
The atomic operations (atomic directive) are inconsistent, even though they might 
function within the FUT environment. We need to make sure these atomic opera-
tions are over the primitive datatypes. c) The most common error encountered is a 
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fatal error, which complains that the variable (be it local or global) is only partially 
present on the device. Given that we lack direct access to the underlying algo-
rithms and libraries, we are compelled to explore various methods to circumvent 
this issue. and s) The CUDA Debugger (within NVHPC) does not perform as ef-
ficiently as its CPU counterparts and demands excessive GPU memory. Conse-
quently, we have automated the generation of variable checking and verification 
functions (in FORTRAN) using Python scripts. 

We have achieved a threefold speedup on a fully loaded computing node within 
Summit [5]. The code is integrated into our standard container images. 

2.2. Standard uELM Containers 

We have developed Docker images for various computing resources (machine 
type, compiler, and library) with exemplary uELM configurations and simulation 
cases. These images are managed via Dockerhub, enabling developers to establish 
their Dockerhub accounts and pull these images into their local computing sys-
tems. Developers can initiate the container as a model user, construct new cases 
using the E3SM’s Common Infrastructure for Modeling Earth (CIME) or OLMT, 
and initiate simulations effortlessly. They also have the option to modify the code 
to make it GPU-ready with NVHPC/OpenACC, using SPEL (e.g., verification 
functions). Users can choose to exit and halt the container or detach from it while 
allowing it to run. They can later reattach to the running container for further 
action. Users can also create new Docker images with code changes or uELM cases 
for subsequent developments. 

The containers are designed for uELM development on CPU-only or hydrid 
CPU/GPU systems. Each container is incorporated with the complete E3SM 
source code, which includes CIME and a collection of external models. They also 
contain the necessary input data for exemplary small simulation cases, along with 
useful tools like OLTM and SPEL. Most importantly, the container is equipped 
with all the necessary software libraries and environments for uELM code devel-
opment and simulation right out of the box. 

Several important file directories of a standard uELM container are listed in 
Table 1, including the source code, input data and output directories, and tools 
that are used for uELM simulation case creation and code development. 

 
Table 1. File structure of a standard uELM container. 

E3SM E3SM source code (with uELM) 

inputdata input data and domains for uELM 

output/cime_case_dirs uELM simulation cases directory 

output/cime_run_dirs uELM simulations output directories 

tools scripts/utilities used by SPEL and OLTM 

app/SPEL_OpenACC SPEL working directory (with a LakeTemperature example) 
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2.3. uELM Code Management and Data Sharing 

The E3SM project employs GitHub as its version control system. Our container 
does not have a source control system. Users can establish an E3SM local reposi-
tory on their computing resources initially, then map a local git folder to the uELM 
container with the “-volume” or “-mount” option. To circumvent potential folder 
privilege issues, it is advisable to initiate the uELM container as a “root” user. Fol-
lowing code alterations, users may disengage from the container and commit the 
modifications to the local E3SM repository. Alternatively, users can initiate a sep-
arate shell session and execute git commands outside the container while it re-
mains running. 

uELM simulations may require a substantial input dataset and generate volu-
minous outputs. It is impractical to incorporate large inputs and outputs into the 
container. Instead, users can utilize the “-volume” or “-mount” options to mount 
local data directory with the uELM container. In addition, if all computational 
resources are located within the same network, it is possible to share the uELM 
input and output data directory through Network File System (NFS). (Refer to 
Figure 1 or Section 2 for more details). Figure 1 illustrates the major components 
of the portable software environment and its deployments on computational re-
sources within ORNLs open research domain. 

The creation of the uELM software environment does not require powerful 
computing systems and can be implemented with a diverse range of computers, 
including laptops and PCs. Docker images can be deployed across a multitude of 
high-performance workstations or computational resources. 

 

 
Figure 1. Portable Software Environment and its deployment in computational resources. 

3. Case Studies and Demonstration 

This section first presents federated computational resources for uELM develop-
ment, and then we describe the procedure to generate reference solutions from an 
exemplary uELM simulation (FluxNet). After that, we illustrate how to use the 
SPEL to port and optimize an individual uELM module (LakeTemperature) for 
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GPUs. We present the process to conduct an end2end uELM code development 
using user repository and datasets. Finally, we showcase how to use the software 
environment as a collaborative platform for uELM code development. 

3.1. Federated Computational Resources for uELM Development  

We have established a federated uELM development environment at ORNL. It 
consists of several laptops and PCs (such as MacBook Pros and Dell PCs). We 
have also connected two powerful stations: a NVidia DGX-station (2 20-core Intel 
Xeons, 256 GB Memory, 4 16 GB Nvidia V100, and 2TB storage), one virtual ma-
chine (5-core Intel Xeon, 128 GB Memory, one 32 GB NVidia V100 GPU, 3 TB 
NFS storage) in ORNL open cloud managed with Red-hat OpenStack. The 3T NFS 
data space is also accessible via the DGX station and an HPC cluster in CADES at 
ORNL.  

