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Abstract 
We find the necessary and sufficient conditions on a coproduct of connected 
acts over a semigroup to be strongly hopfian. From this, we deduce the condi-
tions of the strong hopfness for unitary acts over groups. Moreover, we prove 
that a finite coproduct of strongly hopfian acts over an arbitrary semigroup is 
strongly hopfian. 
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1. Introduction 

An algebra A  is called hopfian if it is not isomorphic to a proper homomorphic 
image of itself (an equivalent definition: every surjective endomorphism : A Aα →  
is injective (and therefore it is automorphism)). A conception of hopfness (and dual 
notion of co-hopfness) appeared in the group theory (see ([1], v. 2, Section 15), 
[2]-[4]). Abelian groups which are hopfian were also investigated in [5]. There are 
a lot of articles where hopfness and co-hopfness in modules over rings and other 
algebraic structures are considered. 

The hopfness is a finiteness condition, since all the finite objects are hopfian. 
The hopfness is a weaker condition as the noetherness (maximal condition on 
congruences). Immediate position between hopfian and noetherian algebras oc-
cupy the strongly hopfian algebras. An algebra A  is called strongly hopfian if, 
for every endomorphism : A Aϕ → , a chain of kernels 2ker kerϕ ϕ⊆ ⊆  is 
stabilized, i.e. 1ker kern nϕ ϕ+ =  for some n . 

Let S  be a semigroup. A set X  is called an act over a semigroup S  if a map-
ping X S X× →   is given such that ( ) ( )x st xs t=   for any x X∈   and ,s t S∈  
[6] [7]. The act is an algebraic model of automaton (there X  is a set of states and 
S  is a semigroup of input signals). Besides, an act is an unary algebra, i.e. an 
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algebra with unary operations. 
The hopfian acts over semigroups were considered in [8]-[11]. V. K. Kartashov 

proved ([12], Thm. 2) that every finitely generated commutative act is hopfian (it 
is some reformulation). 

In the present work, we find the necessary and sufficient conditions to be 
strongly hopfian for a coproduct of the connected acts over arbitrary semigroup. 
Using this result we characterize strongly hopfian unitary acts over a group. As a 
consequence we obtain the fact that a coproduct of a finite number of acts is 
strongly hopfian if and only if each of them is strongly hopfian. Authors do not 
know whether this statement is true for the hopfness. 

Non-defined terms from the theory of acts can be found in [6] [7], semigroup 
theory in [13], universal algebra in [14]. 

2. Preliminary Considerations 

For a mapping : A Bϕ → , a relation ( ) ( ) ( ){ }ker , |a a a aϕ ϕ ϕ′ ′= =  is called a 
kernel of ϕ . If ϕ  is a homomorphism of algebras then kerϕ  is a congruence. 
For any set X  we put ( ){ }, | [X x x X∆ = ∈  (the equality relation on X ). 

An act X   over a semigroup S   is called unitary if S   has a unity e   and 
xe x=  for any x X∈ . 

A coproduct of universal algebras is a notion dual to the direct product. In case 
of acts, a coproduct ii I

X
∈

 of acts iX  ( i I∈ ) is a disjoint union of this acts 
(or isomorphic copies of them). 

For an act X  over a semigroup S , we can consider a graph where X  is a 
set of vertices and ( ){ }, | ,x xs x X s S∈ ∈  is a set of edges. An act X  is called 
connected if the graph is connected (in the usual sense, i.e. as a non-oriented 
graph). It is clear that any graph is a coproduct of connected acts (its connected 
components). 

Let G  be a group and H  be its subgroup, not necessarily normal. By G H  
we will denote a set of right cosets Hg  for g G∈ . Remark that G H  is not 
necessarily a group but it is an act over the group G  where a multiplication is 
defined by the rule Hg g Hgg′ ′⋅ = . The act G H  is unitary cyclic (even a sim-
ple) act over G . The following facts can be established straightforwardly. 

Fact 1. An act X  over a group G  is unitary cyclic if and only if X  is iso-
morphic to an act G H  for some subgroup H  of G . 

Fact 2. An act X   over a group G   is unitary if and only if ii I
X X

∈
≅


 
where i iX G H≅  for some (not necessarily distinct) subgroups iH  of G . 

Fact 3. There exists a homomorphism G H G H ′→  of acts over G  if and 
only if 1H a Ha−⊆  for some a G∈  This homomorphism is always surjective (if 
it exists). 

