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Abstract 
Quanto options allow the buyer to exchange the foreign currency payoff into 
the domestic currency at a fixed exchange rate. We investigate quanto options 
with multiple underlying assets valued in different foreign currencies each 
with a different strike price in the payoff function. We carry out a comparative 
performance analysis of different stochastic volatility (SV), stochastic correla-
tion (SC), and stochastic exchange rate (SER) models to determine the best 
combination of these models for Monte Carlo (MC) simulation pricing. In 
addition, we test the performance of all model variants with constant correlation 
as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, 
and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze dif-
ferent discretization schemes and their results. In our simulations, the Milstein 
scheme yields the best balance between execution times and lower standard 
deviations of price estimates. Furthermore, we find that incorporating mean 
reversion into stochastic correlation and stochastic FX rate modeling is bene-
ficial for MC simulation pricing. We improve the accuracy of our simulations 
by implementing antithetic variates variance reduction. Finally, we derive the 
correlation risk parameters Cora and Gora in our framework so that correla-
tion hedging of quanto options can be performed. 
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This paper is structured as follows: Section 1 provides the introduction and 
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outlines the methodology. Section 2 gives a detailed description of the different 
stochastic differential equation (SDE) models used for volatility, correlation, and 
exchange rates. Section 3 focuses on the options being studied, with an emphasis 
on the payoff structures, underlying assets, and the overall model framework. Sec-
tion 4 discusses the three discretization schemes, including their adaptation for 
SDEs with Jumps, and the Monte Carlo simulation pricing methodology with an-
tithetic variates for variance reduction. Section 5 presents a comparison of results, 
accompanied by a discussion of output plots and tables. Section 6 delves into the 
derivation of the Cora and Gora correlation risk parameters. Section 7 concludes 
the paper, including a brief outline of future work, the bibliography and refer-
ences, and the link to the list of figures. 

1. Introduction & Method 

In modern finance, tradable assets are typically modeled with stochastic volatility, 
which was introduced by Hull and White in 1987 [1]. Stein and Stein (1991) in-
troduced a mean-reverting stochastic volatility model where the volatility of asset 
returns follows a Brownian motion mean-reverting process [2]. This model re-
flects the observation that volatility tends to return to a long-term average level 
over time, providing a more realistic depiction of market behavior compared to 
constant volatility models. In 1993, Heston [3] correlated the stochastic stock 
price and stochastic stock price volatility by correlating their Brownian motions. 
Another example of a stochastic volatility model was developed by Ball and Roma 
(1994) [4]. Their model presents a framework for option pricing that accounts for 
stochastic volatility by simplifying the Fourier option pricing techniques and im-
plementing power series methods. They demonstrate that the characteristic func-
tion of the average variance is crucial in this approach, particularly when there is 
no correlation between security price innovations and volatility. This model cor-
rects certain biases in the Black-Scholes model, improving on Stein and Stein’s 
analysis [4]. Bates’ (1996) [5] model further extends Heston’s model by incorpo-
rating jumps in the asset price process, thereby capturing sudden, large move-
ments in the market, which is a common feature observed in financial time series 
data. Modeling volatility as stochastic captures the empirical observation that 
market volatility tends to cluster over time, reflecting periods of high and low 
market uncertainty, which cannot be explained by a constant volatility model. 
Moreover, the phenomenon of volatility smiles has been studied extensively and 
seems to be alleviated by models with non-constant volatility ([3] [6]-[9]). 

However, it is much less common in comparison to see such models extended 
further with a correlation that varies stochastically over time. Some existing re-
search concerned with modeling correlations as stochastic is Engle 2002 [10], Lu 
& Meissner 2014 [11], Buraschi et al. 2010 [12] [13], and Da Fonseca et al. 
2007/2008 [14]. Modeling correlation as stochastic (SC) is beneficial because it 
reflects the reality that correlations between asset returns are not constant and can 
change due to varying market conditions, such as shifts in economic cycles or 
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changes in investor sentiment. This variability in correlation can significantly 
egimpact the pricing and hedging of multi-asset derivatives. In his research, Pric-
ing Foreign Equity Options with Stochastic Correlation and Volatility (2009), Jun 
Ma develops a novel model of this type for foreign equity option pricing. Foreign 
equity, FX, and currency derivatives are widely traded on a global scale. Crucially, 
participants incur additional risk due to exchange rate uncertainty when trading 
foreign equity options, as highlighted by Ma in his paper [15]. Moreover, when 
trading derivatives that rely on multiple underlying assets, participants also incur 
an additional correlation risk that has to be accounted for. As clarified by Ma, 
Quanto options do not yield to pricing via the BS risk-neutral framework when 
we incorporate stochastic correlation [15]. In cases when a simple closed-form 
solution is unknown, some popular alternatives for pricing such derivatives are 
numerical methods, simulations, or series solutions. 

The primary aim of this paper is to use simulations to tackle the problem of 
pricing Quanto options on two and three underlying assets under stochastic cor-
relation and volatility driven by different stochastic differential equations (SDEs). 
The following models are tested and compared: Heston, GARCH, GARCH-Jump, 
3/2 diffusion, and Bates for volatility, and Jacobi, Wright-Fisher diffusion, Weibull 
diffusion, and a mean-reverting SC for correlation. The study is focused specifi-
cally on Quanto options on two or three foreign equity market indices. These op-
tions act like a basket correlation option with the payoff depending on multiple 
correlated assets but also on exchange rates between the currencies of the indices. 
We test three different models of exchange rate dynamics, with both rates being 
either GBM, a mean reverting SDE inspired by the OU process, or an exponential 
levy process that incorporates jumps. The stochastic differential equations gov-
erning all of these SV, SC, and SER models and their key features can be found in 
Section 2 of the paper. The most unique feature of Quanto options is the payoff 
structure since it is paid in the foreign currency of the underlying but then con-
verted to the domestic currency. Details of the payoff structure and the overall 
model outlines are discussed fully in Section 3 of the paper. Section 4 of our paper 
outlines the methodology of the Monte Carlo simulation and clarifies details of 
the discretization schemes for the SDEs, whilst Section 5 discusses the results. Due 
to the additional correlation risk, it is prudent to also consider how to effectively 
hedge such products with Cora and Gora, which is done in Section 6. 

We collect observed market prices for the indices SP500, FTSE100, and 
STOXX600 (underlying assets), as well as the GBP/USD, EUR/USD, and EUR/GBP 
exchange rates from Yahoo Finance. The code written for this paper allows the 
user to select what date range the option will be over and, hence, what data to 
collect. For the paper, we focus on 2021-2022 and 2022-2023 as two specific time 
periods to test. We perform the comparison of all model variants and the discreti-
zation schemes for both cases of the option and for both of these date ranges as 
the lifetimes of the option. The constant parameters of the SDEs of the volatilities, 
correlations, and exchange rates are calibrated to real market data based on 
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summary statistics of the SP500, FTSE100, and STOXX600 indices and USD/GBP, 
USD/EUR exchange rates values. For example, aside from the starting points of 
all the processes, we also selected the volatility parameters of the FX rate SDEs 
based on the rolling standard deviations for the exchange rates. Similarly, the 
mean-reversion level ( µ ) and rate (θ ) of the Ornstein-Uhlenbeck (OU) process 
for modeling FX rates are determined using historical average exchange rates and 
autocorrelation analysis. Likewise, we use historical long-run averages, rolling 
standard deviations, and rolling correlations to select the parameters of the SV 
and SC SDEs. We ensure that look-ahead bias is avoided by only using data avail-
able on the start date of each option for the calibration. To facilitate a visual com-
parison with the plots of paths of different processes produced by the simulation, 
we standardize the plots of the observed trajectories of our underlying assets and 
exchange rates in different years to plot them with the same starting points with 
100 used as an example value (Figure S29 and Figure S30). We also plot rolling 
window volatilities and correlations of the assets and exchange rates for different 
window sizes (Figure S31 and Figure S32). We use the 13-week US Treasury Bill 
rate from Yahoo Finance as the US domestic interest rate (Figure S24). The Bank 
of England [16] and European Central Bank [17] interest rates are used for the 
two foreign interest rates. Figure S1 shows the observed starting values for the 
underlying assets and the exchange rates. These values are used as the starting 
parameters for the MC simulations as discussed in Section 4. 

