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Abstract 
Rail corrugation, as a prevalent type of rail damage in heavy railways, induces 
diseases in the track structure. In order to ensure the safe operation of trains, 
an improved whale optimization algorithm is proposed to optimize the rail 
corrugation evolution trend prediction model of the least squares support vec-
tor machine (IPCA-ELWOA-LSSVM). The elite reverse learning combined 
with the Lévy flight strategy is introduced to improve the whale optimization 
algorithm. The improved WOA (ELWOA) algorithm is used to continuously 
optimize the kernel parameter σ and the normalization parameter γ in the 
LSSVM model. Finally, the improved prediction model is validated using data 
from a domestic heavy-duty railway experimental line database and compared 
with the prediction model before optimization and the other commonly used 
models. The experimental results show that the ELWOA-LSSVM prediction 
model has the highest accuracy, which proves that the proposed method has 
high accuracy in predicting the rail corrugation evolution trend. 
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1. Introduction 

With the continuous development of heavy-haul railways in our country, the axle 
weight of trains has continued to increase in recent years, resulting in an increase 
in the dynamic interface load [1]. Heavy-haul railways have often suffered rail 
surface plastic deformation and rail corrugation. The rail corrugation is a wave-
like, periodic component of the rail top longitudinal defect on the rail direction. 
When the train runs through the track corrugation road, it will cause a serious 
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wheel-rail impact, which can also lead to further damage [2] [3]. The service life 
of vehicle and track structure components has been sharply reduced, and the op-
eration of the line has been seriously affected by the rapid deterioration of defects 
and untimely maintenance. Thus, the technology of predicting the evolution trend 
of corrugation of heavy-haul railway rail has been of high significance. 

Currently, there are many studies combining the finite element method and 
dynamic simulation to study the generation mechanism and evolution of rail cor-
rugation [4] [5]. Liu Xueyi [6] et al. developed a wheel-rail spatial coupling vibra-
tion model for analyzing the mechanism of corrugation and verified that theal 
self-excited vibration between the rail and the track is the main cause of corruga-
tion in both straight and curved sections of the rail. Alfréd Pavlík [7] et al. carried 
out simulation analysis and prediction on the wear of wheel-rail contact during 
operation on tracks in SIMPACK software. Igeland A [8] et al. used the adaptive 
time step method to calculate the vertical force between the wheel and the rail and 
establish an initial track model with random irregularities. The evolution of the 
corrugation on the top of the rail was studied, and it was found that the bogie 
wheelbase is an important parameter. Its change will cause the resonance fre-
quency of the bogie-rail coupling system to change, thus causing the wavelength 
of the corrugation to change. 

The existing neural network models are not practical in solving the problems 
of small sample size and nonlinear rail corrugation data, while LSSVM [9] [10], 
with excellent generalization ability, has obvious advantages. One of the chal-
lenges is that the prediction accuracy of LSSVM model varies with different values 
of regularization parameters and kernel parameters. Thus, many researchers have 
studied the two-parameter optimization for LSSVM. Zuo Xueqian [11] et al. pro-
posed a centrifugal pump condition predicting model that optimized the param-
eters of LVM Model by making full use of the particle swarm optimization (PSO) 
algorithm. Qu [12] et al. proposed integrating the fruit fly algorithm (FOA) with 
the least squares support vector machine model to enhance the accuracy of traffic 
flow forecasting. Wang Yunlong [13] et al. applied the GWO to optimize the pa-
rameters of the LSSVM model, which improved the algorithm’s calculation and 
prediction speed, and the prediction of operating life of railway freight car wheels 
was carried out. Also, when predicting the evolution law of rail damage, the im-
mune algorithm [14] and quantum adaptive particle swarm algorithm [15] can be 
integrated with LSSVM for application. 

