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Abstract 
In Computed Tomography (CT), the beam hardening artifacts are caused by 
polychromatic X-ray beams applied in real medical imaging. In this article, we 
applied the recently proposed box-constrained nonlinear weighted anisotropic 
total variation regularization (box-constrained NWATV) method in the process 
of the reconstruction. We do numerical experiments to validate the advantages 
of the proposed method in reducing the beam hardening artifacts compared 
with the existing ways. 
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1. Introduction 

Because of the change in voltage and current, the energy of incident X-rays is 
changed, which makes polychromatic beams in CT scanning. Since low-energy 
photons are more easily absorbed than high-energy photons, this causes the beam 
to harden as X-rays pass through the object [1]. The incident intensity is denoted 
by ( )0I E  and ( ),I E sθ  is the measured attenuated intensity along ,sLθ . So,  

the average energy of the X-rays reaching the detectors 
( )
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, d
, d
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 is higher 

than that of the incident X-rays 
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. Then, from reference [2], we ac-

quire the inequality  
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This effect is known as beam hardening artifacts. The effects will cause the cup-
ping artifacts in the reconstructed attenuation images. 

Beam hardening artifact reduction is important in medical and industrial CT 
applications to improve the visual quality of images [3]. Since 1975, the correction 
of beam hardening artifacts has been a hot topic in CT. The correction methods 
are divided into two categories: hardware correction methods and software cor-
rection methods. The hardware correction methods add some correction tools to 
the CT system to suppress the beam hardening artifacts. Software correction meth-
ods are based on the mathematical view of beam hardening artifacts. Common soft-
ware correction methods mainly include the polynomial fitting method [4], Monte 
Carlo correction method [5], dual-energy method [6], iterative correction method 
[7], and single-energy correction method [3]. 

Iterative reconstruction method models the problem mathematically and trans-
forms the model into an optimization problem with fidelity term and regularization 
term. In reference [8], the authors proposed the Nonlinear Weighted Anisotropic 
TV (NWATV) regularization in the electrical impedance tomography to solve the 
EIT inverse problem. In reference [9], the authors proposed the box-constrained 
nonlinear weighted anisotropic TV (box-constrained NWATV) regularization to 
solve the sparse-view X-ray CT inverse problem. 

In this article, we proposed an iterative method to correct the beam hardening 
artifacts. We build a discretized model of beam hardening artifacts and use the box-
constrained NWATV regularization to correct beam hardening artifacts and com-
pare the reconstructed results of box-constrained NWATV regularization, TV reg-
ularization, and ISP method by some numerical experiments to validate the ad-
vantages of the box-constrained NWATV regularization.  

2. Notation and Concept 
In CT imaging, the imaging object, such as the human body, is placed between the 
X-ray sources and the detectors. The X-rays are injected into the body and the 
attenuated X-rays are measured on the detector. X-ray imaging visualizes the inter-
nal structure of the object by reconstructing the attenuation coefficients via the re-
lationship between the injection and measurements described by the law of Lam-
bert-Beer. 

Suppose the object is located in a two-dimensional bounded region Ω, and for 
simplicity, we assume the parallel beams are used in this paper. To be precise, θ   

distribute evenly from 0 to 
179
180

π
. Suppose 180 angles are used. We discretize Ω   

to be N N×  pixels. We assume that there are K  rays at each angle and K  
detectors to receive the signals. We assume the sign distance between each X-ray 
and the origin of the region Ω is [ ]1 2,  , and the distance from the origin of the  

kth ray in angle θ  is ( ) ( )2 1
1 1

1ks k
K
−

= + − ⋅
−

 
 . Then, the number of all X-rays  
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is 180M K= ⋅ . So, the matrix of parallel beam scanning A  is 2M N× , and the 
measured data y  is an 1M ×  vector. 