2. Models of Stochastic Volatility, Correlation & Exchange 
Rates 

The quest for pricing models that incorporate random volatility is driven by em-
pirical evidence from various studies of financial time series supporting the hy-
pothesis of stochastic volatility. Ma (2009) emphasizes that implied volatilities, 
calculated using the Black-Scholes formula [18], exhibit random fluctuations over 
time, manifesting in the term structure of implied volatility. Moreover, when we 
fix a maturity time T, and consider varying strike price K, it can be seen that im-
plied volatility is higher for options contracts with only the moneyness level being 
different, which is often referred to as the volatility smile or skew. This pattern 
arises because the Black-Scholes model assumes constant volatility, which does 
not align with its market behavior, where volatility varies over time and across 
strike prices. While the volatility smile is typically symmetric for both puts and 
calls, this pattern is more common in currency (FX) and commodity markets, 
where implied volatility curves form a valley or smile shape, rising at both ends 
for deep in-the-money (ITM) and OTM options. In contrast, equity markets often 
exhibit a downward-sloping implied volatility graph, commonly referred to as a 
skew or smirk. In such markets, OTM put options tend to have higher implied 
volatility than ITM put options (left to right downward slope) and OTM call op-
tions tend to have lower implied volatility than ITM call options (right to left 
downward slope). Also, this pattern is more pronounced for puts than for calls 
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due to increased demand for downside protection, reflecting perceived risks of 
large negative movements in asset prices. According to Ma, stochastic volatility 
models elucidate deviations from constant implied volatility, and it has been 
shown that they can capture the volatility smile better. 

Traditionally, in the vast body of financial and economic literature on multi-asset 
options, the correlation coefficient between correlated variables has been assumed to 
be constant (e.g., see Black and Scholes, 1973 [18]; Margrabe, 1978 [19]; Garman, 
1992 [20]). However, Ma (2009) highlights that relying on long-term estimates of 
constant correlation can be misleading, potentially resulting in significant mispricing 
and risk management issues. Historical correlations must be used with caution as 
they can be more unstable than volatility [15]. An alternative approach involves in-
ferring implied correlations from market prices, akin to implied volatility, which of-
fers an estimation of stochastic correlation based on market data [15]. In this study, 
we test different models of stochastic volatility of the underlying assets, of stochastic 
correlation between their Brownian motions, and of stochastic exchange rates. 

2.1. Volatility Models 

As mentioned in the introduction, we test five models for stochastic volatility: 
Heston, 3/2 volatility, GARCH, Bates, and GARCH-Jump. The first two rely on a 
mean reversion drift term, with the parameters kappa and theta being the rate of 
mean reversion and the long-run value to which the volatility process reverts, re-
spectively. Also, the first two have the parameter sigma to control the standard 
deviation of the random fluctuations. 3/2 volatility can be thought of as a higher-
order extension of Heston volatility. Bates and GARCH-Jump processes introduce 
jumps to replicate the behavior of sudden moves of volatility observed in markets 
with Poisson-process-driven, normally distributed jumps. We ensure that the 
simulation functions do not produce negative volatility for all of the SDEs of sto-
chastic volatility models. 

2.1.1. Heston Model 

 ( )d d dt t t tv v t v Wκ θ σ= − +  (1) 

Note that setting 

 22κθ σ>  (2) 

in the Heston model ensures the process is strictly positive (Feller condition [21]). 

2.1.2. GARCH Inspired Model 
The time-homogeneous GARCH process satisfies the following linear SDE ac-
cording to Li et al. as described in their 2018 paper [22]. Hence, this model is very 
similar to the Heston model discussed above, but the diffusion term is multiplied 
by tv  to raise the power on the volatility component from 1/2 to 1... 

 ( )d d dt t t tv v t v Wκ θ σ= − +  (3) 

https://doi.org/10.4236/am.2025.161005


B. Ter-Avanesov, G. Meissner 
 

 

DOI: 10.4236/am.2025.161005 118 Applied Mathematics 
 

2.1.3. GARCH Inspired Model with Jumps 
The GARCH-Jump model extends the standard GARCH (Generalized Autoregres-
sive Conditional Heteroskedasticity) framework by incorporating jumps, providing 
a more comprehensive tool to capture the aforementioned volatility dynamics ob-
served in financial markets. This model is particularly useful in capturing the sud-
den large movements or jumps in asset prices that cannot be explained by continu-
ous processes alone. The GARCH-Jump model was developed and extensively ana-
lyzed by Duan et al. (2004), who highlighted its efficacy in better fitting historical 
time series data and explaining the observed volatility smile in option prices. Their 
research demonstrated that incorporating jumps into the GARCH framework sig-
nificantly improves the model’s performance in capturing the empirical features of 
asset returns and volatility [23]. We implement a variant of GARCH-Jump SV by 
adding a jump term to our GARCH-inspired model discussed above. 

 ( )d d d dt t t t tv v t v W Jκ θ σ ζ= − + +  (4) 

In our code implementation, the jumps are modeled as a compound Poisson 
process where the jump sizes are normally distributed. Specifically, d tJ  is con-
structed by first generating a number of jumps using a Poisson distribution with 
intensity parameter λ . For each jump, the size is drawn from a normal distribu-
tion with mean Jµ  and standard deviation Jσ . The total jump impact d tJ  is 
then the sum of all individual jump sizes occurring within a given time interval 
dt . Hence, the jumps are modeled as follows: 

 ( ) ( )2

1
d ~ Poisson d ,

tN

t i J J
i

J Y tλ µ σ
=

= ⋅ ×∑   (5) 

Here, ( )N t  is a Poisson process with intensity λ , and iY  are i.i.d. normal 
random variables with mean Jµ  and variance 2

Jσ . Duan et al. (2004) employed 
the GARCH-Jump model to explore option pricing under conditions where both 
price and volatility exhibit jump-diffusion behavior. They found that the GARCH-
Jump model provides a robust framework for understanding and predicting market 
behaviors characterized by sudden and significant changes. The model’s ability to 
capture jumps makes it particularly valuable for pricing derivatives and managing 
financial risk in environments subject to abrupt market movements [23]. 

2.1.4. Bates Model 
The Bates volatility model extends Heston volatility with jumps [5]. Here, the pa-
rameters kappa, theta, and sigma have the same use as for the Heston volatility 
model. 

