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Abstract 
Enterprise applications utilize relational databases and structured business 
processes, requiring slow and expensive conversion of inputs and outputs, 
from business documents such as invoices, purchase orders, and receipts, into 
known templates and schemas before processing. We propose a new LLM 
Agent-based intelligent data extraction, transformation, and load (Intelligen-
tETL) pipeline that not only ingests PDFs and detects inputs within it but also 
addresses the extraction of structured and unstructured data by developing 
tools that most efficiently and securely deal with respective data types. We study 
the efficiency of our proposed pipeline and compare it with enterprise solu-
tions that also utilize LLMs. We establish the supremacy in timely and accurate 
data extraction and transformation capabilities of our approach for analyzing 
the data from varied sources based on nested and/or interlinked input con-
straints. 
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1. Introduction 

Organizations use both structured and unstructured data, often organized in ta-
bles, as part of extract, transform, and load (ETL) processes prior to ingestion into 
business process software. Structured datasets, like relational databases, can be 
analyzed using SQL. However, crucial business information is often stored in in-
secure PDFs, such as invoices, contracts, and manuals. Analyzing data structures 
from these formats poses challenges, hindering precise calculations and insights, 
while compromising privacy and security. 

We shall now examine a prevalent use case of significance to enterprises, 
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pertaining to supply chain procurement processes. This case study will be elabo-
rated upon to demonstrate the application of our proposed methodology. 

1.1. Procurement Workflows in Enterprises 

Figure 1 depicts a basic manual procurement workflow involving a Vendor, Man-
ager, Purchase Agent, Recovery Agent, and Payee, each conducting their roles se-
quentially using traditional communication methods like emails, ticketing, docu-
ment submissions, phone, or in-person talks. This dynamic process often requires 
repeated confirmations and verifications, making human-based systems prone to 
errors [1]. 

The manual procurement process starts with vendors standardizing docu-
ments, such as text-based contracts, clauses, and structured quotes, usually in PDF 
format. These documents outline product pricing and terms and go through a 
review and approval process to meet the organization’s objectives. 

The manager, after reviewing customer requests, instructs the purchasing agent 
to start procurement. The agent communicates with the vendor through the man-
ager to negotiate and adjust quotes based on quantity. This involves relaying the 
user’s requirements to the vendor. The recovery agent oversees delivery tracking, 
verifies items, and resolves disputes via the manager. Once quotes are final and de-
liveries confirmed, the payee processes payments. Direct vendor communication to 
confirm quotes is sometimes needed, as shown by a dotted line in Figure 1.  
 

 
Figure 1. Typical manual procurement process.      
 

To reduce errors stemming from human involvement in communication chan-
nels, both between users and vendors and within an organization, transitioning 
from manual processes to an AI-based pipeline is now a research focus. The LLM-
based communication framework promises reduced time consumption, as well as 
more direct and efficient communication [2]. 

Centralized data processing and extraction are enhanced by language model 
integration, streamlining documentation-heavy tasks into digital processes. In-
stantaneous complex filtering and data retrieval, from both structured and 
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unstructured data, rely on query speed instead of human action. Preserving memory 
and user context reduces workflow redundancies, boosting collaboration effi-
ciency, reducing bottlenecks and errors, and offering flexible document handling. 
Recently developed Large Language Models (LLMs) promise to significantly ad-
vance ETL processes beyond manual limitations. 

1.2. Enterprise Workflows and Data Formats 

Relational databases effectively store and analyze structured data, but struggle 
with formats like PDFs and text files due to missing processing markers. Tools 
using OCR or LLMs to extract text from PDFs fall short of the accuracy of database 
queries and often convert data to JSON, which can introduce errors [3]. While 
LLM improvements reduce inaccuracies, they still present risks in critical areas 
like hospitals. Workflows for structured and unstructured data are often kept sep-
arate to preserve solution versatility, leading to fragmented insights and ineffi-
ciencies. Consequently, organizations fail to fully utilize their data, particularly 
when vital information is scattered across various sources. In finance, legal, and 
industry sectors, analyzing relational data is vital. Not being able to examine struc-
tured data with unstructured documents can be harmful. For instance, auditors 
might need to link PDF invoices to SQL transaction records. Lacking a unified 
framework leads to manual processing, raising error rates. As reliance on both 
data types grows, a cohesive system is essential. 