The research mentioned above utilized various population-based algorithms to 
optimize the hyper-parameters of LSSVM. However, it does not take into account 
the decrease of mutation diversity during the iteration process, which can lead to 
slow convergence in the initial stages, while others fail to converge in the later stages, 
making the final result trapped in the local optimum. Addressing the issues present 
in existing methods, this paper uses the improved whale optimization algorithm 
[16] for parameter optimization of LSSVM and innovatively employs elite opposi-
tion-based learning [17] and Lévy [18] flights, which can reduce the possibility of 
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the algorithm getting trapped in local optima.Improve the convergence and search 
efficiency of the algorithm. Based on this, feature selection and dimensionality re-
duction are carried out using IPCA and constructing CCT fusion indicators. Then, 
the proposed prediction method combined with IPCA-ELWOA-LSSVM is used to 
cooperate with the rail corrugation evolution to obtain the trend prediction. 

2. The Proposed Method 

To accurately predict the evolution trend of rail corrugation, the flow chart of the 
rail corrugation evolution trend prediction process proposed in this paper is 
shown in Figure 1. Specifically, the first step is data collection pre-processing and 
heuristic feature extraction, whereby we remove features that do not give us good 
accuracy. Secondly, the multi-dimensional feature vectors are fused by improved 
principal components analysis (IPCA) to establish the comprehensive evaluation 
index CCT of wear, and the evolution process of CCT is inferred. Finally, the 
LSSVM network is trained using an enhanced whale optimization algorithm based 
on hybrid strategies (ELWOA). Obtain the optimal network weights, improve the 
accuracy of the network solution, and ultimately complete the prediction of the 
evolution trend of rail corrugation. 

 

 
Figure 1. Flow chart for predicting the evolution trend of rail corrugation. 

2.1. Extraction of Health Indicators 

Even though traditional PCA [19] has been extensively applied in various fields 
owing to its simplicity and efficiency, it also suffers from various drawbacks. As 
an example, in the process of dimensionality reduction, the weights of each feature 
in the matrix after data standardization are numerically identical, while different 
feature vectors will definitely have different impacts on the final results in practice. 
To address this issue, we propose Pearson correlation analysis in this paper. The 
correlation coefficient r  is an important concept in Pearson correlation analysis. It 
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is commonly used to measure the strength of the relationship between two varia-
bles, and its calculation formula is shown below: 

 ( ) ( )
( ) ( )

cov ,
,

x y
r Corr x y

Var x Var y
= =

⋅
 (1) 

The Pearson method is used to calculate the correlation between each feature 
dimension and the evolution degree of corrugation damage, which can also be 
considered as the contribution of each feature to the final prediction result. 
Each dimension is reweighted according to the correlation coefficient, thereby 
increasing the impact of that feature on the final result. The vibration data of 
corrugation collected on a domestic railway is used as an example to observe 
the actual effect of IPCA. This database consists of 96 samples, each of which 
includes multi-dimensional time-frequency domain artificial features that af-
fect the evolution of rail corrugation. Subsequently, the traditional PCA and 
the improved IPCA were employed to reduce the dimensionality of the sample 
based on the aforementioned algorithm, and the final intuition is shown in 
Figure 2. 

 

 
Figure 2. Data processing comparison. 
 

Figure 2 shows the dimensionality reduction result of the same data. By com-
paring PCA and IPCA, we find that the IPCA method retained 95% of the variance 
in the data. This indicates that compared to PCA, IPCA has reduced the impact 
of correlations between features on the prediction results, significantly improving 
its dimensionality reduction capabilities, and making the health indicators more 
consistent with the evolution trend of rail corrugation. 

2.2. Construction of the Forecasting Model 
2.2.1. LSSVM Model 
As a complete theoretical system of advanced statistical theory, LSSVM is a prom-
inent improvement of SVM. So, the quadratic optimization problem can be con-
verted to solving a system of linear equations, which greatly simplifies the prob-
lem. It has been prolifically found successful in the areas of data regression, pat-
tern recognition, time series prediction, etc. The steps to use LSSVM are: 
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1) For a given training set ( ) ( ) ( ){ } ( )1 1 2 2, , , l
l lT x y x y x y χ γ= ∈ ×， ， ，  

(where: k
ix Rχ∈ = ; iy Rγ∈ = ; ix  are the sample inputs of the model, and iy  

are the sample outputs of the model), LSSVM can obtain a function (f) through 
sample training, which can convert inputs into outputs to classify or regress data. 
First, the inputs are transformed into high-dimensional (H) feature through non-
linear mapping ( x ϕ→ ), then classification is realized in the feature space, and 
thus the optimal decision function for training data set can be established: 

 ( ) ( )Tf x x bω ϕ= +  (2) 

where: ω  are the coefficients the hyperplane; b  is the bias; ϕ  is the nonlin-
ear mapping function. 