 ( )d d d dt t t t tv v t v W Jκ θ σ ζ= − + +  (6) 

where d tJ  represents the jumps with normally distributed jump sizes. Jmu  
and Jsigma  are two more parameters in the simulation of this model, which 
control the mean size and standard deviation of the jumps, respectively, as dis-
cussed above. Here ζ  is a multiplier that controls the magnitude of the effect of 
the jumps as above. 
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2.1.5. 3/2 Model 
The 3/2 stochastic volatility model is an extension of the constant elasticity of var-
iance (CEV) model and was developed by Carr and Sun (2007) to better capture 
the dynamics of financial markets. In this model, the volatility of the underlying 
asset is driven by a process that is proportional to the power 3/2 of the volatility 
itself. The stochastic differential equation (SDE) governing the 3/2 model is given 
by: 

 ( ) 3 2d d d ,t t t t tv v v t v Wω θ σ= − +  (7) 

In this context: 
• ω  is the speed of mean reversion, determining how quickly the process re-

verts to its long-term mean θ . 
• θ  is the long-term mean level of the variance process. 
• σ  represents the volatility of the variance process, indicating the magnitude 

of random fluctuations. 
The 3/2 model is particularly useful in capturing the empirical features of vola-

tility observed in financial markets, such as the leverage effect and the fact that 
volatility tends to spike during market downturns [24]. Carr and Sun (2007) de-
veloped this model to provide a more accurate framework for pricing options and 
other derivative securities. According to Carr and Sun, the 3/2 model has several 
desirable properties. The process remains non-negative and exhibits mean-revert-
ing behavior, where the speed of mean reversion is proportional to the level of the 
process. The 3/2 model also yields closed-form solutions for the joint Fourier-
Laplace transform of returns and their quadratic variation, which is useful for ef-
ficiently pricing and hedging derivatives [24]. 

2.2. Correlation Models 

Correlations can be influenced by factors such as industrial production, T-bill 
rates, and unanticipated inflation, often acting as a business cycle indicator. 
Even after adjusting for business cycle effects, correlation risk persists (Driessen, 
Maenhout, and Vilkov, 2006 [25]). Although the correlation coefficient between 
two assets is not directly tradable, it remains crucial to devise hedging strategies 
for correlation risk. Developing robust frameworks for constructing portfolios to 
hedge against correlation risk can ensure more secure risk management practices 
[15]. For all of the stochastic correlation models, the SDEs have mean reversion 
or bounds or are clipped to ensure that correlations remain within [−1, 1]. Four 
models for stochastic correlation of increasing complexity are implemented in this 
study. The simplest is a stochastic correlation SDE inspired by the modeling of 
processes in studies of genetics, which has a diffusion term, making sure it stays 
within [−1, 1]. The next simplest is the Jacobi correlation used by Ma, which gives 
the user the option to keep the correlation process within bounds h and f by alter-
ing this diffusion term. The second most complicated model is the mean-reverting 
extension of the first two simpler models. The most complex model that is tested 
is the Weibull distribution stochastic correlation model. 
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2.2.1. Wright-Fisher (WF) Model 
Wright-Fisher diffusions are used in biology and biochemistry to model gene fre-
quencies and other natural/bodily processes. As explained in their paper, A mean-
reverting SDE on correlation matrices, Ahdida et al. focus on stochastic differen-
tial equations ‘valued on correlation matrices’ [26] and develop a mean-reverting 
extension of the Wright-Fisher SDE to model correlations in finance. In our pa-
per, we test both the original diffusion on [−1, 1] and the mean-reverting exten-
sion developed by Ahdida et al. as alternatives for modeling correlation. We do 
not implement the original version of the diffusion on [0, 1] since we want the 
process to mimic the variability across the range [−1, 1] when modeling financial 
correlations. The classic WF diffusion on [−1,1] has the SDE: 

 ( ) 2d d 1 dt t t tt Wρ κ ρ ρ σ ρ= − + −  (8) 

Here, tρ  represents the instantaneous correlation at time t . κ  is the mean 
reversion rate, determining how quickly the process reverts to the long-term mean 
correlation ρ . ρ  is the long-term mean correlation towards which tρ  re-
verts. σ  represents the volatility of the correlation process, indicating the extent 
of random fluctuations around the mean, and d tW  is a standard Wiener process, 
as usual. Ahdida et al. highlight that the term 21 tρ−  ensures that the correla-
tion tρ  remains within the interval [ ]1,1− . This term becomes zero when tρ  
approaches the boundaries, preventing it from exceeding these limits. This 
bounded characteristic makes this version of the WF diffusion particularly suita-
ble for modeling correlations in finance, where it is critical to maintain realistic 
correlation values [26]. 

2.2.2. Jacobi Process 
The Jacobi process is used to model stochastic correlation and is described by the 
following stochastic differential equation (SDE): 

 ( ) ( )( )d d dt t t t tt h f Wρ κ ρ ρ σ ρ ρ= − + − −  (9) 

where tρ  represents the correlation at time t , κ  is the mean reversion rate, 
ρ  is the long-term mean correlation, and h  and f  are the upper and lower 
bounds of the correlation, respectively. The term d tW  denotes a standard Wie-
ner process as usual. The parameter κ  determines the speed at which the corre-
lation reverts to its long-term mean ρ . A higher value of κ  implies a faster 
reversion. The parameters h  and f  set the natural boundaries for the correla-
tion, ensuring that it remains within a realistic range. The volatility parameter σ  
controls the amplitude of fluctuations around the mean [15]. 

The Jacobi process is particularly useful for modeling correlation because it can 
capture both the mean-reverting nature and the bounded behavior of correlation 
coefficients. The square root term ( )( )t th fρ ρ− −  ensures that the correla-
tion stays within the interval ( ),f h . Ma (2009) introduced the use of the Jacobi 
process in the context of pricing foreign equity options with stochastic correlation. 
This model allows for a more accurate reflection of market dynamics compared 
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to constant correlation models. The Jacobi process can be seen as an extension of 
other mean-reverting processes, such as the Ornstein-Uhlenbeck process, but 
with the added complexity of bounded behavior. This makes it particularly suited 
for financial applications since correlations tend to naturally exhibit such charac-
teristics [15]. 

2.2.3. Mean-Reverting Correlation 
This is an extension of the WF diffusion on [−1, 1] developed by Ahdida et al. 
(Ahdida 2013), which includes an adaptive mean-reversion component. The 
mean-reverting SDE is given by: 

 ( )( )2 2d d 1 dt t t t tt Wρ κ ρ ρ σ ρ σ ρ= − − + −  (10) 

Here tρ , κ , ρ , σ , are all the same as for the WF correlation model dis-
cussed above. Also, the term 21 tρ−  has the same use of ensuring that the cor-
relation tρ  remains within the interval [ ]1,1− . By adjusting the mean-reverting 
drift term ( ) 2

t tκ ρ ρ σ ρ− − , Ahdida et al extend the process to capture the em-
pirically observed tendency of correlations to revert to a long-term mean with the 
inclusion of the 2

tσ ρ  to ensure that the reversion speed adjusts dynamically 
based on the current correlation level [26]. 

