
Journal of Software Engineering and Applications, 2025, 18(1), 44-65
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2025.181003 Jan. 30, 2025 44 Journal of Software Engineering and Applications

Intelligent ETL for Enterprise Software
Applications Using Unstructured Data

Manthan Joshi, Vijay K. Madisetti

School of Cybersecurity and Privacy, Georgia Institute of Technology, Atlanta, GA, USA

Abstract
Enterprise applications utilize relational databases and structured business
processes, requiring slow and expensive conversion of inputs and outputs,
from business documents such as invoices, purchase orders, and receipts, into
known templates and schemas before processing. We propose a new LLM
Agent-based intelligent data extraction, transformation, and load (Intelligen-
tETL) pipeline that not only ingests PDFs and detects inputs within it but also
addresses the extraction of structured and unstructured data by developing
tools that most efficiently and securely deal with respective data types. We study
the efficiency of our proposed pipeline and compare it with enterprise solu-
tions that also utilize LLMs. We establish the supremacy in timely and accurate
data extraction and transformation capabilities of our approach for analyzing
the data from varied sources based on nested and/or interlinked input con-
straints.

Keywords
Structured Data, Relational Model, LLM-Powered Agents,
Field-Level Extraction, Knowledge Graph

1. Introduction

Organizations use both structured and unstructured data, often organized in ta-
bles, as part of extract, transform, and load (ETL) processes prior to ingestion into
business process software. Structured datasets, like relational databases, can be
analyzed using SQL. However, crucial business information is often stored in in-
secure PDFs, such as invoices, contracts, and manuals. Analyzing data structures
from these formats poses challenges, hindering precise calculations and insights,
while compromising privacy and security.

We shall now examine a prevalent use case of significance to enterprises,

How to cite this paper: Joshi, M. and Mad-
isetti, V.K. (2025) Intelligent ETL for Enter-
prise Software Applications Using Unstruc-
tured Data. Journal of Software Engineering
and Applications, 18, 44-65.
https://doi.org/10.4236/jsea.2025.181003

Received: December 27, 2024
Accepted: January 27, 2025
Published: January 30, 2025

Copyright © 2025 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2025.181003
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/jsea.2025.181003
http://creativecommons.org/licenses/by/4.0/

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 45 Journal of Software Engineering and Applications

pertaining to supply chain procurement processes. This case study will be elabo-
rated upon to demonstrate the application of our proposed methodology.

1.1. Procurement Workflows in Enterprises

Figure 1 depicts a basic manual procurement workflow involving a Vendor, Man-
ager, Purchase Agent, Recovery Agent, and Payee, each conducting their roles se-
quentially using traditional communication methods like emails, ticketing, docu-
ment submissions, phone, or in-person talks. This dynamic process often requires
repeated confirmations and verifications, making human-based systems prone to
errors [1].

The manual procurement process starts with vendors standardizing docu-
ments, such as text-based contracts, clauses, and structured quotes, usually in PDF
format. These documents outline product pricing and terms and go through a
review and approval process to meet the organization’s objectives.

The manager, after reviewing customer requests, instructs the purchasing agent
to start procurement. The agent communicates with the vendor through the man-
ager to negotiate and adjust quotes based on quantity. This involves relaying the
user’s requirements to the vendor. The recovery agent oversees delivery tracking,
verifies items, and resolves disputes via the manager. Once quotes are final and de-
liveries confirmed, the payee processes payments. Direct vendor communication to
confirm quotes is sometimes needed, as shown by a dotted line in Figure 1.

Figure 1. Typical manual procurement process.

To reduce errors stemming from human involvement in communication chan-
nels, both between users and vendors and within an organization, transitioning
from manual processes to an AI-based pipeline is now a research focus. The LLM-
based communication framework promises reduced time consumption, as well as
more direct and efficient communication [2].

Centralized data processing and extraction are enhanced by language model
integration, streamlining documentation-heavy tasks into digital processes. In-
stantaneous complex filtering and data retrieval, from both structured and

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 46 Journal of Software Engineering and Applications

unstructured data, rely on query speed instead of human action. Preserving memory
and user context reduces workflow redundancies, boosting collaboration effi-
ciency, reducing bottlenecks and errors, and offering flexible document handling.
Recently developed Large Language Models (LLMs) promise to significantly ad-
vance ETL processes beyond manual limitations.

1.2. Enterprise Workflows and Data Formats

Relational databases effectively store and analyze structured data, but struggle
with formats like PDFs and text files due to missing processing markers. Tools
using OCR or LLMs to extract text from PDFs fall short of the accuracy of database
queries and often convert data to JSON, which can introduce errors [3]. While
LLM improvements reduce inaccuracies, they still present risks in critical areas
like hospitals. Workflows for structured and unstructured data are often kept sep-
arate to preserve solution versatility, leading to fragmented insights and ineffi-
ciencies. Consequently, organizations fail to fully utilize their data, particularly
when vital information is scattered across various sources. In finance, legal, and
industry sectors, analyzing relational data is vital. Not being able to examine struc-
tured data with unstructured documents can be harmful. For instance, auditors
might need to link PDF invoices to SQL transaction records. Lacking a unified
framework leads to manual processing, raising error rates. As reliance on both
data types grows, a cohesive system is essential.

