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Abstract 
A Bose-Einstein condensate (BEC) is a topic of significant interest within the 
scientific community. It is well understood that Rb-87 and Yb2Si2O7 have been 
utilized in experiments to explore this phenomenon. These studies have demon-
strated that these materials can achieve the BEC phase, a state that has been ex-
perimentally validated. In this paper, we further establish, from the perspective 
of theoretical physics, that silicon is also capable of exhibiting BEC properties. 
Our approach differs from prior studies in that it uses innovatively certain 
boundary conditions. Specifically, we employed Yb-70 as a gamma-ray radia-
tion source and a 1 nm linewidth (as the half-width of a 2 nm line). Additionally, 
we utilized the concept of half-value thickness from nuclear physics absorption 
models to optimize the semiconductor process. This method effectively removes 
ytterbium (Yb) during the process, leaving only silicon, silicon-based materials, 
or silicon topological superconductors on the wafer. This technical procedure 
results in the creation of “BEC silicon” at absolute zero temperature (0 K), in-
troducing a novel material for BEC realization. 
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1. Introduction 

In Ref. [1], it is well established that the first complete realization of Bose-Einstein 
Condensation (BEC) in the history of science occurred on June 5, 1995, at MIT 
and the University of Colorado Boulder in the United States. In Ref. [2], scientists 
discovered that silicon alloys Yb2Si2O7 can successfully achieve the BEC phase. 
This finding represents a significant milestone in materials physics, highlighting 
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the profound potential of silicon-based materials. It suggests that silicon, silicon 
alloys, and silicon topological superconductors possess either latent potential or 
demonstrated capability to achieve the BEC phase. The findings discussed in Refs. 
[3]-[25] demonstrate that the technology of Electromagnetically Induced Trans-
parency (EIT) for light storage (quantum storage or mode locking) relies on laser 
light sources provided externally rather than generated internally by Yb2Si2O7. By 
effectively applying the concept of half-value thickness from nuclear physics ab-
sorption models, it can be concluded that the ytterbium (Yb) atoms in a Bose-
Einstein Condensate (BEC) may be considered absent. This also implies that sin-
gle-crystal silicon ingots could be excluded at the initial stages of manufacturing. 
In other words, doping substrates with Yb atoms is unnecessary (as supported in 
Appendix A), and Yb can be eliminated entirely from the process. 

This paper addresses a long-standing issue in the semiconductor industry: the 
challenges posed by 1-nanometer circuit nodes (quantum wires). Our work de-
rives and verifies a solution to this critical problem. We have conducted extensive 
pioneering studies in this area and are now presenting them here. The focus of 
this paper is to explore whether silicon can achieve BEC and to conduct verifica-
tion work related to this hypothesis. 

Additionally, we have demonstrated that electron transport through 0.5-na-
nometer channels is fundamentally prohibited due to quantum mechanical scat-
tering states. Specifically, electrons are scattered by the potential barriers within 
the channels. Detailed discussions and supporting evidence can be found in Ap-
pendices B and C. 

We aim to ensure that these discussions align with experimental procedures 
and engineering realities. We confirm that this work is the same as the current 
BEC experiments. This is based on the properties of solid silicon crystals, which 
naturally play the role of a MOT, and the process of BEC laser cooling silicon is 
also the same as that of the current laser cooling Rb-87. 

2. Method 
2.1. Discourses on the Existence of Silicon in BEC Phases 

Based on two fundamental assumptions outlined in Sect. 2.3, the energy gap of 
diamond-structured silicon at room temperature is denoted as: 

 ( ) ( )2

Si,300 K
2g

e

E
m
κ

=


 (1) 

As is widely known, this is an experimental value where the wave vector κ  is 
used instead of k, since electrons are assumed to exist within the periodic poten-
tials of the lattice structure in single-crystal silicon ingots. When employing Bose-
Einstein Condensation (BEC) technology to form Fermi condensation, and in ac-
cordance with the principle of energy conservation, it follows that: 

 ( ) ( )2

Si,0 K 1.12 eV 1.12 eV
2g F

e

k
E E

m
= − = −



 (2) 
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where 1.12 eVC ≡ . Therefore, 
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(Here two fundamental assumptions would be provided in later sections.) 
Hence 

 ( ) ( )
12

0

d
Si,0 K lim

2 dc
c

c
g T

eT T

k T
E C

m T
γ

γ

−

→ +
→

 
= −   

 



 (4) 

When the single-crystal silicon ingot is cooled using a laser, and based on the 
equation we derived theoretically (partially inspired by the seminal experiment 
(87Rb, 170 nK) conducted in 1995), namely, 