2) The objective problem is to calculate ω  and b  in the optimal decision 
function based on the principle of structural risk minimization: 

 
( )

( )

2 2

, , 1

1min , ,
2 2

. . 1

l

ib e i

i i i i i i

J b e e

s t y x b e

ω

γω ω

ωϕ
=

 = + 
 
  + = −  

∑
 (3) 

where: γ  is the parameter; 1,2, ,i l=  ; ie  is the allowed classification error. 
3) When calculating ω  and b  in the optimal decision function, the La-

grange equation needs to be introduced for solution, and according to the opera-
tor the Lagrange equation, it can be calculated that: 
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4) By further derivation based on the Karush-Kuhn-Tucker (KKT) conditions, 
the formula (4) can be obtained: 
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5) Eliminating ω  and ie  in Equation (5) will transform Equation (5) into: 

 ( ) ( )
1

,
l

i i i
i

f x K x x bα
=

= +∑  (6) 

In the formula, ( ), iK x x  is the kernel function used to transform data from 
low-dimensional space to high-dimensional space. The radial kernel function 
used in this is: 

 ( )
2

2exp
2

i
i

x
K x

σ

 −
 =
 
 

 (7) 
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In the formula, σ is the kernel function width, and after solving the unknown 
data in formula (7), the data prediction effect can be achieved. 

During the learning and forecasting of data applying the LSSVM algorithm, the 
normalization parameter γ and the kernel function parameter σ would exert an 
influence on the algorithm’s applied results since the error of this algorithm de-
creases as we increment the parameter. But what will happen if the value of the γ 
parameters is too high, then the complexity of the algorithm also increases. The 
time to conduct model training and prediction work will be longer, and this algo-
rithm is also very easy to overfit. This means that some other parameters σ can 
affect the generalization ability of the algorithm. So, we currently have no codes 
that are high-end worth finding out the values in general, so the algorithm LSSVM 
application is difficult to achieve the optimal. To overcome this, optimal values of 
these two parameters will be found based on iterative updates using the WOA 
algorithm in this study. The process of using this model is shown in Figure 3. 

 

 
Figure 3. LSSVM model. 

2.2.2. Optimization of the WOA Algorithm 
Whale optimization algorithm is a meta heuristic optimization algorithm based 
on whale group behavior. WOA mainly simulates the foraging behavior of hump-
back whales in bubble nets. Compared with heuristic algorithms, such as particle 
swarm optimization PSO algorithm with single population updating mechanism, 
genetic algorithm GA and ant colony optimization ACO algorithm, WOA has 
three independently solved population renewal mechanisms: encirclement con-
traction, bubble net attack and wandering foraging. In order to achieve better al-
gorithm performance, it can realize the separate operation, control and balance of 
global exploration and local development. 

In addition, WOA also has the advantages of simple algorithm principle, easy 
programming and simple parameter setting, which has attracted the attention of 
many scholars and related researchers emerged endlessly. And it is widely used in 
support vector machines, artificial neural networks, discrete combinatorial opti-
mization, complex function optimization, feature selection and other fields. 

As the number of iterations increases, the population diversity of the traditional 
WOA algorithm decreases in the later stages of iteration and it is easy to get 
trapped in local optimum. So, a hybrid strategy to improve the ELWOA algorithm 
is proposed for this purpose. The specific improvements are as follows. 
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1) Population initialization based on elite opposition-based learning 
Opposition-based Learning (OBL) is a new algorithm proposed in 2005. The 

basic idea is to solve the inverse solution of the feasible solution of the problem 
and evaluate the reverse solution and feasible solution. Selecting a better solution 
for the next generation of individuals and improving the optimization efficiency 
of the algorithm. 

However, reverse learning has some blindness, and the search space of the re-
verse solution may not be more conducive to the search space of the current solu-
tion. In view of this situation, join the elite strategy and introduce elite individuals. 
Reverse learning through elite individuals, making full use of the effective infor-
mation of elite individuals and generating elite inverse solutions. Selecting excel-
lent individuals from the current solution and elite reverse solution as the elite 
reverse learning of the next generation population. 