Contemporary AI-driven tools leveraging Large Language Models (LLMs) for 
prompt analysis and JSON format outputting may obstruct subsequent data pro-
cessing required for comprehensive analysis. Such tools handle extractions as iso-
lated tasks, necessitating manual transformation for continued utilization. Fur-
thermore, the LLM is often compelled to reprocess each prompt, notwithstanding 
its potential relevance to previously supplied context. 

2. Problem Statement 

The identified issues in the ETL solutions that exist today are:  
• Inconsistent formats across datasets, leading to fragmented workflows.  
• Limited querying capabilities for unstructured data, impeding advanced ana-

lytics.  
• Manual interventions are required to merge and analyze data across different 

sources.  
Addressing these challenges, especially for structured data saved in formats 

such as PDFs, requires an approach that utilizes LLM along with the SQL querying 
and RAG generating capabilities to make sense of the data and also query as nec-
essary [4]. Leveraging both LLM-RAG and SQL agents makes processes more spe-
cific to operations. LLMs, trained on vast datasets, excel in processing prompts 
and generating outputs, interpreting user requests, assigning tasks to specialized 
agents, and creating queries for structured data. SQL excels in retrieving struc-
tured data from relational databases, while RAG efficiently retrieves data from 

https://doi.org/10.4236/jsea.2025.181003


M. Joshi, V. K. Madisetti 
 

 

DOI: 10.4236/jsea.2025.181003 47 Journal of Software Engineering and Applications 
 

unstructured documents and formulates responses. Using SQL and RAG agents 
based on data type, user prompts, and storage location enhances performance. 

This paper introduces a novel method for extracting both structured and un-
structured data and performing a web search for the entered prompt to generate 
the most relevant response. The project structure is shown in Figure 2. The pipe-
line employs three LLMs; a primary LLM analyzes prompts alongside a knowledge 
graph for context. Details of the SQL agent, RAG agent, and Tavily web search 
agent are provided in later sections. 
 

 
Figure 2. Project structure block diagram. 

3. Related Work 

The use of LLMs for extracting structured and unstructured data is a new and 
rapidly growing field [5]. There are few existing contributions [6] that address 
certain entrepreneurial analytical requirements today. Tools have been created to 
turn unstructured PDF data into structured formats for final output, but these 
outputs cannot be modified using prompt history, query state, and context [7]. 
Key existing enterprise solutions include:  
• Unstract: A tool that extracts fields from PDFs, emails, and text, generating 
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JSON outputs.  
• Tabula: Open-source tool to extract tables from PDFs and export to CSV or 

JSON.  
Tools like unstract and Tabula are effective for raw data extraction but are lim-

ited for advanced analytics as they do not integrate with relational databases [8] 
[9]. 

3.1. Limitations of Existing Tools 

3.1.1. Lack of Relational Data Handling 
These existing instruments facilitate the extraction and conversion of raw data 
into JSON or CSV formats; however, they do not retain data in SQL-compatible 
formats. This limitation hinders their capability to support relational queries and 
joins with other structured data sources. Furthermore, unstract solely accepts data 
in PDF format. 

3.1.2. Limited Analytical Capabilities 
The current tools are primarily designed for field-level extraction; however, they 
lack the capability to directly facilitate advanced relational queries, including con-
ditional joins or aggregations across various tabular fields derived from multiple 
documents within the database [10]. This limitation further constrains the poten-
tial for bidirectional interaction with the database. JSON-based outputs necessi-
tate additional transformations to integrate effectively with SQL databases, thereby 
introducing further complexity. 

3.1.3. Limited Use of AI for Contextual Analysis 
Moreover, the majority of extant solutions depend on predefined extraction mod-
els, which lack the capacity for context-sensitive processing [11] [12]. 

3.2. Solution Requirements 

Organizations require a comprehensive pipeline that can:  
1) Extract and store structured PDF data as relational data to facilitate SQL-

based analytics.  
2) Seamlessly merge and query structured and unstructured data without need-

ing additional ETL processes.  
3) Validate and standardize extracted data using AI-powered models to ensure 

accuracy and usability.  

3.3. Our Contribution to the Existing Solutions 

We now identify the main features of our solution, Intelligent ETL: 

3.3.1. Structured Content Extraction and Transformation 
We developed a Python-based workflow specifically designed for the detection 
and extraction of structured tabular data from PDF documents. This facilitates the 
seamless integration of extracted PDF data into pre-existing SQL databases, 
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thereby enabling the execution of relational operations and complex queries. Ad-
ditionally, we incorporate procedures for the extraction of unstructured data 
within our pipeline. 

