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Abstract 
Porcine Reproductive and Respiratory Syndrome (PRRS) is considered one of 
the diseases causing the greatest economic losses in swine production. In Mex-
ico, various commercial vaccines are used to mitigate the severity of the infec-
tion. However, the effect of these biologicals on the morphology of cell lines 
permissive to infection by the virus (PRRSv) has not been evaluated. This 
study assessed the effect of three commercial vaccines available in Mexico by 
evaluating actin cytoskeleton rearrangements in MARC-145 cells. The infec-
tion altered the morphology of the cells, inducing the formation of filopodia 
and the loss of stress fibers. Quantitative analysis of the filopodia revealed an 
increase in their number and length, showing significant differences in both 
characteristics depending on the vaccine strain of the virus. These findings 
suggest that PRRSv manipulates the host’s actin cytoskeleton through the for-
mation of filopodia, which may play a critical role in viral propagation. These 
results open a promising avenue for research aimed at developing potential 
therapeutic strategies targeting cytoskeletal structures to reduce PRRSv infec-
tion and its impact on swine health. 
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1. Introduction 

Porcine Reproductive and Respiratory Syndrome (PRRS) is a viral disease found 
worldwide. It is caused by Betaarterivirus suid (PRRSv), which is an RNA virus 
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enclosed in an envelope [1]. This virus leads to severe reproductive issues in 
pregnant sows, poor semen quality in boars, and respiratory problems in pigs 
of all ages, particularly in piglets [2] [3]. Additionally, it is linked to or exacerbates 
the symptoms of other respiratory diseases [4] [5]. PRRSv is transmitted in per-
missive cell clones of non-porcine origin such as MARC-145 [6] and CL2621, 
which are derived from the green monkey kidney MA104 line [7] [8]. Cytopathic 
effects, such as cell rounding, agglutination, and lysis with marked granulation 
following monolayer destruction, are observed from 36 to 48 hours post-infec-
tion [9]. 

The cytoskeleton is a complex network of proteins that enables cells to take on 
various shapes, organize components, maintain volume, and carry out movement 
[3] [10]. It is composed of actin filaments, microtubules, and intermediate filaments 
[11] [12]. Actin filaments are helical polymers of the globular protein actin (G-
actin) that form parallel bundles, contractile bundles, mesh-like networks, or den-
dritic networks. From these structures, higher-order structures such as the cell cor-
tex, lamellipodia, filopodia, and stress fibers are formed [13]-[16]. 

Filopodia are essential structures that act as sensors in cell communication events. 
They consist of thin, dynamic plasma membrane protrusions supported by paral-
lel bundles of actin filaments. These structures depend on cycles of actin filament 
polymerization and depolymerization and undergo phases of formation and re-
traction [13] [14] [17] [18]. Filopodia can grow and extend into contact with other 
cells, forming cytonemes (nanotubules) that are related to paracrine communica-
tion and trafficking of signaling proteins [18] [19]. 

The cytoskeleton plays a crucial role in virus entry, replication, and survival. Some 
viruses exploit the host cell’s cytoskeleton for processes such as entry, replica-
tion, transport, egress, and intercellular diffusion. Virus infection can lead to di-
verse changes in cell morphology and cytoskeleton rearrangements. Studying these 
alterations can provide important insights into PRRSV infection. Rearrangements 
of actin filaments are studied as a marker of virus-induced cell damage. It has been 
observed that actin filament rearrangements caused by viruses such as SARS-CoV-
2, influenza virus, picornavirus, and vesicular stomatitis virus can trigger the im-
mune response. In contrast, inhibiting these rearrangements has been found to pro-
mote viral infection [20]. In the case of dengue virus, infected cells exhibited dis-
organized actin filaments, while neighboring uninfected cells showed increased 
stress fibers [21].  

This study aimed to evaluate changes in the number and length of filopodia during 
the infection process of MARC-145 cells with PRRSv to determine whether these 
findings suggest that the virus modifies the actin cytoskeleton to infect the cells. 

2. Methodology 
2.1. MARC-145 Cell Culture 

The MARC-145 cells were grown in RPMI culture medium with 10% fetal bovine 
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serum and antibiotics, specifically Penicillin (5000 IU/ml) and Streptomycin (5 
μg/ml). The cells were maintained in a humidified incubator with a 95:5 air/CO2 
mixture at 37˚C. They were cultured in 60 mm culture dishes, with three coverslips 
attached to each dish beforehand. 