3.2. Reference Simulations: FluxNet Case on CPUs 

The standard container encompasses an exemplary case that employs observa-
tional forcing data to drive the uELM simulations at 42 FluxNet sites globally 
(https://fluxnet.org). It incorporates all the necessary input datasets (e.g. domain, 
forcing, and surface properties), along with batch scripts, for configuration, con-
struction, and automatic launch of the simulation. Additionally, a data duplica-
tion function is integrated, enabling users to replicate the 42 datasets to generate 
larger simulations as required for testing the parallel computing performance and 
scalability of the uELM code over HPC resources. Specifically, users can use the 
“OLMT_docker_42fluxnetsites_example.sh” script to create three simulation cases 
under the “/output/cime_case_dirs”. They are ad-spinup for model initialization, 
transit run (from 1980 to present), and future projection. Each case contains files 
and tools for case setup, build, and submission scripts, as well as input namelists. 
These simulations are used as reference solutions for both SPEL FUT test (Section 
3.3) and end2end uELM development on GPUs (Section 3.4). 

Figure 2 illustrates the location of these 42 FluxNet Site (left) and sample  
 

 
Figure 2. Location of 42 FluxNet Site (left) and sample TSOI_10CM monthly mean and variation using the uELM outputs from 
these sites. 
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output (soil temperature in top 10 cm of soil (TSOI_10CM)) of the uELM simu-
lations. 

3.3. FUT Demonstration: Lake Temperature Module 

We have incorporated the SPEL toolkit in the standard uELM development con-
tainer. The folder “/app/SPEL_OpenACC” houses Python utilities and FORTRAN 
templates, which are designed to generate standalone functional unit testing pro-
grams for individual uELM modules. These include read and write codes for the IO 
of uELM module testing, a verification code to compare outputs from unit testing 
modules, and a FUT driver. Additionally, it contains a folder named “SourceFiles” 
that includes the ELM Fortran source files and GPU-ready ELM test modules. An-
other folder, “scripts”, comprises SPEL Python scripts and a few FORTRAN mod-
ules to generate ELM test modules. The generated unit test modules are stored in 
the “unit-tests” folder. Further information on the SPEL tool can be found in [7]. 

We have included a complete FUT case within the container to illustrate the pro-
cess of developing a functional unit test for a specific uELM module (LakeTem-
perature). Technically, the user employs the UnitTestforELM.py to generate the 
LakeTemperature unit test code (FORTRAN), creates executables for both CPUs 
and GPUs, and subsequently uses a verification code to ensure that the GPU code 
yields identical bit4bit results as the CPU code. 

3.4. End2End uELM Development: User Repo and Data 

The standard container is utilized for end-to-end uELM development with users’ 
development branches (e.g., the latest GPU-ready uELM code that has shown a 
threefold speed increase on a single Summit node). In this scenario, we check out 
the latest uELM development branch into a local repository and subsequently 
mount the local development branch into the standard uELM container by sub-
stituting the default uELM source code. We further create uELM cases, modify input 
data, and create new docker images (e.g., wangdl1108/uelm_dev:e2e uELM_dev in 
dockerhub). 

We followed the E3SM development guide during the development and testing 
of uELM. Initially, we utilized the ELM master branch (comes with the container) 
to generate baseline solutions via a series of developer tests. Subsequently, we 
mounted local uELM development branch and the local “inputdata” into the 
docker (see subsection 2.3) and initiated the same developer tests on CPUs to es-
tablish new baselines (called uELM_ref). We then compare uELM_ref with the 
baselines derived from the master branch to ensure that the uELM code modifi-
cations were either “bit4bit” or “climate change-related”. The next step involved 
repeating the uELM developer testing on GPUs and confirming that the newly 
generated simulation result was equivalent to the uELM_ref on CPUs. 

3.5. uELM Software Environment: Collaborative Platform  

The software environment offers a unique platform for interactive, collaborative 
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uELM code development. We have established a Virtual Machine (VM) on the 
ORNL OpenCloud, equipped with a static IP address. We have also imple-
mented a unified user ID, “cloud”, and user access is managed by the Public 
key infrastructure (PKI) systems. This allows authorized users to access the VM 
from any approved computer using the “cloud” account. One user can initiate 
the uELM software environment (container), and others can connect (attach) 
to the running container. This enables everyone to interact and collaborate 
through their own computers to co-develop the uELM simultaneously. This 
setup proves highly beneficial for uELM development in a geographically dis-
tributed manner. 

4. Conclusions 

Recent advancements have led to the development of uELM simulations that uti-
lize Exascale computers for high-fidelity land simulation at global levels. To sup-
port this, a portable software environment has been created for deployment on 
hybrid computer architectures. 

The uELM software environment, inclusive of SPEL and representative simu-
lation cases, is designed to aid users in uELM development on both CPUs and 
GPUs. This software environment is executable with a variety of devices including 
laptops, PCs, and HPC workstations. Furthermore, it can serve as an interactive, 
collaborative platform for uELM development. 

Our current focus is on NVIDIA GPUs and OpenACC due to their compatibil-
ity with our target machine, the Summit supercomputer at ORNL. The insights 
leaned will be utilized to create equivalent portable software for uELM deploy-
ment using OpenMP on Frontier, the inaugural US Exascale computer, equipped 
with AMD CPUs and GPUs. Additionally, we are working on a multi-user uELM 
development environment in HPC clusters using Apptainer. 

Software availability: This study refers to the E3SM code, inclusive of the 
uELM code, which can be found at uELM git repository, including uELM refer-
ence code and uELM GPU-ready code. The standard uELM development envi-
ronment is hosted at dockerhub with a short user guide. 
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