Contemporary AI-driven tools leveraging Large Language Models (LLMs) for
prompt analysis and JSON format outputting may obstruct subsequent data pro-
cessing required for comprehensive analysis. Such tools handle extractions as iso-
lated tasks, necessitating manual transformation for continued utilization. Fur-
thermore, the LLM is often compelled to reprocess each prompt, notwithstanding
its potential relevance to previously supplied context.

2. Problem Statement

The identified issues in the ETL solutions that exist today are:
• Inconsistent formats across datasets, leading to fragmented workflows.
• Limited querying capabilities for unstructured data, impeding advanced ana-

lytics.
• Manual interventions are required to merge and analyze data across different

sources.
Addressing these challenges, especially for structured data saved in formats

such as PDFs, requires an approach that utilizes LLM along with the SQL querying
and RAG generating capabilities to make sense of the data and also query as nec-
essary [4]. Leveraging both LLM-RAG and SQL agents makes processes more spe-
cific to operations. LLMs, trained on vast datasets, excel in processing prompts
and generating outputs, interpreting user requests, assigning tasks to specialized
agents, and creating queries for structured data. SQL excels in retrieving struc-
tured data from relational databases, while RAG efficiently retrieves data from

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 47 Journal of Software Engineering and Applications

unstructured documents and formulates responses. Using SQL and RAG agents
based on data type, user prompts, and storage location enhances performance.

This paper introduces a novel method for extracting both structured and un-
structured data and performing a web search for the entered prompt to generate
the most relevant response. The project structure is shown in Figure 2. The pipe-
line employs three LLMs; a primary LLM analyzes prompts alongside a knowledge
graph for context. Details of the SQL agent, RAG agent, and Tavily web search
agent are provided in later sections.

Figure 2. Project structure block diagram.

3. Related Work

The use of LLMs for extracting structured and unstructured data is a new and
rapidly growing field [5]. There are few existing contributions [6] that address
certain entrepreneurial analytical requirements today. Tools have been created to
turn unstructured PDF data into structured formats for final output, but these
outputs cannot be modified using prompt history, query state, and context [7].
Key existing enterprise solutions include:
• Unstract: A tool that extracts fields from PDFs, emails, and text, generating

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 48 Journal of Software Engineering and Applications

JSON outputs.
• Tabula: Open-source tool to extract tables from PDFs and export to CSV or

JSON.
Tools like unstract and Tabula are effective for raw data extraction but are lim-

ited for advanced analytics as they do not integrate with relational databases [8]
[9].

3.1. Limitations of Existing Tools

3.1.1. Lack of Relational Data Handling
These existing instruments facilitate the extraction and conversion of raw data
into JSON or CSV formats; however, they do not retain data in SQL-compatible
formats. This limitation hinders their capability to support relational queries and
joins with other structured data sources. Furthermore, unstract solely accepts data
in PDF format.

3.1.2. Limited Analytical Capabilities
The current tools are primarily designed for field-level extraction; however, they
lack the capability to directly facilitate advanced relational queries, including con-
ditional joins or aggregations across various tabular fields derived from multiple
documents within the database [10]. This limitation further constrains the poten-
tial for bidirectional interaction with the database. JSON-based outputs necessi-
tate additional transformations to integrate effectively with SQL databases, thereby
introducing further complexity.

3.1.3. Limited Use of AI for Contextual Analysis
Moreover, the majority of extant solutions depend on predefined extraction mod-
els, which lack the capacity for context-sensitive processing [11] [12].

3.2. Solution Requirements

Organizations require a comprehensive pipeline that can:
1) Extract and store structured PDF data as relational data to facilitate SQL-

based analytics.
2) Seamlessly merge and query structured and unstructured data without need-

ing additional ETL processes.
3) Validate and standardize extracted data using AI-powered models to ensure

accuracy and usability.

3.3. Our Contribution to the Existing Solutions

We now identify the main features of our solution, Intelligent ETL:

3.3.1. Structured Content Extraction and Transformation
We developed a Python-based workflow specifically designed for the detection
and extraction of structured tabular data from PDF documents. This facilitates the
seamless integration of extracted PDF data into pre-existing SQL databases,

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 49 Journal of Software Engineering and Applications

thereby enabling the execution of relational operations and complex queries. Ad-
ditionally, we incorporate procedures for the extraction of unstructured data
within our pipeline.

3.3.2. GPT-Powered Validation and Field Identification
By incorporating large language models (LLMs) such as GPT-3.5-turbo, our
method facilitates dynamic detection and verification of fields, thereby ensuring
precise identification of essential fields. This approach affords greater flexibility
and adaptability compared to predefined extraction models. Additionally, we uti-
lize the primary LLM for output validation by scrutinizing it against the input
prompt and activating the suitable tool when necessary. LLMs are observed to be
the best tool for taking context-aware computations into account [13]-[16].