 11 , 3
10 CT Tγ γ γ = + ≥ 

 
 (5) 

The minimum 3γ =  is specifically chosen. The “quantum temperature” (as 
we refer to it here) of the photons possess1—derived as a general result of black-
body radiation—is given by 

 ( )1 1 1000 CT Tγ = +  (6) 

Thus we have: 

 ( )d 1 1 1000 d CT Tγ = +  (7) 

By substituting the above equation back into Equation (4), we obtain: 
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With 
( )2

2 e

C
m
κ

=


 substituted back into Equation (8), hence 

Similarly, with 
( )2

2 e

C
m
κ

=


 substituted back into Equation (8), we derive: 
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 (9) 

 

 

1In thermal equilibrium, the energy that the photon gas has, which reflects to the energy of the ab-

sorption material of silicon is ( )1
2

E nhv kT hvγ= = +  where 1n > , 3γ = . Via an approximation 

by large number we confirm that ( )1 cT Tγ ε≡ + , 1 10γε ≡ . 
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Since 

 T̂k κ→  (10) 

Therefore, 

 ( ) ( )

( )

2

Si,300 K

1Si,0 K 0
1000 2

g

g
e

E

E
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κ

=

= − ⋅ <




 (11) 

It is evident that as the temperature of the single-crystal silicon ingot ap-
proaches absolute 0 K, the energy gap of the ingot enters a bound state. This indi-
cates that the electron becomes completely confined within the material. 

When considering only the first Brillouin zone, any arbitrary wave vector in the 
reciprocal lattice space, based on the wave vector k , can be analyzed using 
Bloch’s theorem. After the application of the translation operator T̂ , the result-
ing state becomes T̂k κ→ , as described above. In the next section, we intro-
duce and discuss the concepts of coherent states.  

The above discussion strongly supports the argument that 1 nm wire manufac-
turing necessitates the use of BEC-silicon, achieved through laser cooling. In prac-
tice, Yb2Si2O7 can serve as a suitable BEC material, as supported by known exper-
imental data. Furthermore, due to the influence of channel sizes (as detailed in 
Equations (21) - (25) below), silicon retains its prominence as a widely used ma-
terial for 1 nm wires. 

2.2. Examination: Consistency (I) 

It is widely known that silicon atoms possess four covalent electrons in their outer 
shells. When silicon atoms bond with one another, they form shared electron 
pairs. These electron pairs exhibit physical behavior analogous to “Cooper pairs” 
as described in BCS theory, particularly at temperatures approaching absolute 
zero (0 K). For simplicity, we express the relevant quantum mechanical (QM) 
equations as follows: 

 
1

ˆ
n n

n
E Eψ

∞

=

=∑  (12) 

 
0

ˆ
n n

n
E Eψ

∞

′ ′
′=

=∑  (13) 

Here, { },n nE E ′  represents a mathematical “ensemble of energy eigenvalues” 
for quantum particles in physics. Photons produced through laser cooling are ef-
fectively described by Equation (12) (photon ensembles), while the pair-electrons 
in silicon atoms are accurately modeled by Equation (13) (electron ensembles). 

When coherent states emerge in silicon systems, it indicates that n n′= , 0n ≠  
Equation (12) specifically applies to laser photons. In this context, we attempt to 
compute the inner product of the states described by the above two equations. In 
other words, 

 ( )*

1 0
n n

n n
ψ ψ

∞ ∞

′
′= =

⋅∑∑  (14) 
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Next, we apply the energy operator twice to Equation (14), yielding: 

 ( )*2

1 0

ˆ
n n

n n
E ψ ψ

∞ ∞

′
′= =

⋅∑∑  (15) 

Furthermore, leveraging the linearity of Ê , we derive: 

 *

1 0

ˆ ˆ
n n

n n
E E ψ ψ

∞ ∞

′
′= =

 
  

∑ ∑  (16) 

By applying Equation (12) and Equation (13), and considering the photon en-
sembles from the laser source (as demonstrated in the calculation of the equation’s 
right-hand side below), we obtain2: 

 * 2* 2

1 0

ˆ ˆ
n n n n n n n n

n n
E E E E E E E Eψ ψ

∞ ∞

′ ′ ′
′= =

  = = = =  
∑ ∑  (17) 

Finally, taking the square root of both sides of Equation (17), 
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And, 

 
1 2

0 1

ˆ 0,n n
n n

E n nψ ψ
∞ ∞

′
′= =

′= ≠∑∑  (19) 

Finally, taking the square root of both sides of Equation (17), Equation (18) 
reveals that coherent states emerge as n n′= . Consequently, we obtain the eigen-
values of 0nE >  and 0nE < , respectively, with the latter corresponding exactly 
to Equation (11). 