The kth monochromatic X-ray beam in angle θ  passes through the object along 

, ksLθ  and the law of Lambert-beer is described as [10]  

,
d0

, e .L sk
k

l

sI I θ
µ

θ

−∫
= ⋅  

When X-ray beam passes through the object along , ksLθ  from the low-energy 

minE  to high-energy maxE , the incident intensity is ( )max

min

0 0 d
E

E
I I E E= ∫ , and 

( )Eµ  is the attenuation coefficient of the object [11]. Then, the relationship be-
tween the outgoing intensity and the attenuation coefficient is described by the law 
of Lambert-Beer [11]  
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where m K kθ= ⋅ + . 

3. Polychromatic Model and Algorithm 

We build the Lambert-Beer law for polychromatic X-rays as a discretized mathe-
matical model. We discretize the energy [ ]1 2, , , JE E E E=   of incident X-rays and 
get the equation ( ) ( )max

min

0 0

1
d

JE
iE

i
I E E I E

=

= ∑∫ . So, we obtain the measured data of the 
mth X-ray  
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The right-hand side of the equation is equivalent to a weighted average, result-
ing in a monochrome image with the energy of 0E  with min 0 maxE E E< < . There-
fore, the above equation is equivalent to ( )

,
0 d

sk
m L

y E l
θ

µ= ∫ , that is, the atten-
uation coefficient of the object to be scanned at this time is the attenuation co-
efficient when the energy 0E  is attenuated. From this, we get the following re-
construction model ( )0E=y Au , where ( )0Eu  is the image, we need to recon-
struct, i.e.  

 ( )
( )

( )
20

2*
0 0arg min .

lE
E E= −

u
u y Au  

In reference [9], we get the nonlinear weighted anisotropic TV regularization 
and the equation  
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where λ  is the regularization parameter. ( )( )[ ]1 2 0,c c E∏ u  is an indicator function. 
It will be 0 if ( )[ ]1 0 2c E i c≤ ≤u , and will be +∞  otherwise. If 1γ =  means box 
constraint is used otherwise 0γ = . And ( )( ) ( )( )( ) 22

0 0; N
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, where the β  is a pos-

itive number to avoid 2⋅  to be 0. The augmented Lagrangian functional is  
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where the ,e b  are the Lagrangian multipliers and the ,α ρ  are the penalty pa-
rameters [9]. The Alternative Direction Multiplier Method (ADMM) [12] is used 
to minimize (1). To be precise, we update ( )0Eu , d , p , b , v  and e  by 
(2)-(8). They are updated as  

 ( )( ) ( ) ( ) ( ) ( ) ( )( )11 T T T T T
0 ,n n n n nE α ρ ρ α

−+ = + + + − + −u A A I A y b d e v     (2) 
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where ( ) [ ]n ib , ( ) [ ]n ip , ( ) [ ]1n i+u , ( ) [ ]1n i+d  represent the thi  element of ( )nb , 
( )np , ( )1n+u , ( )1n+d . The gh  is defined as  

 ( ) ( )sgn ;
0 otherwise.g

g g
h

⋅− ⋅ ⋅ >
⋅ = 


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And the p , b , v  and e  are defined as  

 ( ) ( )( )( ) ( )( )( )( )1 11
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 ( ) ( ) ( )( )11 1
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 ( ) ( ) ( )( ) ( )( )11 1
0

nn n nEα ++ += + −e e u v  (8) 

with the initial data ( )0 =d 0 , ( )0 1
β

 
=  
 

p 1 , ( )0 =v 0 , ( )0 =e 0 , ( )0 =b 0 . We set  

the maximum iteration to 1000, unless the iterative is broken by ( ) ( )1n n ε+ − <u u . 
And we get the matrix A  of pallel beam scanning in CT by the MATLAB pack-
age AIR Tools II [13].  
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4. Experiments 