Based on elite opposition-based learning, the initialized population is opti-
mized to produce elite opposition-based learning population individuals iX . 

 ( )i iX k L U X= + −  (8) 

where iX  represents position information of the current individual, L  repre-
sents the minimum value of the feasible solution, U represents the maximum 
value of the feasible solution, and k  is a random between (0, 1).  

After being optimized by elite inverse learning, the fitness function values of 
the corresponding individuals are calculated. By comparing the fitness function 
values of the current individuals and the optimized individuals, select the individ-
uals with better fitness values as the initial population individuals. Using the fol-
lowing elite inverse learning to optimize the randomly initialized population: 

 ( ) ( ),

,
i i i

i

i

X X X
X

X else

f f <
=


 (9) 

2) Adaptive weights 
An exponentially changing adaptive weight method is adopted. In the early 

stage of the algorithm, larger weights are used to achieve stronger global search 
performance, ensuring the search range. As the number of iterations increases, 
the weight values decrease exponentially when approaching the optimal solution, 
which greatly enhances the local optimization ability of the algorithm. The for-
mula is as follows: 

 
max

sin 1
2

t
T
πω π

 ⋅
= + + ⋅ 

 (10) 

where t  is the current number of iterations and maxT  is the maximum number 
of iterations.  

After adding the adaptive weight factor, the optimization process of the opti-
mization algorithm is expressed as:  

 ( ) ( )1X t X t A Dω+ = ⋅ ∗ − ⋅  (11) 
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 ( ) ( ) ( )1 D ' cos 2blX t X t e lω π+ = ⋅ ∗ + ⋅  (12) 

 ( )1 ( ) A DrandX t X tω+ = ⋅ − ⋅  (13) 

where D is the distance between the whale and the prey; A is an adjusted coeffi-
cient; b  is a constant representing the shape the spiral; and l  is a random 
number between [ 1,1]− . 

3) Lévy flight 
Lévy flight is a stochastic search strategy that has been widely used in various 

intelligent optimization algorithms. The whale optimization algorithm uses the 
Lévy flight strategy to search in a small range near the optimal position, effectively 
expanding the search range and allowing the population to escape from local op-
tima. 

The position update formula using Lévy flights: 

 ( ) ( ) ( ) ( ) ( )1X t X t t L X tα β+ = +  (14) 

where: is the position information of the individual in the generation; is the step 
size scaling factor; is the optimization step size coefficient. 

2.2.3. Prediction Model Based on ELWOA-LSSVM 
In the process of predicting the evolution trend of rail corrugation, the WOA-
LSSVM algorithm model established in this study essentially uses WOA algorithm 
to optimize the parameters in the LSSVM algorithm and then uses the optimized 
algorithm model to predict the evolution trend of corrugation damage points sin-
gle line conditions.  

1) Read the original vibration dataset and reduce the dimensionality of the da-
taset. 

2) Set the algorithm parameters of ELWOA, such as the number of populations 
N, the maximum number of iterations T, and the spatial dimension dim. Generate 
the initial population individuals randomly within the feasible solution of the 
function and calculate the fitness values of the individuals. 

3) Use the elite opposition-based learning to optimize the randomly initialized 
population individuals. By comparing the values before and after optimization, 
set the position of the individual with the better fitness value as the optimal posi-
tion. 

4) Update the individual positions according to the parameters at different 
stages. When 0.5p < , if 1A < , update the whale’s position using Equation 
(11); if 1A ≥ , update the whale’s position using Equation (12); When 0.5p ≥ , 
update the whale’s position using Equation (13). 

5) Use Equation (14) to perform Lévy flight strategy optimization update on the 
optimal. Compare the fitness values before and after optimization. If the fitness 
value of the optimized individual is less than the fitness value of the original indi-
vidual, keep the position fitness value of the optimized individual, otherwise dis-
card it. 

6) If the number of iterations has reached the maximum number of iterations, 
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the algorithm iteration process ends, the optimal individual position and fitness 
function value at that time are output. Otherwise, return to step 2) to continue the 
optimization search. 