It is important to note that the energy gap is one of the eigenvalue solutions of 
the Schrödinger equation in the context of solid-state physics. Through quantum 
mechanics (QM), we have provided strong evidence to support this paper, partic-
ularly the precise arguments presented in this section. 

2.3. Examination of Consistency (II) 

According to Equation (11) in Sect. 2.1, it is evident that 

 
( ) ( ) ( )

3

1 1Si,0 K Si,300 K 1.12 eV
1000 1000
0.00112 eV 10 eV

g gE E

−

= ⋅ =

= ≈
 (20) 

Based on the fundamental conditions of a Fermi condensate and the formation 
of “Cooper pairs,” the system’s energy for electron pairs (e.g., the energy gap) 
must be reduced below ~10−3 eV. This inference aligns well with widely recognized 
facts, reinforcing the consistency of our findings. 

2Here, we focus on Equation (2) and Equation (3) and subsequently provide 
two fundamental assumptions for them, as outlined below. 

Fundamental Assumption I 

 

 

2To simplify the discussion, we have adopted the use of absolute value notation to exclude complex 
numbers when analyzing the projection of one quantum state onto another. 
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One of a silicon atom’s covalent bonds shares two outer electrons, whose phys-
ical behavior during Fermi condensation at extremely low temperatures resembles 
87Rb - 87Rb in solid-state systems at absolute zero. 

Fundamental Assumption II 
Considering the Fermi-Dirac distribution, the probability of 1/2 corresponds 

to the energy level at which an electron occupies the Fermi energy level. This  

resultsin 0
kT
ε µ−

= , which is directly associated with the discussion above.  

Hence, we can sufficiently assume k kε µ= , and it is evident that 
1 Ck k T Tγµ ε= ≡  at absolute 0 K. Notably, electrons are nearly fully populated 
at the Fermi energy ε  during Bose-Einstein Condensation (BEC). As the sys-
tem’s temperature is further reduced toward absolute zero, the Fermi energy of 
the electron aligns precisely with the Fermi energy level. Consequently, the elec-
tron possesses 1 CT Tγ= , as described in the assumption above. Furthermore, 
this relationship forms an “implicit equation,” which can be mathematically ex-
pressed as 0CT Tγ − = , using principles from calculus. 

3. Results And Discussion 
3.1. Results Analysis 

Let us directly apply the technique of topological mapping in advanced physical 
mathematics (i.e., conformal mapping) to the manufactured line widths of the 
material Yb2Si2O7, such that 

 2 nm 1 nm  (21) 

This is because 1 nm is precisely half the width of 2 nm, and a quantum barrier 
occurred at solid angle of 4Ω = π  (refer to Appendix B). It is widely known that 
the half-value thickness in an absorption model of nuclear physics refers to the 
thickness of a barrier material required to reduce the intensity of an incident ray 
to half its original value. Consequently, the value of the semi-absorbing thickness 
is 

 1 2
ln 2 0.693 0d
γ γ

= ≈ ≠  (22) 

Here, γ  denotes the absorption coefficient of the barrier material for inci-
dent rays. It is well known that when the circuit’s short width is 2 nm, no sig-
nificant quantum effects occur (as commonly understood). Consequently, there 
is no need to consider whether it could represent a Bose-Einstein Condensate 
(BEC) phase. 

However, when the circuit component is exactly reduced to 1 nm, the situation 
changes significantly. According to the Fresnel diffraction formula and the Huy-
gens-Fresnel principle in near-field optics, a pronounced quantum tunneling 
effect is observed. Notably, the probability of the electron’s tunneling effect in 
a 2 nm circuit is precisely 1 e  times that of a 1 nm circuit. Considering the phys-
ical significance of “skin depth” and referencing Equation (21), we have strictly 
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derived3: 

 1 2
ln10.5 0d
γ

= =
′

 (23) 

Here, 2γ γ′ ≡ . This result arises from considering the inverse scenario of using 
Yb as a “gamma-ray source” at the 1 nm circuit component line width’s node. 
Using this perspective, we have identified the following mathematical techniques 
to calculate the “half-value thickness of absorption” for gamma-rays in the circuit 
component line width (specifically, the numerator of ln2 in Equation (22)): 

 

( )
( ) ( )( ) ( ) ( ) ( )( )

( ) ( )
( )2 nm . .

2 nm
1 nm

1 nm

d 1 !
d ln 1 ! d 1 ln 1 1 , 1

1 !

d d ln , d ln ln ln 2 0.693
B C

x
x

x
x x x x x

x

x x x x
x =

=

− 
= − ≈ − − − − ≠ − 


= = = ≈ 


∫
 (24) 

It is not difficult to find that the above is in agreement with what is revealed by 
the half-value thickness of an absorption model in nuclear physics. 