2.2. Infection with PRRSv 

Four experimental groups were created using cell cultures grown on coverslips. 
Group 1 was infected with vaccine 1: V1 (modified live virus vaccine strain ATCC-
VR-2332) [22], group 2 was infected with vaccine 2: V2 (PRRS disease modified 
live virus vaccine strain P129) [23], group 3 was infected with vaccine 3 V3 (PRRS 
type 2 modified live virus vaccine Nebraska strain) [24], and group 4 remained 
uninfected (control). For each group, 3 boxes were cultured to evaluate infection 
at 24-, 48-, and 72-hours post-infection (hpi). To infect the cultures, the culture 
medium was removed, and 5 ml of each vaccine was added and incubated for 3 
hours. Then, 5 ml of each vaccine was recovered, and 5 ml of 4% RPMI medium 
was added and incubated to monitor the infection at 24, 48, and 72 hours. 

2.3. Evaluation of Cell Monolayer Damage 

The evaluation of changes in the morphology of PRRSv-infected MARC-145 cells 
was carried out using optical microscopy to determine the presence of morpho-
logical changes in the cell cultures and the development of cytopathic effects. 
Prior to fixation with aqueous formalin, the cell cultures of the four experimental 
groups were observed at 24, 48, and 72 hours using a Vision IV900 inverted mi-
croscope. 

2.4. Evaluation of PRRSv Infection-Induced Changes in Filopodia 

The PRRSv-induced changes in filopodia were assessed using direct fluorescence 
double-labeling. The culture medium was removed from the boxes containing co-
verslips seeded with MARC-145 cells from both the infected and control groups. 
The cells were then fixed with 10% aqueous formalin in PBS and incubated for 20 
minutes. After removing the formalin, the cells were washed three times with PBS. 
Next, 5 ml of 0.05% Triton in PBS was added to permeabilize the cells. And they 
were left to incubate for 5 minutes. After incubation, the cells were washed three 
times with PBS. Following this, the cells were incubated for 20 minutes with rho-
damine isothiocyanate-conjugated phalloidin (TRITC) (Sigma-Aldrich®), which 
was diluted 1:150 in PBS to label the actin filaments. After the incubation, the cells 
were washed three times with PBS, and a final wash was done with deionized wa-
ter. The coverslips were then mounted on slides using mounting medium with 
4’6-diamino-2-phenylindole (DAPI) to detect the nuclei (Ultracruz® Mounting 
Medium for Fluorescence, Santa Cruz, CA, USA). 

2.5. Fluorescence Microscopy 

To assess the changes in the number and size of filopodia caused by PRRSv, we 
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used fluorescence microscopy (Zeiss Axioscop 40, with an Evolution VF Cooled 
Color camera from Media Cybernetics). We analyzed the images captured by the 
microscope using Image J software. To combine the actin and DAPI fluorescence 
channels for image analysis, we used the “Z project” function to create channel 
splices or merges. 

2.6. Quantification of Filopodia 

For the quantification of the number of filopodia, the “multipoint” tool was used, 
which allows to leave a consecutive mark in each marked structure per field, eval-
uating 10 random fields for each vaccine, plus the evaluation of the fields of the 
control group. 

2.7. Filopodia Length 

To measure the length of the filopodia, we calibrated the software using a Neubauer 
camera and took photographs with 10×, 20×, and 40× objectives of the central 
quadrant. We took 3 images with the 10×, 20×, and 40× objectives of the fluores-
cence microscope to calibrate the software and establish a scale in micrometers 
for measuring the size. After determining the pixel/micron ratio, we input the val-
ues for the 3 microscope objectives into the program, saved the data, and used this 
configuration in the linear measurement tool to compare the infected and control 
groups. 

3. Results 

The MARC-145 cells display a clear pattern of actin filaments extending from the 
area around the nucleus to the outer edge of the cell. These structures play a role 
in creating various protrusions and contractions that are crucial for several im-
portant cellular functions. The labeling of these actin filaments forms distinct ra-
dial arches and stress fibers in the cell. In cultures with low cell density, the cells 
exhibit lamellipodia with actin-rich zones at the leading edge. On the other hand, 
in cultures with high cell density, the labeling is more prominent in the cell cortex 
and stress fibers, extending throughout the cytoplasm. The cell nuclei appear 
round with well-defined borders when visualized using nuclear labeling. Addi-
tionally, in low confluence cultures, there is a lower presence of filopodia, which 
are actin-rich linear structures connecting neighboring cells (Figure 1 and Figure 
2). 