2.2.4. Weibull Model 
The Weibull model is characterized by the following stochastic differential equa-
tion: 

 ( ) 1 2d d dt t W tt b b Wρ α ρ µ= − − +  (11) 

where Wµ  is a mean term derived from Weibull distribution parameters. This 
model was originally proposed by Miñano et al. (2013) for wind speed modeling, 
demonstrating its efficacy in generating wind speed trajectories with desired sta-
tistical properties [27]. In this context, 1b  and 2b  are diffusion terms uniquely 
defined to ensure the model captures the desired statistical properties. Specifically, 

1b  and 2b  are given by: 

 ( ) ( )1
2 ,t

W t

b
p

αρ
ρ

=  (12) 

 ( ) ( )
2

1Γ 1 , e ,
k

t

k
t

t Wb
k

ρ λρ
ρ λ µ

λ
−

  = + −     
 (13) 

where ( )W tp ρ  is the probability density function (PDF) of the Weibull distri-
bution, λ  is the scale parameter, k  is the shape parameter, and Γ  represents 
the Gamma function. The inclusion of 1b  and 2b  ensures the model’s diffusion 
term is appropriately scaled to reflect the nature of the underlying process. This 
formulation makes the Weibull model particularly suitable for phenomena where 
the Weibull distribution provides a good fit, such as wind speed data and poten-
tially skewed financial data. Specifically, this model was designed to simulate wind 
speeds that follow a Weibull distribution and exhibit exponential autocorrelation, 
as discussed in the work by Miñano et al. [27]. Their objective was to accurately 
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replicate the statistical properties of wind speed for applications in power systems, 
highlighting the model’s ability to generate realistic wind speed trajectories for 
various simulations and analyses. To ensure the mathematical validity of the 
model, it is essential that tρ  paths stay non-negative and 0k > , as the Weibull 
distribution is defined only for non-negative values and requires a positive shape 
parameter. These conditions guarantee that the diffusion terms 1b  and 2b  are 
well-defined, ensuring the stochastic process remains within the domain where 
the Weibull distribution accurately describes the behavior. Therefore, this SC 
model works in situations when we want to model positive correlations. 

It has been shown that the Johnson SB distribution is a best-fit distribution for 
equity and default probability correlation distributions [28]. Also, Gunter Meiss-
ner et al. conducted a comprehensive analysis of correlation behavior based on 
daily closing prices of 30 stocks within the Dow Jones index, spanning the period 
from January 1972 to October 2012 [29]. Their findings indicate that correlation 
levels are at their lowest during periods of robust economic growth, wherein eq-
uity prices are predominantly influenced by idiosyncratic factors rather than 
broader macroeconomic conditions. Conversely, during recessions, correlation 
levels typically rise as macroeconomic factors overshadow idiosyncratic influ-
ences, leading to simultaneous downturns across multiple stocks. Furthermore, 
the volatility of correlations is observed to be lowest during economic expansions 
and higher during normal periods and recessions [29]. The study also highlighted 
that the Johnson SB distribution, characterized by its shape, location, and scale 
parameters, provided the most accurate fit for modeling these correlations. This 
distribution’s flexibility effectively captures the intricate properties and variations 
of the correlation data observed under different economic conditions [29]. Some-
thing we want to explore further in future work is to apply the approach used for 
the Weibull correlation model to capture statistical properties of the distribution 
in the SDE to develop a stochastic correlation model that captures desired prop-
erties of the Johnson SB distribution and incorporates mean reversion. 

2.3. Models of Stochastic Exchange Rates 

The domestic currency for the investor in these Quanto options is US dollars. In 
our paper, one of the underlying assets is denominated in the home currency (US 
dollar). For all choices of correlation and volatility, the underlying assets are mod-
eled with the same SDEs throughout. We test three SDEs for the exchange rates 
(scenarios 1 - 3). The simplest model is for both exchange rates to be GBM [30] 
with different parameters based on observed starting values and summary statis-
tics (as outlined in section 1). We also test a model with mean-reversion incorpo-
rated into the SDEs used for both exchange rates. It has been shown in many stud-
ies that foreign exchange rates tend to exhibit strong mean reversion [31] [32]. In 
the third model, both exchange rates follow an exponential Lévy process, which 
incorporates jumps into the GBM model of scenario 1 [33] [34]. The foreign risk-
free interest rate is 

1f
r . This is the risk-free rate of return in the first foreign 
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currency, which could be the interest rate of a government bond or another risk-
free security in the foreign market of GBP. 

2f
r  is the risk-free rate of return in 

the second foreign currency, and dr  is the domestic interest rate. In the equa-
tions below, θ  represents the rate of mean reversion, µ  is the mean level to 
which the process reverts, FXσ  is the volatility, and ( )d FXW t  is the increment 
of the Wiener process. 

2.3.1. Geometric Brownian Motion (GBM) 
The GBM is characterized by its exponential growth with constant drift and vola-
tility [30]. 

 ( ) ( ) ( ) ( )( )2d 0.5 d df d FX FX FXFX t FX t r r t W tσ σ= − − +  (14) 

2.3.2. Ornstein-Uhlenbeck (OU) Process 
In this scenario, we model the exchange rates as an OU process, which introduces 
mean reversion into the drift term. 

 ( ) ( )( ) ( ) ( ) ( )( )2d d 0.5 d df d FX FX FXFX t FX t t FX t r r t W tθ µ σ σ= − + − − +  (15) 

2.3.3. Exponential Lévy Process 
In this scenario, the exchange rates follow an exponential Lévy process, which in-
corporates jumps into the SDEs, accounting for sudden and significant changes 
in the exchange rates [33] [35]. The key parameters in this model include FXσ  
for volatility, Lλ  for the jump intensity, Lµ  for the mean jump size, and Lσ  
for the jump size volatility. 

 ( ) ( ) ( ) ( )( )2d 0.5 d d df d FX FX FX tFX t FX t r r t W t Jσ σ= − − + +  (16) 

where d tJ  is the jump component, modeled as before (Sections 2.1.3 and 2.1.4) 
for the GARCH-Jump and Bates SV. These jumps account for sudden, significant 
changes in the exchange rates, making the exponential Lévy process a suitable 
candidate for modeling FX rates with jumps [35] [36]. 

3. Basket Quanto Calls 

We test all combinations of choices of the 5 SV, 4 SC, and 3 SER models outlined 
above for pricing 2 types of basket Quanto call options. Case 1 involves two un-
derlying assets and one exchange rate, whilst Case 2 has three underlying assets 
and two exchange rates. Both Cases 1 and 2 include an underlying asset in the 
domestic currency of US dollars, and the other asset(s) must be converted into 
dollars using the exchange rate(s). In this paper, we model the domestic and for-
eign interest rates as constants throughout the lifetime of the options. We pick the 
values observed on the start dates of the options. However, as shown in Figure 
S24, the interest rates are not usually constant in practice, even over a 1-year time 
window. We use the 13-week US Treasury Bills rate from Yahoo Finance as the 
US domestic interest rate, and it can be seen to change in value significantly 
throughout 2022-2023 (more than 5% change) but remain relatively constant in 
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the prior year. Similar observations can be made with the BoE rates. Thus, it could 
be prudent to model interest rates as a deterministic function of time, mixed jump 
diffusion, or discrete event/jump process (compound Poisson or Hawkes, for ex-
ample), with appropriate adjustments for monthly or quarterly frequencies but 
this extension is left for future work. In addition, modeling interest rates with 
SDEs would also allow us to explore whether we should introduce correlations 
between them. As seen in Figure S24, all three interest rates appear to be strongly 
positively correlated. 