Furthermore, by considering the continuous variations in the component line 
width during the manufacturing process (i.e., a homeomorphism mapping, where 
all manufacturing processes can theoretically be represented along the time-axis, 
2 nm 1 nm , 1 nm 1 nm−

 ), thus we obtain: 

 

( )
( ) ( ) ( ) ( )( ) ( )

( ) ( )
( )

22
2

1 nm . .

1 nm

d 1 !
d 1 ln 1 1 ln 1 d 0

1 !

d d ln , d ln 0

xx
x

B C

x

x
x x x x x

x

x x x
x −

==
=

+

=

−
≈ − − − − = − = 

− 

= = 


∫
 (25) 

Evidently, the result of the formula in Equation (25) is physically equivalent to 
ln1 0=  (i.e., the extremely small error can be completely ignored in physics). 
Thus, it is identical to the numerator of Equation (23). 

It is important to note that after topological mapping, the left and right bound-
ary conditions (B.C.) of the 1 nm component line width become significantly nar-
rower than those described in Equation (24), as indicated by ( )1 1 nm 1 nm−−  . 

3.2. Theoretical Analysis 

According to Equation (23), the gamma-ray’s penetrating ability is revealed to be 
zero, which physically signifies “no penetration.” This paradox can be resolved in 
one of two ways:  

(A) the absence of gamma-ray photons, or (B) the component has automatically 
undergone light storage (or quantum storage). 

 

 

3In the Fresnel approximation, supposed that a nano tunnel in 2nm, the widely-known expression as 

practical material of silicon, ( ) ( )2 2
1 2 2 2x x x xρ ′ ′= ± − + − , 

3

1
i

i
r x

=

= ∑  for the wavelengths of gamma-

rays: 3xγλ ρ   and then 
2

3
32

r x
x
ρ

≈ + , 4Ω = π  such that 
2

1
2

r ρ
≈ +  and 

2

2
4

r ρ′ ≈ + . There-

fore 
2

1 4
2 8
r ρ′
= + ×  with 0nψ = , this leads to corresponding: ln 2 ln1→ . 
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It is clear that case (B) must be discarded. This is because light storage relies on 
photons [3]-[25] supplied by an external EIT light source rather than being gen-
erated internally by Yb atoms. Therefore, the correct solution is case (A): the 
source of gamma-rays does not exist or is not necessary initially. Consequently, it 
becomes evident that doping Yb is redundant and unnecessary in the semicon-
ductor manufacturing process for a 1 nm line width. It is worth noting that the 
above represents a simple and elegant application of phenomenological tech-
niques in theoretical physics. 

It is important to note that the ( )1U  gauge symmetry breaking discussed in 
Ref. [2] actually refers to the ( ) ( )3 1SU U×  gauge symmetry group. Specifically, 
this indicates that the physical size of the electron remains constant at the turning 
point ( )0 1.954 fmr ≈  of the Yukawa potential [26]. (The detailed discussion of 
this topic is lengthy and highly complex; we will provide full proof in a forthcom-
ing paper.) 

In this context, electrons and photons involved in the EIT effect remain quan-
tum entangled to sustain Bose-Einstein Condensation (BEC) at extremely low 
temperatures approaching absolute zero. This quantum entanglement manifests 
in the behavior of photoelectrons, wherein these two elementary particles ( ),eγ −  
exchange their wave functions during the process [3]-[25]. Evidently, silicon is 
entirely suitable as a material for achieving BEC, reinforcing its critical role in the 
semiconductor industry. The reasons for this have already been successfully de-
duced using principles of solid-state physics, as discussed earlier. 

Particular we indicated it that in Equation (C.2), since that in current semicon-
ductor industrial, where one overcomes the problem of electron tunneling effects 
(i.e., so-called “punch through”) is by using solutions: the method named “high-
κ dielectric”. As far, we can see later on (Equation (C.2) in Appendix C), the terms 
of voltage: V (inversely proportional to above κ  dielectric (1 t κ∝ )) such re-
flects to the shorter thickness t  of the tunnels (notice that the structure is around 
3 nm). This complete agrees with the deductions and physical pictures by Equa-
tions. (21) - (25). Since that at constant wavelengths, the higher κ  dielectric as 
smaller thickness of the tunnels, but the difference is that we adopt the BEC laser 
and the EIT artificial, in contrast, instead of adopting the solution by “high-κ di-
electric”4. This grant reduces its multiple-steps in semiconductor manufacturing, 
and simultaneously obtained the same results of extending Moore’s law. 