3.3.2. GPT-Powered Validation and Field Identification 
By incorporating large language models (LLMs) such as GPT-3.5-turbo, our 
method facilitates dynamic detection and verification of fields, thereby ensuring 
precise identification of essential fields. This approach affords greater flexibility 
and adaptability compared to predefined extraction models. Additionally, we uti-
lize the primary LLM for output validation by scrutinizing it against the input 
prompt and activating the suitable tool when necessary. LLMs are observed to be 
the best tool for taking context-aware computations into account [13]-[16]. 

3.3.3. ETL Pipeline Unification 
We achieve a convergence of the ETL pipeline that processes both structured SQL 
data and unstructured PDFs, integrating them within a unified relational data 
model for analytical purposes. This integration represents a novel advancement, 
as traditionally, unstructured and structured datasets necessitate distinct pipeline 
processes, despite the possibility of PDFs harboring inherently structured data. In 
contrast to tools like unstract, our approach preserves the relational aspects of 
PDF data by embedding them within SQL tables. This methodology facilitates the 
direct interrogation of data using SQL, thus eliminating the requirement for ad-
ditional transformations. This methodology reduces the requirement for separate 
ETL processes. Furthermore, it enhances the capacity for sophisticated analytics 
by enabling the execution of complex SQL queries on both structured and un-
structured data, while maintaining data integrity through the normalization of 
extracted data into relational formats. The proposed solution is designed to be 
scalable, accommodating large datasets, and adaptable for implementation across 
various projects. Additionally, it supports the storage of xlsx, csv, pdf, and txt for-
mats within databases, thus enabling the Intelligent ETL pipeline to conduct anal-
yses on the encompassed data. In contrast to the unstract approach, this pipeline 
stores SQL data as opposed to JSON formatted data, thereby facilitating advanced, 
context-aware querying. 

Through the integration of structured and unstructured data within a unified 
relational model within IntelligentETL, organizations can be empowered to con-
duct sophisticated analytics and reporting with ease. The implementation of GPT-
based AI models introduces an additional layer of intelligence, rendering the sys-
tem flexible and responsive to diverse user queries. We develop a chatbot-based 
procurement application utilizing Gradio and LangChain technologies and sub-
sequently evaluate our assertions with respect to “unstrict”. 

The reliance on LLMs especially under high-load scenarios, poses a possibility 
of encountering computational challenges such as computational cost and perfor-
mance efficiency. This is because LLMs are resource-intensive and may struggle 
to maintain minimum latency while dealing with large datasets or while processing 
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concurrent queries. 
The mentioned challenges are mitigated in the proposed pipeline as the archi-

tecture incorporates a modular design that enables task-specific agents such as 
SQL and RAG and utilizes capabilities of the knowledge graph to handle discrete 
operations without fully engaging all the LLMs for every step of the process and 
for every query in the subsequent chat progression. The knowledge graph works 
as an efficient caching mechanism thus enabling the pipeline to produce accurate 
answers for context-relevant queries. Additionally, it also nullifies the require-
ment of even activating respective LLM-powered agents in the case of context-
ready or repetitive queries, thus enabling the pipeline to be scalable. 

This enhancement of data generation capabilities, coupled with the ongoing 
advancements in data storage, suggests an increasing importance of LLM-directed 
query agents and user-database interactions structured around meticulously de-
signed knowledge graphs in the foreseeable future. Knowledge graphs elucidate 
the trajectory of system control flow, thereby guiding both developers and users 
in the creation of applications that encourage question formulation in a manner 
that, when processed through advanced ETL systems, is likely to yield precise cost-
effective outcomes [17]-[19]. 

Distilled versions of GPT could be further researched for further enhancement 
in the direction of making the pipeline ready for enterprise-scale deployment. 