3.3.3. ETL Pipeline Unification
We achieve a convergence of the ETL pipeline that processes both structured SQL
data and unstructured PDFs, integrating them within a unified relational data
model for analytical purposes. This integration represents a novel advancement,
as traditionally, unstructured and structured datasets necessitate distinct pipeline
processes, despite the possibility of PDFs harboring inherently structured data. In
contrast to tools like unstract, our approach preserves the relational aspects of
PDF data by embedding them within SQL tables. This methodology facilitates the
direct interrogation of data using SQL, thus eliminating the requirement for ad-
ditional transformations. This methodology reduces the requirement for separate
ETL processes. Furthermore, it enhances the capacity for sophisticated analytics
by enabling the execution of complex SQL queries on both structured and un-
structured data, while maintaining data integrity through the normalization of
extracted data into relational formats. The proposed solution is designed to be
scalable, accommodating large datasets, and adaptable for implementation across
various projects. Additionally, it supports the storage of xlsx, csv, pdf, and txt for-
mats within databases, thus enabling the Intelligent ETL pipeline to conduct anal-
yses on the encompassed data. In contrast to the unstract approach, this pipeline
stores SQL data as opposed to JSON formatted data, thereby facilitating advanced,
context-aware querying.

Through the integration of structured and unstructured data within a unified
relational model within IntelligentETL, organizations can be empowered to con-
duct sophisticated analytics and reporting with ease. The implementation of GPT-
based AI models introduces an additional layer of intelligence, rendering the sys-
tem flexible and responsive to diverse user queries. We develop a chatbot-based
procurement application utilizing Gradio and LangChain technologies and sub-
sequently evaluate our assertions with respect to “unstrict”.

The reliance on LLMs especially under high-load scenarios, poses a possibility
of encountering computational challenges such as computational cost and perfor-
mance efficiency. This is because LLMs are resource-intensive and may struggle
to maintain minimum latency while dealing with large datasets or while processing

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 50 Journal of Software Engineering and Applications

concurrent queries.
The mentioned challenges are mitigated in the proposed pipeline as the archi-

tecture incorporates a modular design that enables task-specific agents such as
SQL and RAG and utilizes capabilities of the knowledge graph to handle discrete
operations without fully engaging all the LLMs for every step of the process and
for every query in the subsequent chat progression. The knowledge graph works
as an efficient caching mechanism thus enabling the pipeline to produce accurate
answers for context-relevant queries. Additionally, it also nullifies the require-
ment of even activating respective LLM-powered agents in the case of context-
ready or repetitive queries, thus enabling the pipeline to be scalable.

This enhancement of data generation capabilities, coupled with the ongoing
advancements in data storage, suggests an increasing importance of LLM-directed
query agents and user-database interactions structured around meticulously de-
signed knowledge graphs in the foreseeable future. Knowledge graphs elucidate
the trajectory of system control flow, thereby guiding both developers and users
in the creation of applications that encourage question formulation in a manner
that, when processed through advanced ETL systems, is likely to yield precise cost-
effective outcomes [17]-[19].

Distilled versions of GPT could be further researched for further enhancement
in the direction of making the pipeline ready for enterprise-scale deployment.

4. Methodology
4.1. Unstructured Content Extraction and Transformation

Algorithm 1 PDF-to-SQL and Database Merging Pipeline

PDF file path: pdf_path, Source DB path: src_db, Destination DB path: dest_db
Extracted data stored in a SQLite database and merged into the destination database
Function extract_text_from_pdf(pdf_path): Extracts and returns the plain text from all
pages of the PDF.
Function extract_tables_from_pdf (pdf_path): Extracts all tables from the PDF and
returns them as a list of DataFrames.
Function save_to_sqlite (dataframes, db_path): Saves each DataFrame in the list to the
SQLite database at db_path.
Function merge_databases (src_db, dest_db):
for each table in src_db do

if table exists in dest_db then
Skip merging (to avoid duplicates).

else
Copy table structure and data to dest_db.

end if
end for
Main Pipeline Execution:
Run pdf_to_sql_pipeline (pdf_path, src_db) to extract
PDF content and save it to SQLite.
Run merge_databases (src_db, dest_db) to transfer tables to the destination
database.

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 51 Journal of Software Engineering and Applications

An in-detail workflow of an automated layout that detects tabular data in PDFs,
extracts and transfers it to an SQLite database(s), and transfers it to the destination
database that is specified, is shown in Algorithm 1. The solution leverages time-
tested Python libraries to handle structured and unstructured data efficiently.
pdfplumber is used to extract plain text from multiple PDF sources, camelot is
used to extract detected tables from PDFs, pandas is used to refine tabular data
and bring it into a structure, and sqlite3 and create _engine from sqlalchemy is
used to connect the source and the destination of the data transfer and to save
each data-frame in the database respectively. The pipeline is not only designed for
scalable data ingestion but also for a versatile merger of multiple databases. Here
an end-to-end PDF data merging to a predefined database is achieved. The Data
Converter from Figure 2 depicts this workflow. Enterprise solutions exist that
carry out similar tasks. This ETL pipeline is flexible enough to be used with those
solutions as well. However, this simple workflow achieves accurate results with
comparatively less to none error expectancy. Analytics of structured data pre-
sented in PDF is then ready to be carried out based on user prompts, the method-
ology will be explained in subsequent sections of this paper.

To mathematically represent the data matching and database merging opera-
tions for two data sets in different formats, let us consider the following model:

First, the tables are identified by the module and extracted from PDFs using
efficient Python-AI libraries. Then:

4.1.1. Saving Extracted Data Frames to SQLite Database
For a given set of DataFrames, D , each DataFrame is saved in an SQLite database:

{ }1 2, , , mD df df df= (1)

(), SQL Savei i idf D df∀ ∈ = (2)

where:
• D is the set of extracted Data-frames.
• idf is the thi Data-frame in the set.
• ()Save idf saves idf to the SQLite database.