Once the cell morphology was evaluated by studying the actin filaments in un-
infected cells, the cultures were exposed to three different viruses from commer-
cial vaccines (Figure 3). The virus solutions were added to the cultures, and the 
course of infection was observed at 24 hours and 48 hours. We evaluated 10 ran-
dom fields to determine the effect of V1, V2, and V3 on virus-induced cell mor-
phology. 

The induction of filopodia formation in PRRSv-infected cultures was evaluated 
qualitatively and quantitatively (Figure 4). The analysis of microphotographs  
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Figure 1. Control cultures with low and high confluence. The morphology of actin fila-
ments and cell nuclei was evaluated in control cultures with low and high confluence. Pho-
tomicrographs showed homogeneous sizes with central nuclei (DAPI). In low-confluence 
cultures, few filopodia were observed (green arrow). In both low- and high-confluence cul-
tures, the morphological pattern of tension fibers was homogeneous and well-defined (yel-
low arrows). Technique: direct fluorescence with double staining, 20×. 
 

 

Figure 2. Control cultures with low and high confluence. MARC-145 cells were seeded at 
low and high confluence to establish the structure of the actin cytoskeleton and evaluate 
the presence of filopodia in the study fields. In low-confluence cultures, cortical staining 
revealed the presence of abundant lamellipodia (asterisks), while in high-confluence cul-
tures, the staining showed a linear definition forming cell cortex (white arrows). Tech-
nique: direct fluorescence with double staining, 40×. 

 
revealed changes in cell morphology and rearrangements of the actin cytoskele-
ton, such as the loss of tension fibers and the formation of filopodia (Figure 4(a)). 
Quantitative analysis showed an increase in the number of filopodia compared to 
the control group (Figure 4(b)). However, only group V2 exhibited a statistically  
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Figure 3. MARC-145 cells infected with PRRSv from three different vaccines at 24 hpi. 
Evaluation of morphological changes induced by PRRSv infection from three different 
commercial vaccines. Filopodia (green arrows), loss of tension fibers (yellow arrows), and 
cytoplasmic aggregates (asterisks) were observed. Technique: direct fluorescence with dou-
ble staining, 20×. 
 

 

Figure 4. Comparative analysis. (a): Morphological and structural changes observed in cell 
cultures caused by viruses from the three different vaccines. Changes in cell size (white 
arrows), loss of tension fibers (yellow arrows), and formation of filopodia (green arrows) 
are shown. Technique: direct fluorescence, 40×. (b): Comparison of the number of filopo-
dia between the control group and the infected groups (V1, V2, and V3). (c): Comparison 
of filopodia length between the infected groups (V1, V2, and V3) and the control group. 
Statistical analysis was performed using one-way ANOVA and Bartlett’s test. (*) 0.01 < p ≤ 
0.05; (**) 0.001 < p ≤ 0.001. 
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significant difference compared to the control, with 485 filopodia versus 161, re-
spectively. Furthermore, the evaluation of filopodia length induced by PRRSv 
showed a higher average in group V3, which demonstrated a significant difference 
compared to the control group in the analyzed fields (Figure 4(c)). 

4. Discussion 

In this study, researchers examined changes in the structure of actin filaments in 
PRRSv-infected MARC-145 cultures. In the control group, MARC-145 cells dis-
played a distinct pattern of actin filaments. The actin filaments formed stress fi-
bers and were visible in lamellipodia, which are characteristic of cells growing in 
rigid substrates [9]. 

Given that previous evidence indicates that an intact cytoskeleton is essential 
for PRRSV infection [25], in our research, we found that cells infected with PRRSv 
undergo significant changes in their morphology and structure. This includes al-
terations in cell size and changes in the structure of actin filaments, leading to the 
loss of stress fibers. These observations are consistent with previous reports sug-
gesting that these alterations may result from viral effects on actin filaments, em-
ployed as a strategy to promote cell infection [26]. For example, pseudorabies and 
dengue viruses are known to induce similar changes [27] [28], while Marek’s virus 
has been observed to degrade stress fibers [29]. Furthermore, some strains of ru-
bella virus can reduce cell stiffness by reducing stress fibers, and the SV40 virus 
disrupts actin filaments significantly [30]. We also observed the formation of actin 
aggregates in our work, which may have resulted from the dissolution and aggre-
gation of stress fibers. This led to the formation of lamellipodia and filopodia. 
Similar observations have been reported in cells infected with classical swine fever 
virus [31]. 