4. Methodology 
4.1. Unstructured Content Extraction and Transformation 

Algorithm 1 PDF-to-SQL and Database Merging Pipeline 

PDF file path: pdf_path, Source DB path: src_db, Destination DB path: dest_db  
Extracted data stored in a SQLite database and merged into the destination database 
Function extract_text_from_pdf(pdf_path): Extracts and returns the plain text from all 
pages of the PDF. 
Function extract_tables_from_pdf (pdf_path): Extracts all tables from the PDF and  
returns them as a list of DataFrames. 
Function save_to_sqlite (dataframes, db_path): Saves each DataFrame in the list to the 
SQLite database at db_path. 
Function merge_databases (src_db, dest_db):  
for each table in src_db do  

if table exists in dest_db then  
Skip merging (to avoid duplicates).  

else  
Copy table structure and data to dest_db.  

end if 
end for 
Main Pipeline Execution:  
Run pdf_to_sql_pipeline (pdf_path, src_db) to extract  
PDF content and save it to SQLite.  
Run merge_databases (src_db, dest_db) to transfer tables to the destination  
database. 
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An in-detail workflow of an automated layout that detects tabular data in PDFs, 
extracts and transfers it to an SQLite database(s), and transfers it to the destination 
database that is specified, is shown in Algorithm 1. The solution leverages time-
tested Python libraries to handle structured and unstructured data efficiently. 
pdfplumber is used to extract plain text from multiple PDF sources, camelot is 
used to extract detected tables from PDFs, pandas is used to refine tabular data 
and bring it into a structure, and sqlite3 and create _engine from sqlalchemy is 
used to connect the source and the destination of the data transfer and to save 
each data-frame in the database respectively. The pipeline is not only designed for 
scalable data ingestion but also for a versatile merger of multiple databases. Here 
an end-to-end PDF data merging to a predefined database is achieved. The Data 
Converter from Figure 2 depicts this workflow. Enterprise solutions exist that 
carry out similar tasks. This ETL pipeline is flexible enough to be used with those 
solutions as well. However, this simple workflow achieves accurate results with 
comparatively less to none error expectancy. Analytics of structured data pre-
sented in PDF is then ready to be carried out based on user prompts, the method-
ology will be explained in subsequent sections of this paper. 

To mathematically represent the data matching and database merging opera-
tions for two data sets in different formats, let us consider the following model: 

First, the tables are identified by the module and extracted from PDFs using 
efficient Python-AI libraries. Then: 

4.1.1. Saving Extracted Data Frames to SQLite Database 
For a given set of DataFrames, D , each DataFrame is saved in an SQLite database: 

{ }1 2, , , mD df df df=                          (1) 

( ), SQL Savei i idf D df∀ ∈ =                     (2) 

where: 
• D  is the set of extracted Data-frames.  
• idf  is the thi  Data-frame in the set.  
• ( )Save idf  saves idf  to the SQLite database.  

4.1.2. Database Merging Using Set Theory 
Set theory is used to model the merger of source and destination databases: 

\M S D=                            (3) 

{ },t M D D t∀ ∈ = ∪                       (4) 

where: 
• M  is the set of tables in the source database not present in the destination.  
• S  is the set of all tables in the source database.  
• D  is the set of tables in the destination database.  
• t  is a table in the set M .  

4.1.3. Text Extraction from PDF 
Finally, the extracted text from each page is concatenated: 
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1
Text

n

ii
T

=
= ⊕                              (5) 

where: 
• iT  is the text extracted from the thi  page. 
• ⊕  denotes string concatenation.  

4.2. Prompt Inspection and Agent Identifying Block 

The algorithm block of prompt inspection and agent identification is an intermediate 
block in the system and the next step after the structured and unstructured content 
ingestion. Three LangChain-linked LLM-powered tools have been designed for the 
system to function as intended. These are respectively, the SQL agent tool block, 
the RAG-based retrieval module tool block, and a Tavily-based web search tool 
block. Each block has its own LLM agents for content retrieval. However, this 
block employs a GPT-4o-mini primary agent LLM to dynamically study the prompt’s 
intent as well as content and then identify the tool that is most probable for 
handling the database with respect to the user’s input prompt and forwards the 
user prompt to the respective agent block. It also takes into account the previous 
query history based on the knowledge graph for context understanding. Additionally, 
a feature that allows users to upload documents containing structured information 
adds flexibility for user interaction. The structured data is extracted and stored in 
the database. The LLM agent ensures that the extracted data aligns precisely with 
both the entered prompt and the associated data from the PDF document uploaded 
by the user. The primary LLM agent’s logic for prompt inspection is enclosed 
within the route_tools() method as seen in Figure 3. This method checks whether 
the question is associated with: 
• The database query which requires SQL operations,  
• The sequential sentence extraction based on RAG,  
• The general, human-like conversation, or  
• The web search leveraging the Tavily search.  
 