The overall models for the pricing of our Quanto calls using specific choices of 
the SDE models for SV, SC, and SER can be written as follows: 

3.1. Case 1: Two Underlying Assets-Single FX Rate 
3.1.1. Variables 
• ( )GBPS t : Price of the 1st underlying (e.g. GBP asset). 
• ( )USDS t : Price of the 2nd underlying (e.g. USD asset). 
• ( )GBPFX t : FX rate (e.g. for USD/GBP). 

3.1.2. Stochastic Differential Equations 
Underlying Asset Prices 

 ( ) ( ) ( ) ( )( )d d dUSD USD d USD USDS t S t r t v t W t= +  (17) 

 ( ) ( ) ( ) ( )( )1
d d dGBP GBP f GBP GBPS t S t r t v t W t= +  (18) 

SV Choice (same process for both underlying assets) 

 ( ) ( ) ( )v v v_USD v v_USD
USD USD USD USDd , d , d , dt t t t t tv m v t t s v t W v t Jω= + +  (19) 

 ( ) ( ) ( )v v v_GBP v v_GBP
GBP GBP GBP GBPd , d , d , dt t t t t tv m v t t s v t W v t Jω= + +  (20) 

SC Choice 

 ( ) ( ) ( )d , d , d , dt t t t t tm t t s t W t Jρ ρ ρ ρ ρρ ρ ρ ω ρ= + +  (21) 

SER Choice 

 
( ) ( )( ) ( )( )

( )( )

f f f
GBP GBP GBP

f f
GBP

d , d , d

, d
t

t

FX t m FX t t t s FX t t W

FX t t Jω

= +

+
 (22) 

3.1.3. Correlation between Brownian Motions 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

2
USD GBPd d 1 d

d dFX FX

W t t W t t Z t

W t Z t

ρ ρ= + −

=
 (23) 

Here, ( )dZ t  and ( )d FXZ t  are independent standard Brownian motions. 

3.1.4. Payoff 

 ( ) ( ) ( )( )USD 1 GBP 2Payoff max , ,0S T K S T FX T K= − ⋅ −  (24) 

Here, vd tJ  denotes the jump component of volatility, d tJ ρ  denotes the 
jump component of correlation, and fd tJ  denotes the jump component for the 
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FX rate, as defined in Section 2. Our choice of the SV, SC, and SER models deter-
mines the m, s, and ω  functions above. For example, GARCH-Jump SV has 

( ) ( )v
0 1, 1t tm v t vβ β= + − , ( )v , 0ts v t = , and ( )v

2,t tv t vω β= . Similarly, we can 
write the general equations for our model for Case 2 as shown below. 

3.2. Case 2: Three Underlying Assets: Two FX Rates 
3.2.1. Variables 
• ( )GBPS t : Price of the GBP asset. 
• ( )USDS t : Price of the USD asset. 
• ( )EURS t : Price of the EUR asset. 
• ( )GBPFX t : FX rate for USD/GBP. 
• ( )EURFX t : FX rate for USD/EUR. 

3.2.2. Stochastic Differential Equations 
Underlying Asset Prices 

 ( ) ( ) ( ) ( )( )USD USD USD USDd d ddS t S t r t v t W t= +  (25) 

 ( ) ( ) ( ) ( )( )1GBP GBP GBP GBPd d dfS t S t r t v t W t= +  (26) 

 ( ) ( ) ( ) ( )( )2EUR EUR EUR EURd d dfS t S t r t v t W t= +  (27) 

SV Choice (same process for all underlying assets) 

 ( ) ( ) ( )v v v_USD v v_USD
USD USD USD USDd , d , d , dt t t t t tv m v t t s v t W v t Jω= + +  (28) 

 ( ) ( ) ( )v v v_GBP v_GBP
GBP GBP GBP GBPd , d , d , dt t t t t tv m v t t s v t W v v t Jω= + +  (29) 

 ( ) ( ) ( )v v v_EUR v v_EUR
EUR EUR EUR EURd , d , d , dt t t t t tv m v t t s v t W v t Jω= + +  (30) 

SC Choice (between both pairs, USD-GBP and USD-EUR) 

 ( ) ( ) ( )d , d , d , dt t t t t tm t t s t W t Jρ ρ ρ ρ ρρ ρ ρ ω ρ= + +  (31) 

SER Choice (same process for both FX Rates, USD/GBP, & USD/EUR) 

 
( ) ( )( ) ( )( )

( )( )

f f f1
GBP GBP GBP

f f1
GBP

d , d , d

, d
t

t

FX t m FX t t t s FX t t W

FX t t Jω

= +

+
 (32) 

 
( ) ( )( ) ( )( )

( )( )

f f f2
EUR EUR EUR

f f2
EUR

d , d , d

, d
t

t

FX t m FX t t t s FX t t W

FX t t Jω

= +

+
 (33) 

3.2.3. Correlation between Brownian Motions 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

USD/GBP USD/GBP

USD/EUR USD/EUR

2
USD GBP

2
EUR GBP EUR

d d 1 d

d d 1 d

d d

d d
FX FX

FX FX

W t t W t t Z t

W t t W t t Z t

W t Z t

W t Z t

ρ ρ

ρ ρ

= + −

= + −

=

=

 (34) 

Here, ( )dZ t , ( )EURdZ t , ( )
USD/GBP

d FXZ t , and ( )
USD/EUR

d FXZ t  are independent 
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standard Brownian motions. 

3.2.4. Payoff 

 
( ) ( ) ( )(
( ) ( ) )

USD 1 GBP GBP 2

EUR EUR 3

Payoff max , ,

,0

S T K S T FX T K

S T FX T K

= − ⋅ −

⋅ −
 (35) 

Hence, as highlighted before, we correlate the Brownian motions of the pro-
cesses of the underlying assets and model this correlation as stochastic. Also, we 
model the volatility of the underlying as stochastic and independent from the level 
of the underlying. Moreover, the FX rates are modeled as stochastic and inde-
pendent from each other as well as from the level of their respective underlying 
asset. In the simulation, we use different sets of increments of Brownian motion 
for all the stochastic processes and only introduce a correlation between those 
of the underlying assets. This correlation, between the Brownian motions of 
USD and GBP assets as well as between the Brownian motions of the USD and 
EUR assets, is the same in our experiments. In all of the SC models, we tested 
( ), 0t tω ρ =  as we do not investigate the presence of jumps in correlation. 

4. Discretization of SDEs & MC Simulation 

We test all 60 (=5 * 4 * 3) combinations of different choices of the SV, SC, and 
SER models with three different discretization schemes and we use the Euler-
Maruyama scheme only for the SDEs of the underlying assets throughout. The 
Euler-Maruyama Scheme is the simplest computationally as it only includes the 
first three terms of the Ito-Taylor expansion applied to the SDE. However, it is 
expected to yield limited accuracy since this approximation expands the drift 
term to ( )ΔO t  but only expands the diffusion term to ( )ΔO t . The Milstein 
scheme should yield improved accuracy since a second diffusion term is added, 
expanding the diffusion term to ( )ΔO t  as well. Although the Milstein scheme 
has a higher order, its main drawback is that we need to compute the first deriva-
tive of the volatility function. This may not always be possible, or it may be com-
putationally expensive. The Runge-Kutta scheme can be used to alleviate this issue 
while maintaining this higher-order by leveraging the Runge-Kutta approxima-
tion of the derivative required in the Milstein scheme. Higher-order Runge-Kutta 
schemes can be derived by including a more detailed approximation of this deriv-
ative. The SDE of a general Itô diffusion tI  is ( ) ( )d , d , dt t t tI a I t t b I t W= +  and 
can be discretized via the three alternatives as described below. Here, when dis-
cretizing and simulating the increments of Brownian motion,  

( )
1

. .
Δ ~ 0,Δ

j j

i i d
j t tW W W N t

+
= − , we write Δ Δj jW tZ=  with ( ). .