4.1.2. Database Merging Using Set Theory
Set theory is used to model the merger of source and destination databases:

\M S D= (3)

{ },t M D D t∀ ∈ = ∪ (4)

where:
• M is the set of tables in the source database not present in the destination.
• S is the set of all tables in the source database.
• D is the set of tables in the destination database.
• t is a table in the set M .

4.1.3. Text Extraction from PDF
Finally, the extracted text from each page is concatenated:

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 52 Journal of Software Engineering and Applications

1
Text

n

ii
T

=
= ⊕ (5)

where:
• iT is the text extracted from the thi page.
• ⊕ denotes string concatenation.

4.2. Prompt Inspection and Agent Identifying Block

The algorithm block of prompt inspection and agent identification is an intermediate
block in the system and the next step after the structured and unstructured content
ingestion. Three LangChain-linked LLM-powered tools have been designed for the
system to function as intended. These are respectively, the SQL agent tool block,
the RAG-based retrieval module tool block, and a Tavily-based web search tool
block. Each block has its own LLM agents for content retrieval. However, this
block employs a GPT-4o-mini primary agent LLM to dynamically study the prompt’s
intent as well as content and then identify the tool that is most probable for
handling the database with respect to the user’s input prompt and forwards the
user prompt to the respective agent block. It also takes into account the previous
query history based on the knowledge graph for context understanding. Additionally,
a feature that allows users to upload documents containing structured information
adds flexibility for user interaction. The structured data is extracted and stored in
the database. The LLM agent ensures that the extracted data aligns precisely with
both the entered prompt and the associated data from the PDF document uploaded
by the user. The primary LLM agent’s logic for prompt inspection is enclosed
within the route_tools() method as seen in Figure 3. This method checks whether
the question is associated with:
• The database query which requires SQL operations,
• The sequential sentence extraction based on RAG,
• The general, human-like conversation, or
• The web search leveraging the Tavily search.

Figure 3. Prompt inspection and deploying tools.

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 53 Journal of Software Engineering and Applications

Each agent block is correlated with a specific data type as determined by the
user’s prompt. For instance, operations conducted at the field level within a
relational model—such as calculating the aggregate sum within a table or
identifying the minimum and maximum values across all tables in a database—
necessitate the engagement of the secondary agent from the SQL agent module to
access structured data. Such operations are unattainable using solely a Large
Language Model (LLM) agent that employs Retrieval-Augmented Generation (RAG)
or functions independently of any auxiliary tool. In contrast, a user prompt
necessitating a sequential response through policy search will activate the secondary
LLM within the RAG tool module to generate an appropriate response by scrutinizing
PDF documents. Moreover, the primary LLM ensures the adequacy of the extracted
data in addressing the query before transmitting the final output to the user.

4.3. SQL Agent Tool

The core code for the SQL agent tool is as seen in Figure 4. This agent block
handles database-related queries by accessing the relational data stored in the
database. As seen in the code, the SQLAgent is implemented to produce queries.
The agent, a distinct tool, converts prompts into SQL queries with the guidance
of a GPT-3.5-turbo LLM, which interprets the input from the primary LLM. Tests
show GPT-3.5-turbo excels in writing and performing database queries compared
to GPT-4o-mini. As seen in Figure 5, the mentioned LLM is also responsible for
analyzing the retrieved data that is returned in a structured format, against the
input prompt and the uploaded document(s), and refactoring the SQL agent to
design a more appropriate SQL query if needed. This ensures accurate output
aligned with the user’s question and related uploaded documents in the database.

Figure 4. SQL agent tool.

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 54 Journal of Software Engineering and Applications

Figure 5. SQL agent.

The SQL agent module performs operations like joins, min/max calculations,

and aggregations. For instance, it joins invoice and product tables to calculate total
sales per product, which enterprise solutions like Unstract cannot achieve, as
discussed in the paper.

4.4. RAG Agent Block

The core code for the RAG agent tool is as seen in Figure 6. The RAG agent
module utilizes a Chroma-vector-based search mechanism for the extraction of
pertinent unstructured data from diverse sources. Its efficacy is particularly
pronounced in the context of sequential text extraction, necessitated by the nature
of text vector embeddings and the corresponding text, which is conventionally
documented in JSON format. This agent is developed as an independent tool,
tasked with the processing of text-based queries via the implemented pdfRAGTool.
When the GPT-4o-mini agent identifies PDF-based policy data extraction needs,
it triggers the tool in LangChain.

The RAG agent block is as seen in Figure 7. The agent module embeds the
document and prompt into vectors using OpenAI’s text-embedding-3-small
model and stores them in JSON. It queries Chroma-based data for prompt-related
information, which is then used by GPT-4o-mini to create a clear user response.

When a prompt involves an uploaded document with RAG models and
LangChain, the tool uses vector embeddings to find and extract the most relevant
sequence with GPT-4o-mini. The output is then summarized in human-readable
format by the LLM within the RAG agent module. RAG is effective at synthesizing
information from unstructured data, even in PDFs. GPT-4o-mini is used as both

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 55 Journal of Software Engineering and Applications

the primary and secondary LLM for its efficiency, lightweight nature, and free
availability.