 
Figure 3. Prompt inspection and deploying tools. 
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Each agent block is correlated with a specific data type as determined by the 
user’s prompt. For instance, operations conducted at the field level within a 
relational model—such as calculating the aggregate sum within a table or 
identifying the minimum and maximum values across all tables in a database—
necessitate the engagement of the secondary agent from the SQL agent module to 
access structured data. Such operations are unattainable using solely a Large 
Language Model (LLM) agent that employs Retrieval-Augmented Generation (RAG) 
or functions independently of any auxiliary tool. In contrast, a user prompt 
necessitating a sequential response through policy search will activate the secondary 
LLM within the RAG tool module to generate an appropriate response by scrutinizing 
PDF documents. Moreover, the primary LLM ensures the adequacy of the extracted 
data in addressing the query before transmitting the final output to the user. 

4.3. SQL Agent Tool 

The core code for the SQL agent tool is as seen in Figure 4. This agent block 
handles database-related queries by accessing the relational data stored in the 
database. As seen in the code, the SQLAgent is implemented to produce queries. 
The agent, a distinct tool, converts prompts into SQL queries with the guidance 
of a GPT-3.5-turbo LLM, which interprets the input from the primary LLM. Tests 
show GPT-3.5-turbo excels in writing and performing database queries compared 
to GPT-4o-mini. As seen in Figure 5, the mentioned LLM is also responsible for 
analyzing the retrieved data that is returned in a structured format, against the 
input prompt and the uploaded document(s), and refactoring the SQL agent to 
design a more appropriate SQL query if needed. This ensures accurate output 
aligned with the user’s question and related uploaded documents in the database. 
 

 
Figure 4. SQL agent tool. 
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Figure 5. SQL agent. 

 
The SQL agent module performs operations like joins, min/max calculations, 

and aggregations. For instance, it joins invoice and product tables to calculate total 
sales per product, which enterprise solutions like Unstract cannot achieve, as 
discussed in the paper. 

4.4. RAG Agent Block 

The core code for the RAG agent tool is as seen in Figure 6. The RAG agent 
module utilizes a Chroma-vector-based search mechanism for the extraction of 
pertinent unstructured data from diverse sources. Its efficacy is particularly 
pronounced in the context of sequential text extraction, necessitated by the nature 
of text vector embeddings and the corresponding text, which is conventionally 
documented in JSON format. This agent is developed as an independent tool, 
tasked with the processing of text-based queries via the implemented pdfRAGTool. 
When the GPT-4o-mini agent identifies PDF-based policy data extraction needs, 
it triggers the tool in LangChain. 

The RAG agent block is as seen in Figure 7. The agent module embeds the 
document and prompt into vectors using OpenAI’s text-embedding-3-small 
model and stores them in JSON. It queries Chroma-based data for prompt-related 
information, which is then used by GPT-4o-mini to create a clear user response. 

When a prompt involves an uploaded document with RAG models and 
LangChain, the tool uses vector embeddings to find and extract the most relevant 
sequence with GPT-4o-mini. The output is then summarized in human-readable 
format by the LLM within the RAG agent module. RAG is effective at synthesizing 
information from unstructured data, even in PDFs. GPT-4o-mini is used as both 
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the primary and secondary LLM for its efficiency, lightweight nature, and free 
availability. 
 

 
Figure 6. RAG agent tool. 

 

 
Figure 7. RAG agent. 

4.5. Tavily Tool Integration for Web-Based Searches 

The workflow also integrates the Tavily tool which is most efficient for web-based 
searching capability. Tavily is an exclusive web search tool, designed to be easily 
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integrated into AI-powered applications. If the primary agent deduces that the 
entered prompt requires web-based search, this tool is invoked. The Tavily tool in 
this workflow is initiated to return the 3 most relevant website links that most 
match the user prompt based on the analysis conducted by the primary agent. 

