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N-Fold Darboux Transformation and Vari-

ous Solutions for the Coupled mKdV Equa-  In this paper, we get the N-fold Darboux transformation with multi-parame-
tions. Journal of Applied Mathematics and  ters for the coupled mKdV equations with the help of a guage transformation
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1. Introduction

Soliton equations play an important role in the field of nonlinear science, whose

have specific solutions to describe and explain the nonlinear phenomena, for ex-
ample, super conductivity, plasma and elastic media, etc. [1]-[3]. In the past dec-
ades, a considerable number of methods [4]-[10] have been developed for obtain-
ing explicit solutions of nonlinear evolution equations. Among them, the Darboux
transformation is one of effective algorithmic procedures to generate explicit so-
lution of some nonlinear evolution equations from the trivial seeds [11] [12]. The
key step for constructing the Darboux transformation is to keep the correspond-
ing spectral problems. The N-fold Darboux transformation can be regarded as the
superposition of single Darboux transformation, thus allowing for the further ac-
quisition of various solutions through symbolic computation [13]-[15].

In this paper, we construct the N-fold Darboux transformation for the coupled

mKdV equations
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’ Eum —3uu v=0,

(1

1
v, + 5 V.. —3vwu=0,

which are still unknown to our knowledge. Equation (1) is an important member
of the AKNS hierarchy and has various applications in mathematical and physical
fields.

This paper is organized as follows: In Section 2, based on Neugebauer’s idea, the
N-fold DT of system (1) is constructed. In Section 3, the 2 NV-soliton solutions and
N-complexiton solutions of system (1) are obtained, which are also expressed as

vandermonde-like determinants. In Section 4, some conclusion is given.

2. N-Fold Darboux Transformation

In order to construct a N-fold DT of the system (1), let us consider the following

spectral problem

T B —iA u
¢x:M¢9 ¢:(¢19¢2) > M_[ v lﬂj’ (2)

and its auxiliary problem

-2ip> —iuv/1+l(uxv—uvx) 2ui’? +iux/1—l(un —2u2v)
4,=Ng. N= 2 : e
2047 —ivxﬂ—E(vm —2v2u) 2iA’ +iuw1—5(uxv—uvx)

the compatibility condition ¢, =¢,_ yields a zero curvature equation

M,-N, +[M,N]=0,

which yields coupled mKdV system (1) by a direct computation.

Now, we consider a gauge transformation of the spectral problems (2) and (3)

¢=T¢, 4

where 7' is defined by
(T, +TM )= MT, (5)
(T, +TN)=NT. (6)

By cross differentiating (5) and (6), we get
M,-N,+MN-NM =T (M,-N, +MN-NM)T™". 7)

The lax pair (2) and (3) are transformed to
b.=Mg.4,=Ng. ®)
(7) and (8) implie that M, N has the same formas M,N expect replacing u

and v with # and V.

Suppose the Darboux matrix 7' in the forms of

T:m):[w) Bu)} o

c(2) D(2)
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where

A(l)=AN(/1N+NZAk/1"j, B(A):ANCZ;BMICJ»
C(4)= (Nle/lkj, D(/‘t)=AL[/1N+N§jDk,1kJ,

N k=0

Ay, A4, B,.C,,D (0= k< N—Tl) are functions of x and 7.

Let ¢(/1j) = (¢1 (lj),(éz (/1])) , l/l(lj) = (l//1 (/lj),l/lz (/1])) be two basic solu-
tions of the spectral problems (2) and (3). From (5) and (6), there exist constants
r;(12 j <2N), which satisfies

A(%)(2)+B(4)4(4)-r, (A(’Ii)l/’l (2)+B(4 v (2, )): 0,
c(2)4(2)+0(4)8(4)-r, (C(/Ij)l//l (4)+D(2 )y, (’1/)):0'

Thatis A4,,B,,C, and D, are given by a linear algebraic system

jf(Akijk)zf:—zjv, jf(ck+aj0k),1f=—aj/1].” (10)
k=0 k=0
with
5_:¢2(2/)_7j/'l//2(/1])’ 0><2N, (11)

' ¢1(}“j)_rj‘/’1(’11)

where constants 4, and r, (4, #4,, 1, #r;, as k# j) are chosen properly
such that the determinant of coefficients for (10) are nonzero. So, 4,,B,,C, and
D, (02k<N-1) are uniquely determined by (10).