Let ii I
X X

∈
=


 be a coproduct of acts over a semigroup S . Define a binary 
relation   on the index set I  as follows:  

there exists a homomorphism .i ji j X X⇔ →  
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Let X   be an act over a semigroup S   and End X   be its endomorphism 
semigroup. For End Xϕ ∈  we consider 0 id Xϕ =  (identical automorphism). If 
X  is strongly hopfian then  

1End 0 ker ker .k kX kϕ ϕ ϕ +∀ ∈ ∃ ≥ =  

Therefore we can put ( ) { }1inf 0 | ker kerk kl kϕ ϕ ϕ += ≥ = . Further, we put  
( ) ( ){ }lh sup | EndX l Xϕ ϕ= ∈   (hopfian length of X  ). Note that the equality 
( )lh X = ∞  is possible even if X  is strongly hopfian. 

3. Main Results 

Let an act X  be strongly hopfian. For every endomorphism End Xϕ ∈  we de-
fine a length ( ) { }1min | ker kerk kl kϕ ϕ ϕ += = . We consider that 0 Id Xϕ =  is an 
identical automorphism. And a hopfian length of X  we call  

( ){ }lh sup | EndX l Xϕ ϕ= ∈  . If ( ){ }sup | Endl Xϕ ϕ ∈   does not exist then we 
say that lh X = ∞ . 

Let ii I
X X

∈
=


 and jj J
Y Y

∈
=


 be acts over a semigroup S  and ,i jX Y  
be their connected components. Further, let : X Yϕ →   be a homomorphism. 
Consider any iX . As iX  is connected, then ( )iXϕ  is also connected, there-
fore ( ) ( )i jX Yϕ ϕ⊆  for some j J∈ . So we have a mapping : I Jϕ → . Thus,  

( ) ( ) ( ).ii j X Y jϕ ϕ= ⇔ ⊆  

For ,i j I∈   we put i j   if there exists a homomorphism of acts i jX X→  . 
Clearly, the relation   is reflexive and transitive, i.e. it is a quasi-order. 

Theorem 1. Let ii I
X X

∈
=


  be a coproduct of the connected acts over a 
semigroup S . Then X  is strongly hopfian if and only if the following condition 
hold: 

(i) iX  is strongly hopfian for any i I∈ ; 
(ii) a set ( ){ }| lh iJ i X= = ∞  is finite; 
(iii) there exists a natural number L  such that ( )lh iX L≤  for \i I J∈ ; 
(iv) there exists a natural number K  such that k K≤  for any chain  

1 2 ki i i   of the distinct elements of I . 
Proof. Necessity. Let X  be strongly hopfian. Suppose that (i) does not hold. 

Then iX   is not strongly hopfian for some i I∈  . Hence there is End iXα ∈  
such that 1ker kerk kα α +≠  for all k . Put  

( ) ( ) if ,
if for some .

i

j

x x X
x

x x X j i
α

ϕ
∈=  ∈ ≠

 

Obviously, 1ker kerk kϕ ϕ +≠  for all k . As ϕ  is an endomorphism, then X  is 
not strongly hopfian which is false. 

Suppose (ii) is not fulfilled. Then the set J  is infinite. Therefore, there exists a 
sequence 1 2, ,j j   of distinct elements of J . For any tj  we take End

tt jXϕ ∈  
such that 1ker kert t

t tϕ ϕ+ ⊃ . Define an endomorphism End Xϕ ∈  by the rule  

( )
( )

{ }1 2

if ,

if where , , .
tt j

i

x x X
x

x x X i j j

ϕ
ϕ

 ∈= 
∈ ∉ 
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It is seen that 1ker kerk kϕ ϕ +≠  for all k∈ , and it contradicts with the fact that 
X  is strongly hopfian. 

Suppose (iii) is not fulfilled. Then there are 1 2, ,i i I∈  such that ( )lh
ti

X t≥  
for 1,2,t =   . Therefore, there exist End

tt iXϕ ∈   such that 1ker kert t
t tϕ ϕ− ⊂  . 

Put 
1 tit

Y X∞

=
=


. Construct a mapping : X Xϕ →  as follows:  

( ) ( ) if for some ,

if .
tt ix x X t

x
x x Y

ϕ
ϕ

∈= 
∉

 

Obviously, ϕ  is an endomorphism of the act X  and we have the strong inclu-
sions 1ker kert tϕ ϕ− ⊂   for all t  . It contradicts to the assumption that X   is 
strongly hopfian. 

Suppose (iv) is not fulfilled. Construct a sequence of chains 1 2Γ ,Γ ,  in I  
such that Γt t=   for all t   and Γ Γi j∩ =∅   for i j≠  . Take { }1Γ i=   where 
i I∈  is arbitrary. Let 1Γ , ,Γm  be constructed. Take a chain Γ  of k  elements 
where ( )1 2 1k m≥ + + + +  . Put ( )1Γ Γ \ Γ Γm′ = ∪ ∪  . Clearly Γ 1m′ ≥ +  . 
Deleting (if it is necessary) from the chain Γ′  some elements we obtain a chain 

1Γm+  of 1m +  elements, and ( )1 1Γ Γ Γm m+ ∩ ∪ ∪ =∅ . 
For every chain { }1 2Γt ti i i=    we define a subact  
( )