4.6. Knowledge Graph Generation 

The core code for control flow as depicted by the knowledge graph is as seen in 
Figure 8. A knowledge graph effectively represents the control flow of ensemble 
systems, offering a concise view of the workflow and modules while aiding in 
analyzing interactions for context-accurate queries. This is crucial for designing 
and optimizing AI applications focused on timely accuracy. All the designed 
agents along with their respective tools and the user prompts are represented as 
nodes in a knowledge graph. The control transition between these nodes as seen 
in Figure 8, is modeled as edges that denote the control flow of the system. The 
knowledge graph is visualized through high-level control flow modules as seen in 
the block diagram of the generated knowledge graph in Figure 9. The State graph 
or knowledge graph is generated by the primary LLM denoting the control flow 
from the user prompts and the tools invoked, to the output prompt in the chatbot. 
The memory is saved for the previous state retention and routing in the 
MemorySaver object from langgraph.checkpoint module by logging checkpoints 
of the previous states of interaction. 

With each interaction by the user, the knowledge graph undergoes dynamic 
expansion. The StateGraph object is configured and constructed by the principal 
LLM according to the flow of control across various tools and states. Performance  
 

 
Figure 8. Pipeline flow. 
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Figure 9. Generated knowledge graph. 

 
metrics are available for examination on the LangChain dashboard. The sequence 
of inputs, the agents invoked consequently, and the output delivered can thus be 
scrutinized. The memory preservation mechanism is activated to enable the 
system to record prior interactions, thereby enhancing the content-awareness and 
adaptability of ensuing dialogues. This process is referred to as state maintenance 
within the framework of a knowledge graph representation. 

4.7. Integration with Enterprise Software Environments 

The modular design of the system, is suitable for integrating the pipeline with 
enterprise-grade software ecosystems such as Enterprise Resource Planning (ERP) 
via standardized APIs. 

The pipeline as a module is also suitable to be integrated with the sub-modules 
of ERP such as Customer Relationship Management (CRM) for automating 
individual parts of the ecosystem. 

The pipeline integrates into the ERP as seen in Figure 10. The results for these 
functionalities are discussed in the subsequent section of the paper. The modules 
that the IntelligentETL pipeline replaces are:   

1) Supply Chain Management (SCM) and CRM: The pipeline is responsible for 
extracting, validating, and integrating vendor contracts, invoices, purchase orders, 
and customer requirements into SQL-compatible formats. It enables analytics 
such as customer order history, and customer behavior insights based on the 
knowledge graph formation for each customer interaction.  

2) Data Warehousing: The pipeline efficiently ingests and centralizes structured 
and unstructured data into a relational model. This facilitates not just efficient 
querying but also analytics-ready storage and dynamic data retrieval for 
enterprise-wide reporting.  

3) Financial Resource Management (FRM): The extraction and validation of 
invoices, customer requirements, and payment data support advanced financial 
reconciliations through robust and accurate SQL query formulation.  

The modules where the IntelligentETL pipeline lacks direct applicability are: 
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Human Resource Planning (HRP), and Manufacturing Resource Planning (MRP). 
The pipeline supports inventory and supply chain-related data but does not cater 
to functionalities specific to MRP and manufacturing processes such as production 
scheduling, and shop control. Also, it does not address HRP-specific functionalities 
such as employee records, recruitment processes, and payroll analytics in its 
current architecture. Designing additional modules or integrations tailored to 
HRP and MRP use cases is necessary to extend the pipeline’s applicability to 
enterprise applications dealing with the automation of these processes. An 
additional module specifically designed for resource planning is then necessary to 
be integrated with the developed pipeline to account for HRP and MRP as per 
respective application requirements based on the environments such as financial 
auditing, supply chain management, and legal documentation workflows. 
 

 
Figure 10. Integration with enterprise resource planning modules. 

5. Results and Discussion 
5.1. PDF-to-SQL and Database Merging Pipeline 

The validation process for data conversion speed is conducted herein. Subsequent 
to this, the accuracy of structured data extraction will be evaluated, and the 
resulting metrics will be compared with those derived from unstract. 

The time taken for each of the operations is as given:  

operation end startT t t= −                         (6) 

where: 
• operationT  is the time taken for the operation to complete.  
• startt  is the timestamp at the start of the operation.  
• endt  is the timestamp at the end of the operation.  

The total time for the complete transformation workflow is given as: 
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total extraction saving mergingT T T T= + +                       (7) 

where:   
• extractionT  is the time for extracting tables along with the corresponding text.  
• savingT  is the time for saving tables to the SQLite database.  
• mergingT  is the time for merging databases.  

As seen in Figure 11, the time analysis result for all the operations for data 
transformation explained above sums up to 0.07 seconds for an A4-sized PDF. 
This is on par with the enterprise-level software that performs the task of only 
data conversion. 
 