Figure 6. RAG agent tool.

Figure 7. RAG agent.

4.5. Tavily Tool Integration for Web-Based Searches

The workflow also integrates the Tavily tool which is most efficient for web-based
searching capability. Tavily is an exclusive web search tool, designed to be easily

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 56 Journal of Software Engineering and Applications

integrated into AI-powered applications. If the primary agent deduces that the
entered prompt requires web-based search, this tool is invoked. The Tavily tool in
this workflow is initiated to return the 3 most relevant website links that most
match the user prompt based on the analysis conducted by the primary agent.

4.6. Knowledge Graph Generation

The core code for control flow as depicted by the knowledge graph is as seen in
Figure 8. A knowledge graph effectively represents the control flow of ensemble
systems, offering a concise view of the workflow and modules while aiding in
analyzing interactions for context-accurate queries. This is crucial for designing
and optimizing AI applications focused on timely accuracy. All the designed
agents along with their respective tools and the user prompts are represented as
nodes in a knowledge graph. The control transition between these nodes as seen
in Figure 8, is modeled as edges that denote the control flow of the system. The
knowledge graph is visualized through high-level control flow modules as seen in
the block diagram of the generated knowledge graph in Figure 9. The State graph
or knowledge graph is generated by the primary LLM denoting the control flow
from the user prompts and the tools invoked, to the output prompt in the chatbot.
The memory is saved for the previous state retention and routing in the
MemorySaver object from langgraph.checkpoint module by logging checkpoints
of the previous states of interaction.

With each interaction by the user, the knowledge graph undergoes dynamic
expansion. The StateGraph object is configured and constructed by the principal
LLM according to the flow of control across various tools and states. Performance

Figure 8. Pipeline flow.

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 57 Journal of Software Engineering and Applications

Figure 9. Generated knowledge graph.

metrics are available for examination on the LangChain dashboard. The sequence
of inputs, the agents invoked consequently, and the output delivered can thus be
scrutinized. The memory preservation mechanism is activated to enable the
system to record prior interactions, thereby enhancing the content-awareness and
adaptability of ensuing dialogues. This process is referred to as state maintenance
within the framework of a knowledge graph representation.

4.7. Integration with Enterprise Software Environments

The modular design of the system, is suitable for integrating the pipeline with
enterprise-grade software ecosystems such as Enterprise Resource Planning (ERP)
via standardized APIs.

The pipeline as a module is also suitable to be integrated with the sub-modules
of ERP such as Customer Relationship Management (CRM) for automating
individual parts of the ecosystem.

The pipeline integrates into the ERP as seen in Figure 10. The results for these
functionalities are discussed in the subsequent section of the paper. The modules
that the IntelligentETL pipeline replaces are:

1) Supply Chain Management (SCM) and CRM: The pipeline is responsible for
extracting, validating, and integrating vendor contracts, invoices, purchase orders,
and customer requirements into SQL-compatible formats. It enables analytics
such as customer order history, and customer behavior insights based on the
knowledge graph formation for each customer interaction.

2) Data Warehousing: The pipeline efficiently ingests and centralizes structured
and unstructured data into a relational model. This facilitates not just efficient
querying but also analytics-ready storage and dynamic data retrieval for
enterprise-wide reporting.

3) Financial Resource Management (FRM): The extraction and validation of
invoices, customer requirements, and payment data support advanced financial
reconciliations through robust and accurate SQL query formulation.

The modules where the IntelligentETL pipeline lacks direct applicability are:

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 58 Journal of Software Engineering and Applications

Human Resource Planning (HRP), and Manufacturing Resource Planning (MRP).
The pipeline supports inventory and supply chain-related data but does not cater
to functionalities specific to MRP and manufacturing processes such as production
scheduling, and shop control. Also, it does not address HRP-specific functionalities
such as employee records, recruitment processes, and payroll analytics in its
current architecture. Designing additional modules or integrations tailored to
HRP and MRP use cases is necessary to extend the pipeline’s applicability to
enterprise applications dealing with the automation of these processes. An
additional module specifically designed for resource planning is then necessary to
be integrated with the developed pipeline to account for HRP and MRP as per
respective application requirements based on the environments such as financial
auditing, supply chain management, and legal documentation workflows.

Figure 10. Integration with enterprise resource planning modules.

5. Results and Discussion
5.1. PDF-to-SQL and Database Merging Pipeline

The validation process for data conversion speed is conducted herein. Subsequent
to this, the accuracy of structured data extraction will be evaluated, and the
resulting metrics will be compared with those derived from unstract.

The time taken for each of the operations is as given:

operation end startT t t= − (6)

where:
• operationT is the time taken for the operation to complete.
• startt is the timestamp at the start of the operation.
• endt is the timestamp at the end of the operation.

The total time for the complete transformation workflow is given as:

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 59 Journal of Software Engineering and Applications

total extraction saving mergingT T T T= + + (7)

where:
• extractionT is the time for extracting tables along with the corresponding text.
• savingT is the time for saving tables to the SQLite database.
• mergingT is the time for merging databases.

As seen in Figure 11, the time analysis result for all the operations for data
transformation explained above sums up to 0.07 seconds for an A4-sized PDF.
This is on par with the enterprise-level software that performs the task of only
data conversion.