1 2 t

t
i i iX X X X=    . By definition of the relation  , there exist the homo-

morphisms ( )
1 21 :t
i iX Xϕ → , ( )

2 32 :t
i iX Xϕ → ,  , ( )

11 :
t t

t
t i iX Xϕ

−− → . Construct a 
homomorphism ( )tϕ  putting  

( ) ( )
( ) ( ) if and ,

if .

t
t i i

t

x x X i tx
x x X
ϕϕ
 ∈ <= 

∈
 

Remark that ( ) ( )ker t
i tX Xϕ ∩ × =∅  for i t< , however  

( )( ) ( )
2

1ker t
t tX Xϕ −∩ × ≠ ∅   but ( )( ) ( )

2
ker t

i tX Xϕ ∩ × =∅   only for 1i t< −  

and so on. Thus, we have ( ) ( )( ) ( )( )2
ker ker ker

tt t tϕ ϕ ϕ⊂ ⊂ ⊂ . We can present  

the act X  in the view ( )
1

t
t

X X X∞

=
′=



  where ( )
1

\ t
t

X X X∞

=
′ =



 is a sub-
act of X  or the empty set. Define an endomorphism : X Xϕ →  as follows:  

( )
( ) ( ) ( )if for some ,

if .

t tx x X tx
x x X
ϕϕ
 ∈= 

′∈
 

Since the lengths of the chains is not bounded from above that ker tϕ  are distin-
guish, which contradicts the strongly hopfness of X . 

Sufficiency. Assume that the conditions (i)-(iv) hold and End Xϕ∈ . As iX  
are connected then ϕ  induces a mapping : I Iϕ →  such that  
( ) ( )i ji j X Xϕ ϕ= ⇔ ⊆ . The set I  with the unary operation ϕ  is a unar (in 

another terminology: monounary algebra, see [15]). 
Because of the condition (iv), ( )K iϕ   lies in a cycle for any i I∈  . As the 

lengths of cycles are less or equal to K  then for any cycle C  and any i C∈  
we have ( ) ( )!K i iϕ = . Because of (ii) there are finitely many members of infinite 
length, let they be 

1
, ,

sj jX X . Put !Kψ ϕ= . Select from 
1
, ,

sj jX X  the mem-
bers which are invariant with respect to ψ  (i.e. ( )i iX Xψ ⊆ ). Without loss of 
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generality we may consider that 
1
, ,

tj jX X  are invariant but 
1
, ,

t sj jX X
+
  are 

not (here 0 t s≤ ≤ ). Put 
ji

i Xψ ψ=  for 1, ,i t=  . By the condition (i) each en-
domorphism of iX  has a finite length. Therefore, we may put  

( ) ( ){ }0 1max , , , tL L l lψ ψ= 
. 

Let ( ) 02 !, ker K L Kx y ϕ +∈ . Then ( ) ( )( ) 02 !, ker L KK Kx yϕ ϕ ϕ∈ . Put ( )Kx xϕ′ = , 
( )Ky yϕ′ =  . Obviously, ix X′∈  , jy X′∈   where ,i j   belong to a cycle of the 

unar I  Denote this cycle by C . Thus ,i j C∈ . 
We have ( ) ( )0 02 2L Lx yψ ψ′ ′= . As the lengths of cycles are less or equal to K  

then !Kψ ϕ=  is identical mapping on C , i.e. ( )i iX Xψ ⊆  and ( )j jX Xψ ⊆ . 
As ( ) ( )0 02 2L Lx yψ ψ′ ′=  then i j= , therefore , ix y X′ ′∈ . 

If ( )lh iX < ∞ , then by (iii) ( ) 0lh iX L L≤ ≤ . If ( )lh iX = ∞ , then 
ui jX X=  

for some u t≤ , and therefore ( ) 0( | )i ul X l Lψ ψ= ≤ . In both cases  

( ) ( )0 02
ker ker

i i

L L

X Xψ ψ=  . It follows that ( ) ( )0 0L Lx yψ ψ′ ′=  . It means that 

( ) ( )0 0! !L K L Kx yϕ ϕ′ ′= . Therefore ( ) ( )0 0! !K L K K L Kx yϕ ϕ+ += . 

Thus ( ) 0 !, ker K L Kx y ϕ +∈ . We proved that 0 0! 2 !ker kerK L K K L Kϕ ϕ+ +⊆ . Put  

0 !M K L K= +  . We have 0 ! 1ker ker ker kerM L KM M Mϕ ϕ ϕ ϕ+ +⊆ ⊆ ⊆  . It implies 
1ker kerM Mϕ ϕ+ = . Thus X  is strongly hopfian.                          

Corollary. A coproduct 1 nX X   of a finite number of acts over a semi-
group is strongly hopfian if and only if each of iX  is strongly hopfian. 