 
Figure 11. Data transformation time analysis. 

5.2. Accuracy of LLM-SQL Based Data Extraction 

Figure 12 shows the performance of the LLM-backed SQL agent. The application 
was structured using LangChain. As such, LangChain offers excellent performance 
metrics reporting services. 

The performance metrics are displayed as seen in Figure 13. The metrics were 
obtained for the SQL agent deployed via the LLM to facilitate database querying. 
Upon conducting tests with a variety of prompts, it was noted that the performance 
of the LLM-based RAG and Tavily agents was comparable to that of the LLM-
based SQL agent. Moreover, the performance metrics for any future tools that 
might be integrated into this pipeline through the LLM could be similarly 
analyzed. The adaptability to incorporate additional tools seamlessly, coupled 

https://doi.org/10.4236/jsea.2025.181003


M. Joshi, V. K. Madisetti 
 

 

DOI: 10.4236/jsea.2025.181003 60 Journal of Software Engineering and Applications 
 

with the ease of performance assessment via LangChain capabilities, significantly 
enhances the pipeline’s customizability—an aspect that is notably absent in the 
unstract framework. 
 

 
Figure 12. Custom-built chatbot with prompt output for LLM deployed SQL agent. 
 

 
Figure 13. Performance metrics of LLM deployed SQL agent as captured by LangChain. 

 
The query was initiated to determine the minimum and maximum amounts 

across all invoices within the database. The agent efficiently parsed through the 
extensive database, providing a 100% accurate response in only 6.50 seconds, 
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based on 1399 generated tokens. Including the duration required for extracting 
content from PDFs and integrating it into the existing database, the entire pipeline 
process was completed in a total of 6.57 seconds. 

This performance was evaluated against that of Unstract, which utilized a state-
of-the-art GPT-3.5-based large language model (LLM) and LLM extractor, 
alongside a Qdrant database and an enterprise-provided LLM whisperer. As seen 
in Figure 14, the prompts evaluated in this study were designed to extract the 
minimum and maximum values of the products, identify the product with the 
highest purchase frequency, and ascertain the individual who purchased the 
largest quantity of products alongside the total expenditure incurred. For an LLM-
SQL agent, these queries are adequate to efficiently traverse the entire database, 
regardless of the volume of data stored, and produce precise results. Nonetheless, 
when executed on Unstract, the majority of these prompts either exceeded the 
designated time threshold or yielded inaccurate outcomes due to its sole reliance 
on LLM not only for prompt processing but also for data analysis. Observations 
indicate that Unstract requires an indefinite amount of time to execute complex 
field-based relational operations, defined in this context as operations taking more 
than 100 seconds. The time ellipsoid performance plot depicting the performance 
of one such comparative instance, as referenced herein, is illustrated in Figure 
15. 

Having noticed these differences between the approach that we present and ex-
isting enterprise-ready software, we document these differences in a tabular struc-
ture as is seen in Table 1. Consequently, Unstract demonstrates limitations in de-
livering persuasive outcomes for multi-condition filtering. Specifically, imple-
menting a combination of functions such as WHERE(), HAVING(), and GROUP 
BY()—commonly compliant with SQL—is not effectively handled. Furthermore, 
the accurate output of specific mathematical function combinations, including 
MIN(), MAX(), SUM(), AVG(), and COUNT(), poses challenges for the software,  
 

 
Figure 14. Unstract interface showing the LLM run for a question based on the relational 
data model for 1 sample document considered. 
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Figure 15. Time ellipsoid comparison between unstract and LLM deployed SQL agent. 

 
Table 1. Performance comparison: unstract vs. proposed pipeline. 

Metric Proposed Pipeline Unstract 

PDF with Structured Data 
Extraction 

<1 s > 100 s 

Query Execution <1 s Not Supported 

Output Format SQL JSON 

Further Operation Possible Yes 
No Field-Specific Relational 

Operations 

Multi-Condition Filtering Infallible 
Unreliable due to permissible 

LLM error margin 

Integration with Other  
Functions 

Seamless due to Modular  
Approach 

Single Purpose  
Operation/Lacks Flexibility 

Multi-Field Data Mismatch 
Analysis 

Efficient 
Context-Trained Combined 

LLM Prone to Error 

 
particularly when dealing with a single multi-paged document or multiple docu-
ments. Additionally, in scenarios where numerical and field comparisons are crit-
ical, such as in detecting inconsistencies between purchase orders and vendor 
quotes, Language Learning Models (LLMs) tend to be error-prone and necessitate 
human intervention for validation. However, an LLM-powered SQL agent is ca-
pable of supporting complex multi-field numerical comparisons, such as assessing 
discrepancies in price, quantity, and discount, to thoroughly analyze data mis-
matches. 