Figure 11. Data transformation time analysis.

5.2. Accuracy of LLM-SQL Based Data Extraction

Figure 12 shows the performance of the LLM-backed SQL agent. The application
was structured using LangChain. As such, LangChain offers excellent performance
metrics reporting services.

The performance metrics are displayed as seen in Figure 13. The metrics were
obtained for the SQL agent deployed via the LLM to facilitate database querying.
Upon conducting tests with a variety of prompts, it was noted that the performance
of the LLM-based RAG and Tavily agents was comparable to that of the LLM-
based SQL agent. Moreover, the performance metrics for any future tools that
might be integrated into this pipeline through the LLM could be similarly
analyzed. The adaptability to incorporate additional tools seamlessly, coupled

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 60 Journal of Software Engineering and Applications

with the ease of performance assessment via LangChain capabilities, significantly
enhances the pipeline’s customizability—an aspect that is notably absent in the
unstract framework.

Figure 12. Custom-built chatbot with prompt output for LLM deployed SQL agent.

Figure 13. Performance metrics of LLM deployed SQL agent as captured by LangChain.

The query was initiated to determine the minimum and maximum amounts

across all invoices within the database. The agent efficiently parsed through the
extensive database, providing a 100% accurate response in only 6.50 seconds,

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 61 Journal of Software Engineering and Applications

based on 1399 generated tokens. Including the duration required for extracting
content from PDFs and integrating it into the existing database, the entire pipeline
process was completed in a total of 6.57 seconds.

This performance was evaluated against that of Unstract, which utilized a state-
of-the-art GPT-3.5-based large language model (LLM) and LLM extractor,
alongside a Qdrant database and an enterprise-provided LLM whisperer. As seen
in Figure 14, the prompts evaluated in this study were designed to extract the
minimum and maximum values of the products, identify the product with the
highest purchase frequency, and ascertain the individual who purchased the
largest quantity of products alongside the total expenditure incurred. For an LLM-
SQL agent, these queries are adequate to efficiently traverse the entire database,
regardless of the volume of data stored, and produce precise results. Nonetheless,
when executed on Unstract, the majority of these prompts either exceeded the
designated time threshold or yielded inaccurate outcomes due to its sole reliance
on LLM not only for prompt processing but also for data analysis. Observations
indicate that Unstract requires an indefinite amount of time to execute complex
field-based relational operations, defined in this context as operations taking more
than 100 seconds. The time ellipsoid performance plot depicting the performance
of one such comparative instance, as referenced herein, is illustrated in Figure
15.

Having noticed these differences between the approach that we present and ex-
isting enterprise-ready software, we document these differences in a tabular struc-
ture as is seen in Table 1. Consequently, Unstract demonstrates limitations in de-
livering persuasive outcomes for multi-condition filtering. Specifically, imple-
menting a combination of functions such as WHERE(), HAVING(), and GROUP
BY()—commonly compliant with SQL—is not effectively handled. Furthermore,
the accurate output of specific mathematical function combinations, including
MIN(), MAX(), SUM(), AVG(), and COUNT(), poses challenges for the software,

Figure 14. Unstract interface showing the LLM run for a question based on the relational
data model for 1 sample document considered.

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 62 Journal of Software Engineering and Applications

Figure 15. Time ellipsoid comparison between unstract and LLM deployed SQL agent.

Table 1. Performance comparison: unstract vs. proposed pipeline.

Metric Proposed Pipeline Unstract

PDF with Structured Data
Extraction

<1 s > 100 s

Query Execution <1 s Not Supported

Output Format SQL JSON

Further Operation Possible Yes
No Field-Specific Relational

Operations

Multi-Condition Filtering Infallible
Unreliable due to permissible

LLM error margin

Integration with Other
Functions

Seamless due to Modular
Approach

Single Purpose
Operation/Lacks Flexibility

Multi-Field Data Mismatch
Analysis

Efficient
Context-Trained Combined

LLM Prone to Error

particularly when dealing with a single multi-paged document or multiple docu-
ments. Additionally, in scenarios where numerical and field comparisons are crit-
ical, such as in detecting inconsistencies between purchase orders and vendor
quotes, Language Learning Models (LLMs) tend to be error-prone and necessitate
human intervention for validation. However, an LLM-powered SQL agent is ca-
pable of supporting complex multi-field numerical comparisons, such as assessing
discrepancies in price, quantity, and discount, to thoroughly analyze data mis-
matches.

As previously noted, the software is limited to processing PDF inputs and ren-
dering outputs in JSON format, resulting in a significant inefficiency for subse-
quent operations on the database by utilizing the intermediate results. In contrast,

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 63 Journal of Software Engineering and Applications

the proposed pipeline incorporates an SQL agent that facilitates adjustments to
administrative permissions, thereby permitting modifications to the data stored
within the database. More conveniently, it can be deduced from Table 2, that the
level of operational flexibility that an LLM-powered SQL agent allows is not
achieved with solutions that are developed leveraging the LLMs alone. Also, these
solutions are always prone to certain error occurrences. Table 2 compares specific
operation chains for structured data analysis which is not possible for Unstract to
perform given its complete reliance on LLM alone.

Table 2. Comparison of SQL agent and unstract capabilities for complex operation chains.