7) After the ends, input the optimized parameters into the model. Specifically, 
the process of using this combined model is shown in Figure 4. 

 

 
Figure 4. Flowchart of the ELWOA-LSSVM model. 

3. Experimental Analysis 
3.1. Feature Extraction Preprocessing 

The data originates from a domestic railway experimental line section, where un-
interrupted testing was conducted for several months. The original vibration data 
is collected using an acceleration vibration sensor. From the early stage of rail cor-
rugation to development until rail replacement, the vibration data of the rail was 
collected at each identical sampling interval, a total of 98 times before and after. 
The sampling frequency is 4 kHz, and each time 2500 sample points are taken. 

Each set of waves grinding data contains 98 × 2500 sample points. In order to 
avoid the drawback of evaluating the evolution degree of wave wear based on a 
single feature, which is too one-sided. This paper establishes a comprehensive 
CCT indicator by integrating high-dimensional feature data sets and compares 
them with the RMS indicator. First, the statistical features of each sample were 
extracted, such as: maximum value, kurtosis, peak factor… etc., totaling 2. The 
data dimensions become 98 × 26. And then, after eliminating the indicators with 
poor performance, 12 indicators were left, reducing the data dimension to 98 × 
12. Finally, the 12-dimensional features are reduced in dimensionality using the 
IPCA method. The 98-dimensional feature vector is obtained as the CCT indicator 
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to characterize the evolution trend of rail corrugation damage. Take group A as 
an example, the obtained CCT vector results are shown in Figure 5. 

 

 
Figure 5. CCT Fusion Indicators. 
 

As can be seen from Figure 5, the CCT indicator has a small fluctuation, indi-
cating better overall performance. In order to further verify their validity, the CCT 
and RMS were used as indicators of wave wear evolution for trend prediction, and 
the results are shown in the following Figure 6. 

 

 
Figure 6. Trend prediction results of different degradation indicators. 

 
According to Table 1, the RMS as a wave wear evaluation indicator has a large 

prediction error. This confirms the potential inadequacy of relying on a single 
indicator for evaluation. Compared with RMS features, the CCT features estab-
lished in this paper have smaller relative prediction errors and higher prediction 
accuracy. So, it can better reflect the evolution trend of wave wear damage. 

 
Table 1. Relative errors of predicted degradation indicators. 

Feature indicators Prediction model Training set MAPE 
Test set 
MAPE 

RMS indicator ELWOA-LSSVM 0.267% 10.567% 

CCT fusion indicator ELWOA-LSSVM 0.097% 1.018% 
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3.2. Result Analysis 

After constructing the CCT performance degradation indicators for the four 
working conditions of rail corrugation using the aforementioned IPCA method, 
the kernel parameters and regularization parameters of the least squares support 
vector machine are optimized by an improved whale algorithm. Set the population 
size pop = 5, the maximum number of iterations max_iter = 50, the dimension of 
the population space dim = 2, upper bound of the variables ub is [10,000, 10,000], 
and the lower bound lb is [10, 10]. Divide the data into training sets and test sets 
at a ratio of 3:1 for prediction. Respectively utilizing: BPNN, POS-LSSVM, POA-
LSSVM, ELWOA-LSSVM models for comparison. The results of all four methods 
are averaged over 10 runs, and the prediction results are shown in the figure. 

As can be seen from Figure 7, when CCT is used as the indicator of corrugation 
evolution, the accuracy of model prediction from too low is ELWOA-LSSVM, 
POA-LSSVM, PSO-LSSVM, and BPNN.  

 

 
Figure 7. Predicted evolution trends of rail corrugation for each group. 
 

The prediction performance of the BPNN model is the worst. This is because 
the model requires a large amount of training data, but the amount of data used 
in this paper is limited. Therefore, the prediction accuracy is reduced and cannot 
meet the expected effect; the PSO-LSSVM model has made certain improvements 
compared to the BPNN model. However, the deviation between the model and 
the measured values is still too large. The prediction performance of the POA-
LSSVM model is significantly better than the previous three models, and the 
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prediction accuracy is further improved. However, due to the inherent flaws of 
the algorithm itself, such as the tendency to get trapped in local optima, it still fails 
to make predictions in later stages. The performance of the ELWOA-LSSVM 
model is optimal among all models. It can predict the evolution trend of wave 
wear more accurately, with smaller error values. 