~ 0,1
i i d

jZ N , 
j∀ , and 1Δ j jt t t+= − . To apply the Euler-Maruyama, Milstein, and Runge-Kutta 

discretization schemes for SDEs that include an additional jump term, such as 
those in the GARCH-Jump, Bates Stochastic Volatility (SV), and Exponential 
Lévy FX rate models, these schemes need to be adjusted as described below. The 
SDE for an Itô process with an additional jump component can be written as 
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 ( ) ( ) ( )d , d , d , dt t t t t tI a I t t b I t W c I t J= + +  (36) 

where d tJ  represents the jump term, often modeled as a compound Poisson pro-
cess. Indeed, in our paper, the jumps are modeled as compound Poisson processes 
as discussed in Section 2.1.3. Here, we have 

1
Δ

j jj t tJ J J
+

= − , where Δ jJ  repre-

sents the cumulative effect of jumps in the interval 1,j jt t +   . Specifically, 

1Δ jN
j kkJ Y

=
= ∑ , where ( )~ Poisson ΔjN tλ  represents the number of jumps oc-

curring in the time interval 1Δ j jt t t+= − , and each ( ). . 2~ ,
i i d

k J JY N µ σ  represents 

the jump sizes drawn from a normal distribution with mean Jµ  and variance 
2
Jσ . Thus, ( ) ( )2Δ ~ Poisson Δ ,j J JJ tλ µ σ⋅ × . 

4.1. Euler-Maruyama Scheme 

 ( ) ( )1
,ˆ ˆ ˆ Δ ,ˆ Δ

j j j jt t t j t j jI I a I t t b I t W
+
= + +  (37) 

      ( ) ( ), Δˆ , Δˆ ˆ
j j jt t j t j jI a I t t b I t tZ= + +  (38) 

4.2. Euler-Maruyama Scheme with Jumps 

 ( ) ( ) ( )1
ˆ ˆ ˆ ˆ ˆ, Δ , Δ , Δ

j j j j jt t t j t j j t j jI I a I t t b I t tZ c I t J
+
= + + +  (39) 

4.3. Milstein Scheme 

 
( ) ( )
( ) ( ) ( )

1

2

ˆ ˆ ˆ , Δ , Δ

1 , , Δ Δ

ˆ

ˆ ˆ
2

j j j j

j j

t t t j t j j

t j t j j

I I a I t t b I t W

b I t b I t W t

+
= + +

 ′+ −  

 (40) 

 
( ) ( )

( ) ( ) ( )2

, Δ , Δ

1 , , Δ 1
2

ˆ ˆ ˆ

ˆ ˆ

j j j

j j

t t j t j j

t j t j j

I a I t t b I t tZ

b I t b I t t Z

= + +

′+ −
 (41) 

4.4. Milstein Scheme with Jumps 

 
( ) ( )
( ) ( ) ( ) ( )

1

2

, Δ , Δ

1 , , Δ 1 , Δ
2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

j j j j

j j j

t t t j t j j

t j t j j t j j

I I a I t t b I t W

b I t b I t t Z c I t J

+
= + +

′+ − +
 (42) 

4.5. Runge-Kutta Scheme 

 
( ) ( )

( ) ( ) ( )
1

2

, Δ , Δ

1 , , Δ Δ
2

ˆ ˆ ˆ ˆ

ˆ
Δ

j j j j

j j

t t t j t j j

t j t j j

I I a I t t b I t W

b I t b I t W t
t

+
= + +

  + − −    


 (43) 

 
( ) ( )
( ) ( ) ( )2

, Δ , Δˆ

1 , ,

ˆ ˆ

Δ Δ 1
2

ˆ

j j j

j j

t t j t j j

t j t j j

I a I t t b I t tZ

b I t b I t t Z

= + +

  + − −    


 (44) 

where 
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 ( ) ( ),ˆ ˆ ˆΔ , Δ
j j j jt t t j t jI I a I t t b I t t= + +  (45) 

4.6. Runge-Kutta Scheme with Jumps 

 ( ) ( ) ( ),ˆ ˆ ˆ ˆΔ , Δ , Δ
j j j j jt t t j t j t j jI I a I t t b I t t c I t J= + + +  (46) 

 
( ) ( )
( ) ( ) ( ) ( )

1

2

, Δ , Δ

1 , , Δ Δ 1

ˆ

, Δ
2

ˆ ˆ ˆ

ˆ ˆ

j j j j

j j j

t t t j t j j

t j t j j t j j

I I a I t t b I t tZ

b I t b I t t Z c I t J

+
= + +

  + − − +    


 (47) 

In summary, to handle an additional jump term in our SDEs we add the jump 
component directly to the discretization for the Euler-Maruyama and Milstein 
schemes, and the Runge-Kutta scheme also requires calculating the intermediate 
values including the jump component, and then adjusting the final update accord-
ingly. These modifications ensure that each discretization scheme accurately cap-
tures the effects of both continuous and jump components in the SDEs. 

4.7. Simulation Procedure 

1) Initialize paths: Set initial values for ( )GBP 0S , ( )USD 0S , ( )0FX , ( )0ρ , 
( )GBP 0v , and ( )USD 0v . Set T (time to expiration in years and stepsn  per path in 

days is T*252), N (number of paths in simulation), set increment stepsdt T n=  
for daily time series. 

2) Simulate paths over time: 
- For each time step, generate Brownian increments and jump instances. 
- Update the volatility paths using the specified volatility model and discretiza-

tion scheme. 
- Update the correlation paths using the specified correlation model and dis-

cretization scheme. 
- Update the FX rate paths using the specified model and discretization scheme. 
- Update the underlying asset paths using the simulated volatility and correla-

tion paths according to the Euler-Maruyama discretization scheme. 
3) Calculate payoffs: Use the final asset prices and FX rate values to calculate 

the payoff for each simulated path. For Case 1, the payoff for each path is calcu-
lated as: 

 ( ) ( ) ( )( )USD, 1 GBP, 2Payoff max , ,0i i i iS T K S T FX T K= − ⋅ −  (48) 

For Case 2, the payoff for each path is calculated as: 

 
( ) ( ) ( )(
( ) ( ) )

USD, 1 GBP, USD/GBP, 2

EUR, USD/EUR, 3

Payoff max , ,

,0
i i i i

i i

S T K S T FX T K

S T FX T K

= − ⋅ −

⋅ −
 (49) 

4) Discount and average payoffs: Discount the payoffs to present value and 
average them to get the option price. The discounted option price is given by: 

 
1

1Option Price e Payoffd
N

r T
i

iN
−

=

= ⋅ ∑  (50) 
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where N  is the number of simulated paths, dr  is the domestic risk-free rate, 
and T  is the time to maturity. 