From Equation (9), we have

detT(4,)=4(4,)D(4,)-B(4,)C(4). (12)

J J J
On the other side, from system (10), we know that
A(ﬁj)=_“1‘3(ij)’ C(’I')=_0‘jD(’11)' (13)

J
Hence, it implies that
det7 (1) =0,

which shows that 2,(1>j<2N) are 2N rootsof det7 (1), in other words,
2N

det7(2)=[](4-4,)- (14)

J=1
Based on the above facts, we will prove the following propositions.

Proposition 1 Assume that A4, satisfies
0,In(4,)=0, 45 =1, (15)

then the matrix M has the same form as M , respectively, where the transfor-
mation between the old potential #,v into new ones are defined as
(16)

u=u+2iB, |,

v=v-2iCy_, (17)
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and
AN—m,x = 2l.BN—lctN—m + CN—mu - BN—mv’
By .= _2i(BN—M—1 —-By.Dy_, ) —Ay_u+Dy_u, (18)
’ 18
Cype ="2i (AN—M Crvoi = Crya ) + (Ame -Dy_, )Va

Dme,x = _ZiBmeCNfl - Cmeu - Bmev'
ProofLet 77'=7"/detT and

(T.+TM)T" =[§: Ei)) (‘zz Eig (19)

where g, (1) and g,, (1) are (2N +3)th-order polynomialsin A,
21,(4).g, () are (2N +2)th-order polynomials in A , from Equation (2) and
(11), we find a Riccati equation

8, =v+2iA5, -ub;. (20)

From (14) and (20), we can get that 1,(1>j<2N) are roots of
g4 (A4)(k,i=1,2), in this way, together with (14) and (19) gives

(T.+TM)T" =(detT) p(A), (21)
with

el -
0) |’
2

p(4)=
Py pA+p
where p,(g[.) (k, j=L2l= 0,1) are undetermined functions independent of A .And

Equation (21) can be written as

(T.+TM) = p(A)T. (23)
By compared with the coefficients of AN AN in Equation (23), we can find
that
Pl =pl =i, (24)
= gl =l =0, in(4)) 25)
P =42 (u+2iBy ). (26)
Substituting (15) and (16) into (24)-(26), we can obtain that
Pl =pl =i pl =4 =0,

pl(g) =u+2iB, ,, pg?) =v=2iC,,.

From (5) and (23), it is easy to see that M = p(/l) . Therefore, the proof of
Proposition 1 is completed.
Next, let the solutions ¢(/1j) and (/1].) also satisfy (3), we try to prove N
in (6) has the same form as N under the transformation (4) and (17).
Proposition 2 Assume that A4, submits the differential equation with respect
to the variable
0,In(Ay)=4uC,_ (A4, —Dy_). (27)
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Then, the matrix N has the same form as N, namely,

~2iA% —iwv A +l(b7j—u_vx) 2% +iil, A —l(ﬁn ~2u’v)
N-= 2 ; .8
WA =W A——(V, -2 24+ A -—(iLy -,
2 2

the old potentials u,v are mapped intonew ones u,v according to the same Dar-
boux transformation (4), (16) and (17).
Proof Let T™' =T"/detT and
. A A
(7;+TN)T :[fll( ) flz( )} (29)
fa(2) f2(2)

where f,(4) and f,,(4) are (2N +3)th-order polynomialsin A,
fi2(2), fo1(A) are (2N +2)th-order polynomialsin A .On the basic of (3), (11)
and (13), we can get a Riccati equation

6, = Zvlf —iv.A, —%(vm - szu) + (41'/1; +2iuvd —j - (uxv —uv, ))5,-
| (30)
—(Zulf +iu A, E(u” - 2u2v))5f.