In order to better evaluate the accuracy of the proposed model’s predictions, the 
mean absolute error (MAE), root mean square error (RMSE), and coefficient of 
determination (R2) are used as evaluation methods. The specific expressions are: 

 
1

1 ˆn
i ii

MAE y y
n =

= −∑  (15) 

 ( )2

1

1 ˆn
i ii

RMSE y y
n =

= −∑  (16) 

 
( )
( )

2
2 1

2

1

1
ˆn

i ii
n

i ii
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R
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=
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−
= −

−

∑
∑

 (17) 

It can be seen from Table 2 that the improved model, regardless of which 
evaluation criteria is used, has significantly improved performance compared to 
other comparison models: taking group a as an example, compared to POA-
LSSVM, its mean absolute error is reduced by 0.095, while the root mean square 
error is reduced by 0.1553, and the correlation coefficient is increased by 0.0419. 
While other comparison models are less accurate than the model proposed in this 
article. This indicates that the ELWOA-LSSVM model is effective in predicting 
 
Table 2. Performance comparison of the proposed method and other models. 

Test group Prediction model MAE RMSE R2 

Group a 

BPNN 2.3084 2.6884 −3.4377 

POS-LSSVM 1.1590 1.8885 −1.1898 

POA-LSSVM 0.1785 0.2971 0.9458 

ELWOA-LSSVM 0.0835 0.1418 0.9877 

Group b 

BPNN 1.9169 2.2748 −2.5578 

POS-LSSVM 1.0009 1.6249 −0.8152 

POA-LSSVM 0.2163 0.3583 0.9117 

ELWOA-LSSVM 0.0810 0.1350 0.9875 

Group c 

BPNN 2.6271 2.8797 −7.5437 

POS-LSSVM 1.1007 1.6835 −1.9200 

POA-LSSVM 0.2003 0.3426 0.8791 

ELWOA-LSSVM 0.0803 0.1436 0.9788 

Group c 

BPNN 1.9169 2.2748 −2.5578 

POS-LSSVM 1.0184 1.6438 −0.8576 

POA-LSSVM 0.2163 0.3583 0.9117 

ELWOA-LSSVM 0.0810 0.1350 0.9874 
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the evolution trend of rail corrugation, but it has not fully approached the real 
curve, especially since there are still some errors in the final stage of the prediction. 
The main reason for this is that in the prediction of grinding evolution trends, the 
predicted results will be used as the input for the next model, which will lead to 
further accumulation, thus greatly affecting the accuracy of later predictions. 

4. Conclusions 

This paper addresses the difficulties in determining the evolution indicators of rail 
corrugation damage and the fact that the predictive performance of traditional 
LSSVM models is heavily influenced by regularization and kernel parameters. It 
proposes a new IPCA-ELWOA-LSSVM prediction network for the evolution 
trend of corrugation damage, and uses the vibration data from a railway experi-
mental line segment in China for analysis and verification, leading to the following 
conclusions. 

1) Extracting multi-domain artificial features from the ground rail can more 
comprehensively reflect the degradation information of the rail vibration signal 
compared to single-domain features. Improving the PCA method by introducing 
Pearson correlation analysis, which reduces the impact of correlations among fea-
tures on the evolution of wave wear damage. This makes the fusion index CCT 
more consistent with the evolution of wave grinding. 

2) The improved ELWOA-LSSVM with mixed strategy is used for the trend 
prediction of rail corrugation evolution. By comparing multiple groups of exper-
iments, it shows that this model has faster training speed and more accurate pre-
diction results, the lower the probability of falling into local optimum and the bet-
ter the algorithm stability. It has been verified that the method proposed in this 
paper is reasonable and effective. 

3) However, this paper only predicts the evolution trend of wave wear damage 
points under single line conditions. In future work, we will further study the ap-
plicability and validity of the modeling method proposed in this paper for joint 
modeling analysis of multiple wave wear points under various line conditions and 
multiple working conditions. 
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