4.8. Variance Reduction - Antithetic Variates 

Variance reduction methods seek to improve the efficiency of an estimator, ena-
bling more accurate results for a given number of simulations, N. Some choices of 
variance reduction that could be applied to our Monte Carlo simulations include 
control variates, which leverage the known expectation of auxiliary variables to 
reduce variance, and randomized Quasi-Monte Carlo (QMC), which replaces 
purely random sampling with low-discrepancy sequences (e.g. Halton, Sobol, or 
Fauer) to enhance convergence properties. In this paper, we implement antithetic 
variates as a form of variance reduction to improve our Monte Carlo simulations. 
Antithetic variates aim to reduce the variance of the estimator by introducing a 
negative correlation between paired simulations, thereby improving the conver-
gence rate of the Monte Carlo estimator without increasing the number of simu-
lations. In our context of Monte Carlo simulations involving stochastic differen-
tial equations (SDEs), this involves generating antithetic paths by using the nega-
tive of the original Brownian motion increments. Then, by averaging the results 
from the original and antithetic paths, the variance of the estimator is reduced. 
Specifically, let X  be an estimator of the option price based on the original sim-
ulations, and X ′  be the estimator based on the antithetic simulations. The com-
bined estimator is then: 

 ( )1
2

Ĉ X X ′= +  (51) 

Now, since X  and X ′  are negatively correlated, the variance of Ĉ  is re-
duced compared to the variance of either X  or X ′  alone. The variance of our 
estimator can be expressed as follows: 

 ( ) ( )( ) ( ) ( ) ( )( )1 1Var Var Var Var 2 Cov ,
2 4

Ĉ X X X X X X′ ′ ′= + = + + ⋅  (52) 

and our X’s both have equal variance so this expression can be simplified further 
as follows: 

 
( ) ( ) ( ) ( )( )

( ) ( )

1Var 2 2 Var 2 Cov ,
4

1Var Cov ,

ˆ

2

C X X X

X X X

′= × + ⋅

′= +
 (53) 

which means that the variance of our antithetic estimator is less than that of the 

original estimator by ( )1 Cov ,
2

X X ′  if the covariance between the antithetic 

and original versions of the random variables is negative: 

 ( ) ( ) ( )Var Var ov , 0ˆ CC X X X ′< ⇔ <  (54) 

Hence, the effectiveness of the antithetic variates method depends on the extent 
of the negative correlation between the estimators X  and X ′ . The more 

https://doi.org/10.4236/am.2025.161005


B. Ter-Avanesov, G. Meissner 
 

 

DOI: 10.4236/am.2025.161005 130 Applied Mathematics 
 

negatively correlated they are, the greater the variance reduction. Since  
( ) ( )Var VarX X ′= , we can rewrite this reduction in variance as follows: 

 ( ) ( )1 1 1Cov , Var
2 2 2x xX X Xρσ σ ρ′′ = =  (55) 

4.8.1. Antithetic Brownian Increments 
To incorporate antithetic variates into our simulation process, for each path in 
the simulation, we generate a corresponding antithetic path by using the nega-
tive of the samples of a standard normal random variable in the Brownian in-
crements used in the original path. This approach is applied to all the Brownian 
motions involved in the simulation. Specifically, if we let Δ jW  be the Brown-
ian increments generated for the original path at time step jt . Then, by writing 

j jZ Z′ = − , we get that the antithetic increments Δ jW ′  are given by: 

 Δ Δ Δ Δj j j jW tZ tZ W′ ′= = − = −  

4.8.2. Modification of the Simulation Procedure 
We modify the steps of our simulation process outlined in Section 4.7 as described 
below to incorporate antithetic variates. Step 1 is the same as in the original ver-
sion, but Steps 2 and 3 change slightly as we have to include the generation of the 
antithetic versions for all Brownian increments and updating all paths (including 
the antithetic versions), respectively. Step 4 also mainly stays the same but we need 
to compute the payoffs for both the antithetic paths and the normal paths. Then, 
the key adjustment is in changing step 5 as follows: 

New Step 5 discount and average combined payoffs: Compute the combined 
payoff for each pair of original and antithetic sets of paths as: 

 ( )1Payoff Payoff Payoff
2 i ii ′= +  (56) 

As before, discount the combined payoffs and average them to obtain the op-
tion price estimate: 

 
1

1Option Price e Payoffd
N

r T
i

iN
−

=

= ⋅ ∑  (57) 

In both Case 1 and Case 2 of our options, since our payoff functions are mon-
otonic in the asset prices (& FX rates) and all the SDEs we use are linear in the 
Brownian increments, the negative correlation introduced at the level of the 
Brownian increments propagates through to the terminal asset prices, and the 
option payoffs. Also, the symmetry of the Gaussian distribution guarantees that 
when we negate a (zero-mean) Normal random variable it is still distributed 
according to the same distribution. Because of this, for any of our SDEs, the 
solution of the version modified with antithetic Brownian increments has the 
same distribution as the original SDE’s solution. Indeed, with this, it can be 
shown that the antithetic and original option price estimates are identically dis-
tributed and have a negative covariance, as required for variance reduction via 
antithetic variates. 
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5. Results Comparison & Discussion 

We use the number of simulation paths with N = 500,000 for all of the simulations 
in this study. This number of realizations performed well in the preliminary test-
ing of the code. The lists of parameter values used for the simulations of 2021 and 
2022 starting dates, respectively, are shown in the last two figures. To compare the 
performance of the discretization schemes and model variants, we compute the 
standard deviation of the option value estimates and 95% confidence intervals 
(using z* = 1.96). Then, all 180 model variants are ordered from lowest standard 
deviation to highest, and we compute the average price estimate of the 40 best 
variants to be the ‘true’ value of the option. Then, all the models are re-ordered by 
the lowest to highest percentage error from this value, and the top 30 are displayed 
in bold in the results tables. Figure S2 and Figure S3 display the top 30 models by 
percentage error (PE) for cases 1 and 2 respectively and for both start dates we test 
(2021 on the left and 2022 on the right subplots). Figures S4-19 (inclusive) show 
the outputs for all model variants and discretization schemes ordered by PE. From 
our simulations, the target values (average of 40 best models by standard devia-
tion) for case 1 of the option with 2021 and 2022 start dates were $ 2653.73 and 
$ 2837.10, respectively (2 d.p.). For Case 2 of the option, our simulations yield the 
values $ 2667.76 and $ 2854.90 for 2021 and 2022 start dates, respectively (2 d.p.). 
It makes sense that these options were slightly more expensive with the 2022 start-
ing date since all the assets were significantly more expensive on 2022-01-04 than 
on 2021-01-4, as shown in Figure S1. These are call options, so the strike is sub-
tracted from the respective underlying (weighted by exchange rate) in each com-
ponent of the payoff. This means the option price should be greater if the prices 
of the underlying assets are all higher ceteris paribus. Comparing models by per-
centage error relative to this calculated value is an attempt to perform model se-
lection even though we do not have real observed prices, another pricing method, 
or a closed-form/series solution to compare our MC simulation prices and per-
formance to. As shown in Figure S2 and Figure S3, the best-performing combi-
nation of SV, SC, and SER models for Case 1 is (GARCH-Jump, Weibull, OU) for 
both start dates of the option. For Case 2, the best-performing combination is also 
(GARCH-Jump, Weibull, OU). The 3/2 SV model was a close runner-up in our 
simulations but a higher number of the top 10 models across both cases and start 
dates of the options include GARCH-Jump SV. The combination of the Weibull 
SC and OU SER models performs better than all the alternatives we tested for SC 
and SER choices. Figures S33-41 show plots of some sample paths from each of 
the (9) SDEs in our best model over 252 time steps. 