Through a series of calculation, we can get that 4,(1> j<2N) are roots of
fu(A)(k,i=1,2). From (14) and (29), we arrive at

(T+TN)T" =(detT)Q(A), (31)
with
0(2)= [qff)/13( ;)r a0 +ala+al) g DA +qf A+ gl J
a7 +aa+dl) A +qR2 + A+ gl
where qgll (n,s =1,2;1=0,1, 2) are undetermined functions independent of A .

Equation (31) can be written as
(T, +TN)=0(A)T. (32)

According to compare the coefficients of A", 2" 2" in Equation (32),

we have
g =g =0.q1) =—¢%) =-2i,
‘]S) =2 (V -2iCy ) > %(22) = 2(” +2iBy ),
g%V =—iuv+2vB,_ —4iB, C\_, —2uC,
qg) =2uC,_, +iuwv-2v8, ,+4iC, B, ,,
gV =iu_+2ud, , +4iB,_,—4iB, D, —2uD,_,,

gV =—iv_+2vD,  —4iC,_,—2vd,  +4iC\ A, ,,

1
ql(g) = _E(M'“ - 2u2v) +2udy_, +iu Ay, +4iBy_y +2iuvB,_,

—(2vB,_, —4iBy_Cy_,—2uCy_)By_ —D,_,(4iBy_ +2u)
—D,_, (iu, +2udy_, +4iB,_, —4iB,_D,_ —2uD,_,),

DOI: 10.4236/jamp.2025.132018

385 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2025.132018

C. M. Fang

qg?) =-4iCy_, —2iwC,,_, — %(vxx - 2v2u) +2vD,, ,
—iv.Dy_ —(2v—4iCy_) 4y,
—(=iv, +2vD,_, —4iCy_, =20y +4iC, ) A, ) Ay,
—(2uCy_,—2vB,_, +4iCy_ By )Cy_,,
gV =0,1n(4,) +%(uxv —uv,)+2vBy , —iv, By,
—(2vBy_, —4iBy_)Cy_,) Ay, —(—4iBy_ +2u)Cy._,
—Cy., (iu, +4iBy_, —4iBy_Dy_ —2uD, ),
qgg) =—0,In(A4y)+2uCy_, +iu,Cy_, —%(uxv —uv,)
—(2v—4iCy_) By_, —(=iv, —4iCy_, —2vAy  +4iCy_) Ay ) By,
—(2uC,, +4iCy ) By, ) Dy .

Substituting (15)-(17) into above expressions, we can obtain

qI(IZ) = qg) =0, ql(]s) = —qg) =-2i,
¢ =2(v=2iC, ) =2v, ¢ =2(u+2iB, ,)=20,
g\ =—iuv, ¢ =iwv, qf) =ii,, ¢\ =, (33)
o) =3 (7. -2, ) = (v -2).
2 2
ql(?) = %(ﬁj—u_vx ), qgg) = _%(17)(‘_}_“_‘),[ )

Therefore, we have Q(1)= N, that is, the proof is completed.

The two propositions indicate that both of the lax pairs (2), (3) and (8) lead to
the same system (1). The transformation (4), (16) and (17), (¢,u,v) - (¢7, L7,\7)
are called a DT of system (1).