The movement of viruses between cells has been observed in various viral fam-
ilies as a means of virus distribution. The processes by which viruses spread have 
evolved to avoid the immune response. The typical receptor-mediated spread is 
often hindered by the presence of antibodies. In response, viruses have developed 
alternative methods to protect themselves, such as modifying the actin cytoskele-
ton. These modifications can include the formation of syncytia, actin comets, 
nanotube tunnels, and filopodia [32]. It has been noted that filopodia may play a 
significant role in viral infection events, including initial viral binding to host cells, 
viral trafficking, virus internalization, budding and release, as well as spread to 
other cells, bypassing the host immune system [33].  

Viruses can spread via cell-free transmission or through cell-to-cell interac-
tions. In the case of the latter, the presence of filopodia is crucial during in vitro 
infection in cell culture. In our study, we observed an increase in the number and 
size of filopodia in infected cell cultures, which could be caused by the virus itself. 
Previous studies have shown that filopodia formation occurs in cultures infected 
with herpes simplex virus type 1 [34], human immunodeficiency virus (HIV) 
(type 1 and 2), human T-cell lymphotropic virus type 1 (HTLV-1) [35], as well as 
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in human and avian influenza virus infections. It has been observed that an in-
crease in filopodia formation enhances endocytosis [36]. The virus from vaccine 
3 induced the highest level of filopodia formation, leading to destruction of the 
cell monolayer after 48 hpi. This suggests that the increase in filopodia formation 
facilitates viral propagation and induces apoptosis, favoring cell-to-cell transmis-
sion by manipulation of the actin cytoskeleton. Additionally, PRRSv-induced apop-
totic processes in MARC-145 cells also support viral propagation through effec-
tive replication and cell-to-cell transmission of the virus [37]. 

The viruses used in the 3 vaccines tested showed that they can cause changes in 
the cell structure, leading to an increase in the number of filopodia compared to 
control cultures. This begins the formation of these structures between 12 to 24 
hours after infection. Studies show that the infectivity of Human Papillomavirus 
16 decreases when the formation of filopodia is inhibited [38]. This suggests that 
the viruses cause the formation of filopodia to facilitate the spread of infection be-
tween cells, which aligns with our findings. In cultures infected with viruses from 
V1 and V2, the filopodia retracted at 48 hours after infection. Similar occurrences 
have been observed in viruses like SARS-CoV-2, where this was linked to the reg-
ulation of the timing and location of the activity of the actin cytoskeleton by pro-
teins such as formin, Arp 2/3, and Cdc42 in the formation of filopodia, acting as 
“highway” structures for virus entry [39].  

There are diverse actin structures that link distant cells and allow intercellular 
transfer of molecular information, including genetic information, proteins, lipids, 
and even organelles. For instance, nanotubes facilitate intercellular communica-
tion but can also be exploited by pathogens to aid in their spread [40]. Therefore, 
studying filopodia and similar structures could lead to the development of new 
antiviral treatments aimed at blocking the signaling pathways used by viruses to 
induce filopodia formation, creating potential antiviral therapeutic targets. 

5. Conclusion 

The infection by PRRSv from viruses derived from three commercial vaccines in 
Mexico caused significant changes in the morphology and size of MARC-145 cells, 
including an increase in the number and length of filopodia, along with the loss 
of cytoplasmic tension fibers in the in vitro infection of MARC-145 cells. These 
alterations in the actin cytoskeleton began at 24 hours post-infection (hpi), pro-
gressed to a 70% reduction of the monolayer at 48 hpi, and culminated in its de-
struction at 72 hpi. The virus from group V2 induced the greatest increase in the 
number of filopodia, while group V3 generated the longest filopodia. These find-
ings suggest that PRRSv manipulates the actin cytoskeleton as part of its viral in-
fection cycle, opening new lines of research to understand how this interaction 
can be leveraged to reduce viral spread. 
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