4. Conclusion 

Based on the discussions in sections 2 and 3 previously, we have deduced that 

 

 

4In other words, it is not essential that the structures required such as Gate-SiO2-Si Substrate to be 
manufactured in a semiconductor manufactures by this paper. (BEC Si plus EIT can be feasible.) Here 
given reasons: ( ) 0rε ε ω ε=  and due to Equation (11), Equation (17), and Equation (18) ω  in BEC 

is obviously coherent. Therefore, BEC resonant ω  is regarded as contributing to imaginary parts of 

dielectric constants: ( )
 

2SiO Si

3 nm 3 3.9 11.68
1 nmrε ε ω ′≈ = × ≈  which is compared with 3 nm (Gate-SiO2-Si 

substrate) and 1nm tunnels. It also can be computed by Kramers–Kronig relations that we confirm in 
Appendix G. 
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silicon can serve as one of the standard materials for a Fermi condensate. With ap-
propriate transformations or technical manipulations—typically within the frame-
work of BCS theory (e.g., effective applications of Cooper pairs)—a Fermi conden-
sate can be sufficiently transformed into a Bose-Einstein condensate. In the manu-
facturing process, the intrinsic properties of silicon are preserved. Using quantum 
processing technologies, such as the so-called “light storage of EIT,” silicon can be 
advanced into a novel material known as a “silicon topological superconductor.” 
However, the fabrication of 0.5 nm channels is not feasible (it is explicitly prohib-
ited). For further details on this specific case, refer to Appendices B and C. 
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Appendix A: Numbers of Atoms Allowed 

Fundamentally, Yb2Si2O7 contains 11 atoms but does not allow its 11th atom to be 
accommodated within 1-nanometer wires, assuming an average atomic size of 0.1 
nm, i.e., 

 ( )11 0.1 nm 1.1 nm 1 nm⋅ = ≥  (A.1) 

Clearly, a matter of 0.1 nm cannot fit, indicating that one atom would be cut, 
leading to boundary effects. Such effects are not permissible in a 1-nanometer 
channel. 

For silicon, with a lattice constant of 1 nm0.543
18.4162

a = ≈Å  and a face-cen-

tered cubic (F.C.C.) structure, silicon atoms can be fully accommodated without 
cutting. This configuration allows for a maximum of 10 silicon atoms to be ar-
ranged within 1-nanometer wires. 

Restriction of Boundary Effect: Nanowires cannot permit non-integer num-
bers of atoms to be accommodated within a channel. As the size of the nanowire 
decreases, the ratio of surface atoms to the total number of atoms increases, mak-
ing the “boundary effect” more pronounced [27]. At this scale, if an atom is cut, 
it leads to a violation of the boundary effect, which also contradicts the quantiza-
tion effect. As noted in Ref. [27], quantum size effects, quantum interference ef-
fects, and general quantization effects strongly support the arguments presented 
in this paper. 

Remark. 
Considering the atomic radius of silicon (111 pm), we next examine the con-

straints of a 1 nm channel. Specifically, this requires the exclusion of two silicon 
atoms to avoid boundary effects. Based on this, we initially obtain 

 

[ ]

9

13

1 nm 10 m2 2 13.072 2 11.072,
2 111 pm 222 10 m 0.543
11.072 11

a

−

−− = − ≈ − =
× + × +

=

Å  (A.2) 

Returning to Equation (A.1), it becomes evident that one additional silicon 
atom must also be excluded artificially. Consequently, the final result is: 

 [ ]1 nm 3 10.072, 10.072 10
2 111 pm a

− = =
× +

 (A.3) 

This implies that only 10 silicon atoms can be accommodated within 1 nan-
owire. Such a reversal solution for Equation (A.1) indicates that Yb2Si2O7 cannot 
be applied to 1 nanowire unless Yb atoms are not doped, leaving Si2O7. 

However, even in this scenario, Yb2Si2O7 still provides valuable insights (or con-
tributes ideas) that can promote experimental advancements. These advance-
ments may help transform silicon (Si) or Si2O7 into novel materials when sub-
jected to BEC laser cooling, respectively. 
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Appendix B: 0.5 nm Channel as a Barrier Is Forbidden in  
Physics 

Consider a special case: wave-numbers of electrons in 1D quantum wells of 0.5 
nm-channels, namely 0.5 nm channel as a barrier is forbidden in physics. Con-
sider a special case involving the wave numbers of electrons in one-dimensional 
(1D) quantum wells within 0.5 nm channels. Specifically: 

 2κ
λ

=
π  (B.1) 