Complex Operation Chain SQL Agent Capability Why Unstract Can’t Perform

Double Join with Aggregation and
Grouped Filtering

√ Executes multi-level joins with complex
conditions in one query.

JSON lacks relational joins and multi-level
aggregation capabilities, requiring scripting.

Nested Subquery for Conditional
Summing and Ranking

√ Supports subqueries, ranking, and
aggregations in a single command chain.

JSON format needs additional processing for
multi-step transformations; lacks ranking
capability.

Dynamic Date-Based Analysis with
Conditional Joins

√ Handles time-sensitive data and complex
conditionals efficiently.

JSON is flat-structured and lacks time-based
processing and complex conditional joins.

Recursive CTE with Hierarchical
Summing

√ Enables recursive queries for cumulative
hierarchical calculations.

JSON lacks hierarchical structure, making
recursion impractical.

Complex Pivot with Conditional
Aggregates

√ Performs pivot operations with conditional
aggregates directly.

JSON lacks pivot functionality and requires
extra transformation steps for conditional
aggregates.

6. Potential Under-Performance and Further Scope for
Improvement

The pipeline efficiently addresses challenges associated with querying structured
and unstructured data. However, certain inherent limitations could be encoun-
tered. For instance, if for an application leveraging the pipeline, the input data
deviates significantly from the training distribution of the LLMs, the extracted en-
tity or the formulated relational query may be of reduced accuracy. Such instances
may arise with the inclusion of the following:

1) Input documents containing highly domain-specific language.
2) Unconventional table structures in the uploaded document.
3) Document with poor quality and ambiguous data.
Additionally, in cases of ambiguous prompts engineered for primary LLM, the

accuracy of appropriate tool selection for the query may be marred.
Further scope for improvement lies in addressing these business and applica-

tion-specific limitations. The techniques such as prompt engineering of primary
LLM and domain-specific fine-tuning of the LLMs along with including certain
fallback mechanisms such as rule-based extraction for predictable tasks, could im-
prove the robustness of the pipeline catering to specific business applications.

https://doi.org/10.4236/jsea.2025.181003

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 64 Journal of Software Engineering and Applications

7. Conclusion

We demonstrate that LLM-powered intelligent SQL, RAG, and Tavily agents
markedly enhance extraction accuracy compared to existing enterprise-level so-
lutions available in the market. With empirical evidence supporting these out-
comes, this method is well-suited for broader applicability. By integrating busi-
ness-specific prompt engineering of the primary LLM and accommodating flexi-
ble pipeline modifications in alignment with the application objectives, enter-
prises can adopt this for efficient data processing and output generation. Through
minor alterations based on knowledge graphs to the control flow, this methodol-
ogy facilitates the addition of another user for database interaction and can be
further developed to support communication channels among users. Access to
modify the database could be appropriately regulated. Furthermore, in financial
contexts of structured data analysis, a hyperbolic scaling function, specifically of
the hyperbolic tangent nature, could be utilized to introduce an additional field in
tables, categorizing products into high, medium, and low price ranges. These rep-
resent some instance-based minor refinements, the implementation of which is
contingent upon the specific application under development.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] https://planergy.com/blog/manual-procurement-process/

[2] Bahameish, B., Yaqot, M., Franzoi, R. and Menezes, B. (2022) Artificial Intelligence
in Procurement: An Overview and Case Study of Qatar Foundation. Proceedings of
the International Conference on Industrial Engineering and Operations Manage-
ment, Rome, 26-28 July 2022, 722-732. https://doi.org/10.46254/eu05.20220146

[3] Yang, J., Hu, X., Xiao, G. and Shen, Y. (2024) A Survey of Knowledge Enhanced Pre-
Trained Language Models. ACM Transactions on Asian and Low-Resource Language
Information Processing. https://doi.org/10.1145/3631392

[4] Kalyanpur, A., Saravanakumar, K.K., Barres, V., McFate, C.J., Moon, L., Seifu, N.,
Eremeev, M., Barrera, J., Bautista-Castillo, A., Brown, E. and Ferrucci, D. (2024)
Multi-Step Knowledge Retrieval and Inference over Unstructured Data. arXiv:
2406.17987.

[5] Zhou, M.Y. (2024) Improving LLM Understanding of Structured Data and Exploring
Advanced Prompting Methods. Microsoft Research Blog.

[6] Biswas, A. and Talukdar, W. (2024) Robustness of Structured Data Extraction from
In-Plane Rotated Documents using Multi-Modal Large Language Models (LLM).
Journal of Artificial Intelligence Research, 4, 176-195.