Proof. Decompose each iX  into a coproduct of connected components and 
apply Theorem 1.                                                   

Remark. The authors do not know whether a similar statement is true for the 
hopfness. 

Now let us move on to the unitary acts over the groups. Let G  be a group and 
H  be its subgroup. 

Lemma 1 ([8], Lemma 1). A unitary cyclic act G H  is hopfian if and only if 
the following condition holds:  

 1 1 .a G H a Ha H a Ha− −∀ ∈ ⊆ ⇔ =  ∗  

Lemma 2. A unitary cyclic act G H  over a group G  is strongly hophian if 
and only if it is hopfian. 

Proof. We need to proof only that every hopfian act G H  is strongly hopfian. 
Let G H  is hopfian and ( )End G Hϕ∈ . As any endoomorphism  

: G H G Hϕ →  is subjective and G H  is hopfian, then ϕ  is also injective. 
Then ker G Hϕ = ∆ . Also ker n

G Hϕ = ∆  for all n . Therefore G H  is strongly 
hopfian.                                                           

Remark. If G H  is hopfian then ( )lh 0G H = . 
The authors proved in ([8], Thm. 1) the following statement. 
Fact 4. A unitary act ( )ii I

X G H
∈

=


  over a group G   is hopfian if and 
only if each of iH  satisfies (∗ ) and there is no an infinity chain 1 2i i   of 
distinct elements of I . 

A similar statement for the strong hopfness is so. 
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Theorem 2. A unitary act ( )ii I
X G H

∈
=


 over a group G  is strongly hop-
fian if and only if the following conditions hold: 

(v) i I∀ ∈  a G∀ ∈  1 1
i i i iH a H a H a H a− −⊆ ⇔ = ; 

(vi) there exists a natural number K  such that for any chain 1 2 ki i i    
of distinct elements of I  an inequality k K≤  is true. 

Proof. The necessity follows from Theorem 1 in [8] (Fact 4) and Theorem 1. 
Prove the sufficiency. Let (v) and (vi) be satisfied. As (v) is fulfilled then by Lemma 
2 the condition (i) of Theorem 1 holds. The condition (ii) holds since J =∅ . The 
condition (iii) holds since ( )lh 0iG H =  (it follows from (v)). Finally the condi-
tion (iv) folds since it coincides with (vi).                                 

4. Examples 

Here we give two examples: 1) a hopfian but not strongly hopfian act; 2) a strongly 
hopfian act of infinity hopfian length. Both acts are unitary acts over group. 

Example 1. Let p  be a prime number and 
p

G ∞=   be a quasi-cyclic group 
(a union of the ascending sequence of groups nn p

H =  : cyclic groups of order 
np ). Then a coproduct nG H

n
X

∈
=





 is hopfian but not strongly hopfian act 
over the group G . 

Proof. Really, here I =   (set of natural number). We have an ascending se-
quence 1 2 3   , therefore X  is not strongly hopfian by Theorem 1. In the 
same time X  is hopfian since (∗ ) holds for any abelian group and its subgroup 
and there are no a descending sequence of distinct elements of I . 

Remark. Although the quotient groups nG H  in the Example 1 are isomor-
phic to one another (and they are isomorphic to the group G  ), nG H   and 

mG H  are not isomorphic for m n≠  as the acts over the group G . It is known 
that G H G H ′≅  if and only if subgroups H  and H ′  are conjugated. 

Let us finish the article with another example. Note that any semigroup S  is 
an act over itself. Denote this act by SS . The subacts of this act are exactly the 
right ideals of the semigroup S , and the congruences are exactly the right con-
gruences of the semigroup. 

Example 2. Let ( )0,1T =  be a semigroup with the usual multiplication. Clearly, 
( ]0,1 2I =  is an ideal of T . Let S T I=  be a Rees quotient semigroup. We may 

think that { } ( )0 1 2;1S = ∪  with a multiplication  

if 1 2,
0 if 1 2.
xy xy

x y
xy

>
∗ =  ≤

 

Then the act SS  is strongly hopfian with infinite hopfian length. We will provide 
a scheme of the proof: 

(a) to prove that the endomorphisms of the act SS  are exactly the mappings 
of view ( )a x axϕ =  for 1a ≤ ; 

(b) to note that ( )1 xϕ  is identical automorphism and hence 1ker k
Xϕ = ∆  for 

every k ; 
(c) to note that ( )a xϕ  is nilpotent for 1a < , i.e. 0k

aϕ =  for some k  (namely, 
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0 1 2k k
a aϕ = ⇔ ≤ ); therefore ker k

a S Sϕ = ×  for ln 2 lnk a≥ − ; 
(d) it follows from (c) that ( ) [ ]ln 2 lnal aϕ = − ; 
(e) to note that ( )1lima al ϕ→ = +∞ . 
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