If the channel is contracted from 1 nm to 0.5 nm, the boundary conditions 
(B.C.) of the infinite potential wells change from 2x L= ±  (for the 1 nm chan-
nel, used as the reference level) to 4x L= ±  (for the 0.5 nm channel).With 
κ λ= π  applied, this contraction produces the eigenvalues of potential energy 
as follows5: 

 
( )

( )

2 22 2 2

2 2

116
2 4 22

E
m L mmL L

κ λ
λ

 
= = =

π




π





   in channels (1D-wells) (B.2) 

Moreover, 

 
22

2

4 1
2

E
m L λ
 
 
 

π
=
  (B.3) 

Derive the above equation by varying λ  when an electron is input into the 0.5 
nm channel from the tuning voltage source of integrated circuits 

 
22

3

4 1 0E
m Lλ λ

∂  π = − < ∂  

  with fixed 0.5 nmL =  (B.4) 

And it is in the bound state due to the negative sign mentioned above. However, 
when taking the second derivative of the above equation by varying λ  as an elec-
tron is “quasi-standing” in the 0.5 nm channel space (regarding this part, it shall 
be seen in new sections (Appendix C)), so that 

 
22 2

2 4 4

3 4 1 1 , 4E
m Lλ λ λ

∂  = ∝ Ω ≡ 
 

π
π

∂
  (B.5) 

With a constant 0.5 nmL =  retained and solid angles 4Ω ≡ π  considered in 
a spherical coordinate system (Refer to Ref. [28]), the actual result implies Ray-
leigh scattering in the case of a Fermi gas particle as the subject of interaction—
provided we disregard the effects of the Pauli exclusion principle and spin (i.e., 
treating it as a classical particle for faster solutions). Note that the barrier, acting 
as the scattering center, is exactly half the width of the 1 nm channels (i.e., 0.5 nm 
channels). Since scattering states occur in 0.5 nm channels, we propose that it is 
unnecessary to produce these in physical engineering based on this section's de-
duction, thereby avoiding unnecessary waste. Notably, other solutions, such as 
destructive interference in quantum mechanics, can be explored to address this 
issue. Therefore with eigenfunctions: 

 

 

5The electron Hamiltonian is given as ( )H E V x= + , since it behaves as a free particle when affected, 
so that H E= . 
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n
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n
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 

   
′′ = − ≠   

   
=

π

π π



 (B.6) 

The above equation implies that electrons disappear at the scattering center 
( )0x = . In other words, in the case of 0.05 nmx = , 

 
2 0.5 nm

2 sin 0,
2 2

1,2,3,

n
x L

n x
L L

n

ψ
= =

 
= =

 

=

π




 (B.7) 

Thus, electrons are completely absent within the 0.5 nm channels 
( )0.5 nmx ≤  when affected by circuit nodes. In this case, the complete quantum 
mechanical solution with significant allowed values is 

 2

2 sin , 0.5 nm
2 2

2 sin , 0.5 nm
2 2 2

1,2,3,

n

n

n x x
L L

n n x x
L L L

n

ψ

ψ

 
= >  

  

   

′′ = − >    
  

π

π

=

π

 


 (B.8) 

For all space, whereas in industrial settings, the space in laboratories or fabri-
cation facilities is considered complete. 

Remark. 
Note that if the scattering angle θ = π θ π=  (with cylindrical coordinates 

chosen) possibly occurs in the 0.5 nm channel, this choice retains valid, since that 

 ( )4 2 1 cos
θ

θ
=π

Ω = = −π π  (B.9) 
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Appendix C: Mie’s & Rayleigh’s Scatterings 

By applying the Heisenberg uncertainty principle, we obtain the lifetime of the 
quasi-standing state represented in terms of  

 
2

-36 9
min 3.4340 10 sec 10 sec

2 16
m L

E
λτ − ∆ = = ≈ × ∆  π 

 





 (C.1) 

Under the given conditions L λ≈ , the photon-electronic sensitive time (10−9 
sec) cannot immediately match the lifetime of the system. Therefore, it can be 
considered that the electron is initially well-scattered, resulting in outcomes sim-
ilar to those observed in other solutions. We have primarily derived energy λ  as 
a “twice,” caused by electron quantum tunneling. This tunneling process occurs 
at the boundaries of 0.5 nm channels (quantum wells), which serve as scattering 
centers at 0r = . 

It is important to note that the parameter L must approach the wavelengths of 
λ , making it necessary to achieve a Mie scattering pattern ( )L λ≈ . Next, we ex-
amine f κ  for the matter-wave properties of the electron within the 0.5 nm chan-
nel. Here, 0V  is determined by the applied voltages in the integrated circuits, 
which can be manually adjusted to fine-tune the required wavelengths. 