Theorem The N-fold DT (16), (17) in terms of Vandermonde-like determinants

can be written as

u[N]=u+21 ABy.y ,
A0
AC (34)
V[N]=v-2i—2L,
A

where A is determinant of the coefficients for the linear algebraic system (10),
that is

16 A4 §A o AT s

1 52 ﬂz 52/12 o A*zNil é‘2 !
Ay=li : : R :

1 52/\1-1 A'zzv—| 52N—]ﬂ’ZN—] 1\//\;-11 52/\1-1 ]\5\7-11

1 52N ﬂQN 52N/LZN ]\jv_l 52N }\;v_l

with AB, , isproduced from A by replacingits 2N -th column with
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(—AN,—AZN,- = )T , AC,_, isproduced from A by replacingits (2N -1)-
th column with (—5111N,—52/12N,---,—52N/12]f\, )T ,and &,(j=1,2,---,2N) aregiven
by (11).

3. The (2N)-Soliton Solutions

In this section, we shall apply the N-fold DT to obtain multi-soliton solutions of
system (1). We start from the trivial solution u=a+ i, v=—a+ i (as a and
S are constants ) as our seed solutions, then we choose two basic solutions of (2)
and (3)
cosh y; sinh 4,
¢(’1/): i ‘/’(/1/): i

C; 5 C. 5
J J o1 E J o1 J

—=cosh y; + —=sinh x, —=sinh x4, + —cosh x,
u u u u

,ujzcj(x+(uv+2/1f)t), cj=1/uv+/lf (leSZN).

thus, & . can be written as

5 :M_hrﬁ tanh,, =

J

, (1>7<2N). 35
u ul—rjtanh#j ( / ) (35)

In what follows, we discuss soliton solutions of system (1) for the caseof N =1,
and N=2.
Let N=1,A=4,;(j=1,2;j#k), solving the linear algebraic system (10), we

have
Ao:%, B():ABO, cozACO, DO=AD°, (36)
A0 A0 A0 A0
where
1 6 1 - -0, 0,
Ao: 1’ AB(): ﬂ17 AC0: 11'1 1’
1 52 1 _/12 _5212 52

Resorting to expressions (16), (17), a multi-soliton solution of system (1) can be
obtained as follows,
2i(4-2)
52 - é‘1

21'5152 (ﬁz _/11)

ulll]=a+if+ 55

, V[l]=—a+ip- . (37)

where

5,- Jiqﬁ% U =c; (x+(uv+2/lf)t), ¢ =1/uv+/1f,

b
u  u l-ritanh 4

and r;,4; arearbitrary parameters.
For the case of N =2,1=4,(/j=1,2,3,4), solving the linear algebraic system
(10), we have

A1:_:~ Bl:—’ CI:—, Dlz_: (38)
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where

L& A A T
P L B
1= 9 1 210’
1 53 ﬂa %‘53 1 53 /13 _/13
1 6, A A0, 1 6, A4 -4

L6 -84 A6,

_ 2

AC]:1 52 ZA'ZZ 1252.

1 53 - 3% 1353

1 g, —54/142 4,0,

Resorting to expressions (16) and (17), a multi-soliton solution of system (1) can

be obtained as follows,
u[z]:aﬂm%, v[2]=—a+if- 2’§C (39)

1 1

4. The Complexiton Solutions

If we take the trivial solution u# =v =0, and choose conjugated spectral parame-

ters as follows,
As=a,+if, =2, A, =—a,—if, =2,

0 _ (40)
Aa=a,—if,=2", A, =-a,+if, =27

where j=1,2,---.then the corresponding compatible solution of the lax pairs (2)

and (3) can be choosed as

i ))

)
¢2(ﬂ4j_3) exp( 77,)(00 —isin f )
) ¢1(l4j,2) _ exp )(cos —isin § ))
¢(/14/ 2)_[¢2 (’14]'2)J exp( (c ( )+lsm(gK ))

(41)

)

) ) i exp q/)(c —isin cfj_))
#:(%1)) (exp(-n )(COS( )+’S1 ()
Ly [B0) [ ewla)eos(s)+isin(s)