[7] Fang, X., Xu, W.J., Tan, F.A., Zhang, J.N., Hu, Z.Q., Qi, Y.J., Nickleach, S., Socolinsky,
D., Sengamedu, S. and Faloutsos, C. (2024) Large Language Models (LLMs) on Tab-
ular Data: Prediction, Generation, and Under-Standing—A Survey.
https://doi.org/10.48550/arXiv.2402.17944

[8] Narayanan, P.P. and Narayana Iyer, A.P. (2024) HySem: A Context Length Opti-
mized LLM Pipeline for Unstructured Tabular Extraction. arXiv: 2408.09434.

https://doi.org/10.4236/jsea.2025.181003
https://planergy.com/blog/manual-procurement-process/
https://doi.org/10.46254/eu05.20220146
https://doi.org/10.1145/3631392
https://doi.org/10.48550/arXiv.2402.17944

M. Joshi, V. K. Madisetti

DOI: 10.4236/jsea.2025.181003 65 Journal of Software Engineering and Applications

[9] Li, H., Gao, H., Wu, C. and Vasarhelyi, M.A. (2023) Extracting Financial Data from
Unstructured Sources: Leveraging Large Language Models. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.4567607

[10] Dagdelen, J., Dunn, A., Lee, S., Walker, N., Rosen, A.S., Ceder, G., et al. (2024) Struc-
tured Information Extraction from Scientific Text with Large Language Models. Na-
ture Communications, 15, Article No. 1418.
https://doi.org/10.1038/s41467-024-45563-x

[11] Yang, Y., Wu, Z., Yang, Y., Lian, S., Guo, F. and Wang, Z. (2022) A Survey of Infor-
mation Extraction Based on Deep Learning. Applied Sciences, 12, Article 9691.
https://doi.org/10.3390/app12199691

[12] Shan, Y., Lu, H. and Lou, W. (2023) A Hybrid Attention and Dilated Convolution
Framework for Entity and Relation Extraction and Mining. Scientific Reports, 13,
Article No. 17062. https://doi.org/10.1038/s41598-023-40474-1

[13] Yang, Y., Tang, Y.X. and Tam, K.Y. (2023) InvestLM: A Large Language Model for
Investment Using Financial Domain Instruction Tuning. arXiv: 2309.13064.

[14] Krugmann, J.O. and Hartmann, J. (2024) Sentiment Analysis in the Age of Generative
AI. Customer Needs and Solutions, 11, Article No. 3.
https://doi.org/10.1007/s40547-024-00143-4

[15] Parthasarathy, V.B., Zafar, A., Khan, A. and Shahid, A. (2024) The Ultimate Guide to
Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technol-
ogies, Research, Best Practices, Applied Research Challenges and Opportunities.
arXiv: 2408.13296.

[16] Trad, F. and Chehab, A. (2024) Prompt Engineering or Fine-Tuning? A Case Study
on Phishing Detection with Large Language Models. Machine Learning and Knowledge
Extraction, 6, 367-384. https://doi.org/10.3390/make6010018

[17] Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J. and Wu, X. (2024) Unifying Large Lan-
guage Models and Knowledge Graphs: A Roadmap. IEEE Transactions on Knowledge
and Data Engineering, 36, 3580-3599. https://doi.org/10.1109/tkde.2024.3352100

[18] Hello, N., Di Lorenzo, P. and Strinati, E.C. (2024) Semantic Communication En-
hanced by Knowledge Graph Representation Learning. 2024 IEEE 25th International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
Lucca, 10-13 September 2024, 876-880.
https://doi.org/10.1109/spawc60668.2024.10694291

[19] Zhao, H., Jiang, W., Deng, J., Ren, Q. and Zhang, L. (2023) Constructing Knowledge
Graph for Electricity Keywords Based on Large Language Model. 2023 IEEE 7th Con-
ference on Energy Internet and Energy System Integration (EI2), Hangzhou, 15-18
December 2023, 4844-4849. https://doi.org/10.1109/ei259745.2023.10512525

https://doi.org/10.4236/jsea.2025.181003
https://doi.org/10.2139/ssrn.4567607
https://doi.org/10.1038/s41467-024-45563-x
https://doi.org/10.3390/app12199691
https://doi.org/10.1038/s41598-023-40474-1
https://doi.org/10.1007/s40547-024-00143-4
https://doi.org/10.3390/make6010018
https://doi.org/10.1109/tkde.2024.3352100
https://doi.org/10.1109/spawc60668.2024.10694291
https://doi.org/10.1109/ei259745.2023.10512525

	Intelligent ETL for Enterprise Software Applications Using Unstructured Data
	Abstract
	Keywords
	1. Introduction
	1.1. Procurement Workflows in Enterprises
	1.2. Enterprise Workflows and Data Formats

	2. Problem Statement
	3. Related Work
	3.1. Limitations of Existing Tools
	3.1.1. Lack of Relational Data Handling
	3.1.2. Limited Analytical Capabilities
	3.1.3. Limited Use of AI for Contextual Analysis

	3.2. Solution Requirements
	3.3. Our Contribution to the Existing Solutions
	3.3.1. Structured Content Extraction and Transformation
	3.3.2. GPT-Powered Validation and Field Identification
	3.3.3. ETL Pipeline Unification

	4. Methodology
	4.1. Unstructured Content Extraction and Transformation
	4.1.1. Saving Extracted Data Frames to SQLite Database
	4.1.2. Database Merging Using Set Theory
	4.1.3. Text Extraction from PDF

	4.2. Prompt Inspection and Agent Identifying Block
	4.3. SQL Agent Tool
	4.4. RAG Agent Block
	4.5. Tavily Tool Integration for Web-Based Searches
	4.6. Knowledge Graph Generation
	4.7. Integration with Enterprise Software Environments

	5. Results and Discussion
	5.1. PDF-to-SQL and Database Merging Pipeline
	5.2. Accuracy of LLM-SQL Based Data Extraction

	6. Potential Under-Performance and Further Scope for Improvement
	7. Conclusion
	Conflicts of Interest
	References