 

0 0

2 ,

2
2 e

h h C
p m V V

κ
λ

λ
κ

= = =

π

≡
π

=
 (C.2) 

When the standing wave patterns formed by electron subjects are established 

within the 0.5 nm channel, and 
2 0.5 nmλ
κ

= =
π

 is tuned (i.e., fixed at specific 

points a and b): 

 
0.5 nm 2

1 nm
ab b ax x x L

L
= − = ≡ 


= 
 (C.3) 

When the wavelength is confined within the 0.5 nm channel, consider the rela-
tionship between the wavelengths and the particle size under Mie scattering con-
ditions. Here, the scattering center (corresponding to the particle size, 1 nmL = ) 
and the wavelengths of electron matter-waves (analogous to light wavelengths) 
are key factors. Associated with 0.5 nmλ =  and 1 nmL = , the relationship is 
expressed as: 

 L λ≈  (C.4) 

This clearly corresponds to the Mie scattering conditions outlined in Equation 
(C.1). Furthermore, by manually decreasing the value of 0V  (tuned to smaller 
values), a greater λ  would be applied. As a result, Mie scattering transitions into 
Rayleigh scattering, while maintaining a fixed L  (i.e., L λ ) to remain con-
sistent with the prior discussions. 
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Appendix D: Examinations Through Mathematical Physics 

Associated with Equations (B.4) - (B.8) (excluding Equation (B.7)), it is evident 
that the results align with the sinc function. Based on Equation (B.4) and Equation 
(B.5), observation leads to the corresponding wavelengths of 2λ  versus the 
phase angle 4π , represented in figures of sinc functions. This observation is also 
consistent with Equation (B.1). 

Rewriting Equation (B.4) such yields: 

 
22 4 1 0E

m Lλ λ λ
∂  = − < ∂ 

π



  with fixed 0.5 nmL =  (D.1) 

Make the same procedure, so 

 
22 2

2 2 4

3 4 1 1 , 4E
m Lλλ λ λ

∂  = ∝ Ω ≡ 
 

π
π

∂
  (D.2) 

Referring to the second formulations of Equation (B.6) and Equation (B.8), we 
derive: 

 ( )2 sin2 , 0
2

n C
C x

C L C
ψ ′′

= − ≠  (D.3) 

And 

 ( )2 sin2 , 0.5 nm
2

n C
C x

C L C
ψ ′′

= − >  (D.4) 

where 
2

n xC
L

≡
π  is defined here. 

It is evident that both Equation (D.3) and Equation (D.4) can be represented as 
sinc functions6. 

 ( )22 sin , 0
2

n C c C x
C L
ψ ′′

= − ≠  (D.5) 

And 

 ( )22 sin , 0.5 nm
2

n C c C x
C L
ψ ′′

= − >  (D.6) 

This implies that they serve as strong evidence precisely supporting the previ-
ous discussions (i.e., Equation (D.1) and Equation (D.2)). Specifically, through a 
step-by-step approach using mathematical physics, these results directly corre-
spond to “Mie scattering.” 

 
  

 

 

6 ( )2sinc c , exhibits extremely small differences in area relative to ( )sinc c , making it an effective 
approximation. Note that, evidently the sinc functions effectively represent quantum barriers. 
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Appendix E: Approximation of Scattering States 

In this section, we briefly demonstrate how the general interference patterns of an 
incident wave degenerate into particle scattering patterns. 

In case of a 0.5 nm channel, when electron matter-waves encounter a slit with 
a width of a , the diffraction patterns observed on the screen degenerate into an 
optical spot governed by the properties of sinc functions. This occurs due to the 
limiting condition with 0C →  in Equation. (D.5) and Equation (D.6) (i.e., 
a λ≈ ). In other words, when the wavelength 0.5 nmλ ≅  of the incident wave 
approaches or equals the slit width a , the wave-like behavior transitions into a 
particle-like spot. However, in earlier sections of this paper, nano-silicon particles 
were arranged within a 0.5 nm channel (as described in Equation (A.1), where up 
to five silicon atoms can be partially accommodated within this space). Thus, the 
slit width can be approximately equated to the lattice spacing, estimated between 
0.1 nm and 0.5 nm. These values align in terms of magnitude, allowing us to con-
ceptually replace the slits (i.e., lattice spacing) with the particles themselves. 
Through this reasoning, we conclude that wave-like behaviors degenerate into 
particle-like behaviors within the framework of quantum mechanics. This 
strongly supports the idea of specific scattering states, consistent with the results 
of the previous sections. These scattering states are well-established for a 0.5 nm 
channel. In summary, the work presented in this paper addresses related issues in 
a self-consistent and complete manner. 