#(2,) { )J exp(-7 )(Cos( & )—isin(¢; ))

where
n, = —iajx+(6iajﬂf —21'0:;)1,77; = iajx—(6iajﬁf —2iaj3.)t,
& ==ip x+(6ic) B, + 2 )1.&] =—ip x+(6ict) B, +2i3} )1,

and «;,f; arearbitrary real constants.
For the case of 7, =0,1,(1< j <4), according to (11), we have
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s ZEH =exp(-20; ) (cos2(¢; )-isin2(¢)) =57,
O4jn= . (/141;2) = exp( 2n; )(cos2(ﬁ)+zsm2(§ )):51(2)’
" & (141‘-2 ) ‘ ' (42)
Oy = ngj::_:; —exp( —2n; )(cos2(§])+zsm2(§ ))=é_‘](1),
Sy, 2%=exp(—277;)(0052(5;)—isin2(§;)):5].(2).

Resorting to expressions (40), (42) and DT (16) and (17), we can obtain the com-
plexiton solutions of system (1),

U[2N]=u+2i—2 2N1
@
V[2N]=v-2i——2L,
2N-1
where
R —— —T
Aoy =det| ool 0.0, 0o oo |
- - — T
ABZN—l:detl:bl(l)’bl(Z):bl(l)’bl(z)a'":bg\:)ab](\/Z)’bj\;)abl\/z:| >
- - — T
AC, :det[cl(l),cl(z),cl(l),cl(z), ,c](\}),cj(vz),c]\}),c;} ,
with
() :(1’551)”1i’§/(lu/('1)’ ,/1(1)2»2’ (1) 5 (1Y z’ (.l)szl’ (I)AJ(I)ZN—I ),
b}gl)2(156‘1(1)’21(1)9_21(02’ D) (I)ZN 2> /(1) /(l)zm 2’ »E‘l)z,v 15_ /(I)ZN)s (44)
2 2N-2 2N-2 2N 2N-1
C$I)=(1,§l([) _51(/)/11(1) ’51(/)%(1)’ , E’) , j(/) .E[) — (/)/1](1) ’551) El) )’

and 0'5.1) , b_g.l) , clg.l)

are conjugated functions of Gﬁl),by),cy),(l =1,2).

According to properties of determinant, N-complexiton solutions of system (1)
can be obtained as follows.

where

7=+ 2i 2B

A2N71 (45)
v = v—2i 2 ,

AZN*]

T
A,y =det [Re 0'1(1),Re 0'1(2),Im0'1(1),1m0'1(2),---,Re GS),Re aj(f),lmal(\:),lmal(fq ,

A

Byn-1

= det [Reb}”,Reb}z), mb"), Im b

1 5"

T
 Reb), Reb), Imby Imb() |,
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A

T
Covot = det[Re cl(l),Re cl(z),lm cl(l), Im cl(z),---,Re CS),Re Csz)a Im CS),Im cm s
with O'_g.l),bgl),cg.l),(l = 1,2) are given by (44).
For simplicity, we shall discuss complexiton solutions of system (1) with a spe-

cial case j =1, which we called 1-complexiton solutions of system (1).

A
T=u+2i—2L,
Ay (46)
A
Vv=v-— 2i—C‘,
Al
where
T
A= det[Re o-l(l),Re 0'1(2), Im 0'1(1), Im 0'1(2)] )
T
A, :det[Rebl(l),Rebl(z),lmbl(l),lmbl(z)] )
T
A, =det [Recl(l),Recl(z),lmcl(l),lmcl(zq )
with

0'1(]) - (1, 51(1), /11(’)’5](’)/11(1)),
B = (1, 5020 407 )
o = (1’ 50, —s 47 5020 )
(l = 1,2),51(1) are given by (42), and ll(l) are given by (40).

5. Conclusion and Suggestions

In this paper, an explicit N-fold Darboux transformation is constructed for the cou-
pled mKdV equation, and through these transformations, the determinant forms

of the multi-soliton and complexiton solutions of system (1) are obtained.
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