To display the advantages of the box-constrained NWATV regularization, we will 
compare the reconstructed results via the Peak Signal-to-Noise Ratio (PSNR), and 
Structural Similarity Index (SSIM) of box-constrained NWATV regularization, 
TV regularization in reference [14] and ISP method in reference [1]. We use the 
MATLAB built-in function “SSIM” to get the results of SSIM. ( )PSNR n  is de-
fined as  

 ( ) ( )
( )10

max
PSNR 10log ,

MSE
n nn

n
⋅ ⋅

=
u u

 

where ⋅ ⋅  means component-wise multiplication [8]. The *u  means the ground 
truth image, nu  represents the reconstruction in the nth iteration, and 

 ( ) ( )
2

2*
2

1MSE .n l
n

N
= −u u  

In numerical experiments, we use the 128 × 128 standard Shepp-Logan phan-
tom and the 100 × 100 three-disk model made by Matlab in Figure 1 as the ground 
truth image for box-constrained NWATV regularization and TV regularization. 
Because of the speed of the calculation, we use the downsampled 32 × 32 standard 
Shepp-Logan phantom and 50 × 50 three-disk model as the ground truth image 
for ISP method. In three-disk model, we get the reconstructed images and the 

( )PSNR n , ( )SSIM n  by box-constrained NWATV regularization with param-
eters 100α = , 1010β −= , 0.2λ = , 60ρ = , TV regularization and the ISP method 
in Figure 2 and Table 1. From Figure 2, we can see that the box-constrained 
NWATV regularization is more complete for the preservation of boundary infor-
mation.  

 
Table 1. From left to right are the PSNR and SSIM for box-constrained NWATV regulari-
zation, TV regularization, and ISP method for Figure 2. 

NWATV-box TV ISP 

PSNR SSIM PSNR SSIM PSNR SSIM 

29.2330 0.6895 32.1228 0.5639 14.4854 0.1480 

 

 

Figure 1. The left side is the 128 × 128 Shepp-Logan ground 
truth image and the right is the 100 × 100 three-disk model. 
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Figure 2. The first row of images from left to right are the image with beam hardening arti-
facts and the reconstructed images for box-constrained NWATV regularization, the TV reg-
ularization, and the ISP method. Images in the second row are profiles of reconstructed im-
ages for box-constrained NWATV regularization and TV regularization in the 25th, 50th, 
and 80th lines, and ISP method in the 13th, 25th, and 40th lines. 

 
In Shepp-Logan phantom numerical experiments, we obtain the ( )PSNR n , 

( )SSIM n  by box-constrained NWATV regularization with 100α = , 101 10β −= × , 
0.002λ = , 800ρ = , TV regularization and the ISP method in Figure 3 and Ta-

ble 2. From the results of SSIM, it can be seen that the results of the reconstruction 
of the box-constrained NWATV regularization are closer to the ground truth im-
ages than the other two methods. 

 
Table 2. From the left to right are the PSNR and SSIM for box-constrained NWATV reg-
ularization, TV regularization and ISP method for Figure 3. 

NWATV-box NWATV ISP 

PSNR SSIM PSNR SSIM PSNR SSIM 

11.0017 0.7024 11.7279 0.6578 23.7687 0.0959 
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Figure 3. The meaning of each figure in the first row is the same as that in Figure 2. The 
images in the second row from the left to right are profiles of reconstructed images for box-
constrained NWATV regularization and TV regularization in the 35th lines and ISP method 
in the 9th lines. 

5. Conclusion 

From the above results, the NWATV-box regularization has obvious advantages in 
eliminating the beam hardening artifacts. According to the reconstructed images, 
we know that TV regularization will blur the image and to a certain extent, will 
weaken the details, which is not the case in the approach we propose. Moreover, 
because the ISP method requires the gradient descent method, so the box-constrained 
NWATV regularization has a higher speed of calculation than ISP method. We 
can see that the data of SSIM in box-constrained NWATV regularization are bet-
ter than ISP method and TV regularization. 
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