As previously noted, the software is limited to processing PDF inputs and ren-
dering outputs in JSON format, resulting in a significant inefficiency for subse-
quent operations on the database by utilizing the intermediate results. In contrast, 
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the proposed pipeline incorporates an SQL agent that facilitates adjustments to 
administrative permissions, thereby permitting modifications to the data stored 
within the database. More conveniently, it can be deduced from Table 2, that the 
level of operational flexibility that an LLM-powered SQL agent allows is not 
achieved with solutions that are developed leveraging the LLMs alone. Also, these 
solutions are always prone to certain error occurrences. Table 2 compares specific 
operation chains for structured data analysis which is not possible for Unstract to 
perform given its complete reliance on LLM alone. 
 

Table 2. Comparison of SQL agent and unstract capabilities for complex operation chains. 

Complex Operation Chain SQL Agent Capability Why Unstract Can’t Perform 

Double Join with Aggregation and 
Grouped Filtering 

√ Executes multi-level joins with complex  
conditions in one query. 

JSON lacks relational joins and multi-level  
aggregation capabilities, requiring scripting. 

Nested Subquery for Conditional 
Summing and Ranking 

√ Supports subqueries, ranking, and  
aggregations in a single command chain. 

JSON format needs additional processing for 
multi-step transformations; lacks ranking  
capability. 

Dynamic Date-Based Analysis with 
Conditional Joins 

√ Handles time-sensitive data and complex  
conditionals efficiently. 

JSON is flat-structured and lacks time-based 
processing and complex conditional joins. 

Recursive CTE with Hierarchical 
Summing 

√ Enables recursive queries for cumulative  
hierarchical calculations. 

JSON lacks hierarchical structure, making  
recursion impractical. 

Complex Pivot with Conditional 
Aggregates 

√ Performs pivot operations with conditional 
aggregates directly. 

JSON lacks pivot functionality and requires 
extra transformation steps for conditional  
aggregates. 

6. Potential Under-Performance and Further Scope for  
Improvement 

The pipeline efficiently addresses challenges associated with querying structured 
and unstructured data. However, certain inherent limitations could be encoun-
tered. For instance, if for an application leveraging the pipeline, the input data 
deviates significantly from the training distribution of the LLMs, the extracted en-
tity or the formulated relational query may be of reduced accuracy. Such instances 
may arise with the inclusion of the following:  

1) Input documents containing highly domain-specific language.  
2) Unconventional table structures in the uploaded document.  
3) Document with poor quality and ambiguous data.  
Additionally, in cases of ambiguous prompts engineered for primary LLM, the 

accuracy of appropriate tool selection for the query may be marred. 
Further scope for improvement lies in addressing these business and applica-

tion-specific limitations. The techniques such as prompt engineering of primary 
LLM and domain-specific fine-tuning of the LLMs along with including certain 
fallback mechanisms such as rule-based extraction for predictable tasks, could im-
prove the robustness of the pipeline catering to specific business applications. 
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7. Conclusion 

We demonstrate that LLM-powered intelligent SQL, RAG, and Tavily agents 
markedly enhance extraction accuracy compared to existing enterprise-level so-
lutions available in the market. With empirical evidence supporting these out-
comes, this method is well-suited for broader applicability. By integrating busi-
ness-specific prompt engineering of the primary LLM and accommodating flexi-
ble pipeline modifications in alignment with the application objectives, enter-
prises can adopt this for efficient data processing and output generation. Through 
minor alterations based on knowledge graphs to the control flow, this methodol-
ogy facilitates the addition of another user for database interaction and can be 
further developed to support communication channels among users. Access to 
modify the database could be appropriately regulated. Furthermore, in financial 
contexts of structured data analysis, a hyperbolic scaling function, specifically of 
the hyperbolic tangent nature, could be utilized to introduce an additional field in 
tables, categorizing products into high, medium, and low price ranges. These rep-
resent some instance-based minor refinements, the implementation of which is 
contingent upon the specific application under development. 
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