Appendix F: Mode Locking for Protection Tunneling of  
Electrons 

Using Equation (C.1), within a 1 nm channel, if one aims to confine electron gas 
within the wires while imposing infinite pressure (or momentum), the tunneling 
probability becomes zero. Thus, we derive condition 

 min
1 nm

lim 0
2P

xP x
θ

∆ →∞
∆ =

∆ = =
∆ ∆
  with mode locking (F.1) 

This implies that the phase retains synchronized for all electrons in silicon at-
oms. The technological approach undoubtedly relies on Bose-Einstein Conden-
sate (BEC) laser cooling and Electromagnetically Induced Transparency (EIT) to 
achieve mode locking. To ensure Moore’s Law remains valid, the following must 
hold: 

 BEC silicon = BEC laser cooling Si + EIT (F.2) 
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Appendix G: Calculation By Kramers-Kronig Relations 

In Kramers-Kronig relations, the dielectric constant can be written as 

 ( ) ( ) ( )1 2iχ ω χ ω χ ω= +  (G.1) 

where ( )1χ ω  is the real part, and ( )2χ ω  is the imaginary part (and Imω′∈ ). 
Moreover, 

 ( ) ( )1
2 2 2

0

2 d
ωχ ω

χ ω ω
ω ω

∞ ′
′= − ℑ

′π −∫  (G.2) 

where ℑ  means: taking imaginary parts. (The above integral must be conver-
gence to a finite value.) In a BEC phase, obviously resonant ω  keeps the same 
frequency, thus set 1ω ≡  [1/sec] fixed as a singular point in polar coordinates. 

 ( ) ( )1
2 2

0

2 d
1
χ ω

χ ω ω
ω

∞ ′
′= ℑ

′π −∫  (G.3) 

Since that Imω′∈ , so that 
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i

χ ω
χ ω ω
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χ ω
χ ω ω
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π −
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π +

∫

∫
 (G.4) 

Using the residue-method: 
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1 1
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1 1 ,
21
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iω

χ ω χ ω
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=

 (G.5) 

Then due to the theorem of residues we have: 
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=
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∫  (G.6) 

Such that yields in Equation (G.4), 

 ( ) ( ) ( )1
2 12

0

2 d 2
1

iχ ω
χ ω ω χ ω

ω

∞
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+π ∫  (G.7) 

As far, therefore: 
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∑
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 (G.8) 

Equation (G.8) complete fits the current solution way by using “high-κ dielec-
tric” but the BEC laser plus EIT artificial promoted by this paper is much more 
advanced and affordable than it. 
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Notice that in Equation (G.6), the result of ( )1πχ ω  actually provides one that 
the Zak phase: Zkϕ π= . Associated with this quantity and its potential optical 
resonance, both ensure the symmetry-protected topological (SPT) order for Equa-
tion (F.2), namely this paper’s highly-technology. In another respect, the axion-
graphene system (Dr. ‘t Hooft condition 2D-graphenes with QFT-axions) reveals 
that the Berry curvature is zero (i.e., a plane) as shown in Equations (36)-(37) of Ref. 
[29], i.e., the electrons running in 1 nm wires which represent as the nature of 
topological invariance (i.e., 3D topological insulators) undoubted. Moreover, the 
above deductions completely adhere Chern-Simon theory, since that due to Ref. 
[29] the Chern-numbers are 1,3,5 (gives Fractional Quantum Hall effect (FQHE)  
1 3 5, ,
2 2 2

 ) where 5 2  denotes Dirac matters presented for Equation (F.2), and  

the technology provided by Equation (F.2) is a production better cheap than cur-
rent graphene materials. —The big breakthrough. 

Claims 
Point 1: If a 0.5 nm channel is positioned at the center of scattering, it ren-

ders any manufacturing process impossible to directly implement. However, 
alternative approaches remain feasible. We emphasize that this paper does not 
endorse or support any commercial manufacturing without explicit authori-
zation through proper purchasing agreements. Any commercial production of 
1 nm chips based on the ideas presented in this paper must utilize materials 
developed through “silicon tomography” as outlined herein. 

Point 2: While AI calculations may independently derive results similar to 
those presented in this paper, the intellectual priority belongs to this work. 
This precedence is established by our earlier efforts and contributions in ad-
vancing these findings. 

Point 3: A possible issue and/or argument might be occurred at that the 
research done by this successful work whether if the first author’s mother-
school attended it or not? The first author claims that the all work done by 
himself independently (of course the second author has attended) and con-
firms that this work without any request(ing) from National Chung Cheng 
University (in Taiwan region) nor obtaining any help (e.g. its equipment or 
instruments) from it, although the first author had ever learned there. And 
this point of claims is only limited in this paper. 
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