As a benchmark, we also test the performance of all model variants with con-
stant correlation. Figures S20-23 (inclusive) show the outputs of the MC simula-
tions with constant correlation with the tables of the model variants ordered by 
percentage error. The best-performing model variants with constant correlation 
achieve 0.436 (case 1 with 2021 start), 0.154 (case 2 with 2021 start), 0.147 (case 1 
with 2022 start), and 0.431 (case 2 with 2022 start) percentage error. These best-
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performing model variants have the following combinations of SV, SER, and dis-
cretization scheme: (3/2, GBM, Runge-Kutta) for Case 1 with 2021 start, (3/2, 
GBM, Euler) for Case 2 with 2021 start, (GARCH-Jump, GBM, Runge-Kutta) for 
case 1 with 2022 start, and (GARCH-Jump, GBM, Milstein) for Case 2 with 2022 
start. For Case 1 of the option with a 2021 start date, this performance places the 
best constant correlation model 13th overall by percentage error when compared 
to the results of all models with stochastic correlation. This indicates that the in-
clusion of stochastic correlation significantly improves pricing via MC simulation. 
However, for Case 2 with the same start date and both cases of the option with the 
2022 start date, the best performing constant correlation models place 4th, 4th, 
and 5th, respectively, when compared to the 30 best model variants with SC. As 
highlighted by Ma, market data analysis reveals that implied correlation often de-
viates from realized correlation, indicating a non-zero correlation risk premium 
[15] (Buraschi, Porchia, and Trojani, 2006 [12]; Driessen, Maenhout, and Vilkov, 
2006 [25]). Moreover, Figure S20 shows that correlations seem to fluctuate ran-
domly over time and are far from constant. This evidence supports the inclusion 
of random correlation structures in derivative pricing models. 

The execution times of the simulations of all of the model variants are also rec-
orded in the code and displayed in seconds. The Euler scheme generally exhibits 
faster execution times and performs well. The Milstein and Runge-Kutta schemes 
show lower stdevs, indicating higher accuracy compared to the Euler scheme. The 
Runge-Kutta scheme often shows the lowest stdevs, indicating the best accuracy, 
albeit with longer execution times. Based on our simulations, the Milstein discreti-
zation scheme offers the best balance between execution times and lower standard 
deviations. However, the Runge-Kutta scheme should be used when the derivative 
of the coefficient of the diffusion term is not available or hard to compute. In ad-
dition, the simulations for the 2022-2023 period generally showed slightly in-
creased execution times and wider confidence intervals compared to the 2021-
2022 period, reflecting the increased volatility and market uncertainty during that 
time frame. This is also reflected in the increased rolling correlations. Also, the 
simulations took slightly longer on average for Case 2 of the option than for Case 
1 as it involves more processes to be simulated. For the same reason, price esti-
mates for Case 2 of the option generally have wider CIs on average than those for 
case 1. 

6. Hedging Correlation Risks 

In the context of our foreign equity quanto call options, Cora and Gora are metrics 
used to quantify and manage the correlation risks associated with the inclusion of 
multiple correlated underlying assets in the payoffs of these complex derivatives. 
Cora (correlation delta) measures the sensitivity of the option’s value to changes 
in the correlation between the underlying assets and Gora (correlation gamma) 
measures the second-order sensitivity. It is a crucial parameter for understanding 
how variations in correlation impact the option’s price, especially when the 
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correlation itself is stochastic. By using Cora and Gora, traders and risk managers 
can better understand and manage the impact of correlation changes on the op-
tion prices, ensuring more effective hedging strategies for portfolios that include 
basket foreign equity quanto call options such as those explored in our study [37]. 
Cora is defined as the first-order partial derivative of the option price (discounted 
expectation of payoff) with respect to correlation: 

 Cora C
ρ
∂

=
∂

 (58) 

Gora is defined as the second-order partial derivative of the option price with 
respect to correlation: 

 
2

2Gora C
ρ
∂

=
∂

 (59) 

The discount factor can be taken outside of these derivatives, so the main task 
of deriving Cora and Gora becomes taking derivatives of the option’s payoff and 
applying the chain rule. Also, in our models the SC only applies to the BMs driving 
the stochastic processes of the underlying assets and the BMs driving the FX rate 
processes are independent of this stochastic correlation process. This allows us to 
simplify the formulas for Cora and Gora as all partial derivatives of the FX rate 
processes with respect to this SC are 0. 

6.1. Case 1: Single FX Rate 

For the single FX rate case, where the option payoff is given by: 

 ( ) ( ) ( )( )USD 1 GBP 2Payoff max , ,0S T K S T FX T K= − ⋅ −  (60) 

The Cora and Gora metrics can be derived as follows: Cora measures how sen-
sitive the option’s value is to changes in the correlation between the GBP asset 
price and the USD asset price. Mathematically, this sensitivity is expressed as: 

 
GBP,USD

Cora C
ρ
∂

=
∂

 (61) 

Gora measures the rate of change of the sensitivity (Cora) with respect to the 
correlation between the GBP and USD asset prices. It captures the curvature of 
the option price with respect to correlation changes, indicating how Cora itself 
responds as the correlation changes: 

 
2

2
GBP,USD

Gora C
ρ
∂

=
∂

 (62) 

Using the chain rule, the first partial derivative of C  with respect to GBP,USDρ  
is: 

 GBP USD

GBP,USD GBP GBP,USD USD GBP,USD GBP,USD

S SC C C C FX
S S FXρ ρ ρ ρ

∂ ∂∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (63) 

then, since the partial derivative of the FX rate process with respect to the corre-
lation is 0, we get: 
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 GBP USD

GBP GBP,USD USD GBP,USD

Cora
S SC C

S Sρ ρ
∂ ∂∂ ∂

= ⋅ + ⋅
∂ ∂ ∂ ∂

 (64) 

For the second partial derivative, we get: 
2

GBP USD
2

GBP,USD GBP GBP,USD USD GBP,USDGBP,USD

GBP GBP

GBP,USD GBP GBP,USD GBP GBP,USD GBP,USD

USD

GBP,USD USD GBP,USD

S SC C C
S S

S SC C
S S

SC C
S

ρ ρ ρρ

ρ ρ ρ ρ

ρ ρ

 ∂ ∂∂ ∂ ∂ ∂
= ⋅ + ⋅  ∂ ∂ ∂ ∂ ∂∂  

   ∂ ∂∂ ∂ ∂ ∂
= ⋅ + ⋅     ∂ ∂ ∂ ∂ ∂ ∂   

  ∂∂ ∂ ∂
+ ⋅ + ∂ ∂ ∂ ∂ 

USD

USD GBP,USD GBP,USD

S
S ρ ρ

 ∂∂
⋅   ∂ ∂ 

 (65) 

Simplifying fully, we get: 

 

22
GBP GBP

2
GBP GBP,USD GBP,USD GBP GBP,USD

22
USD USD

2
USD GBP,USD GBP,USD USD GBP,USD

Gora
S SC C

S S

S SC C
S S

ρ ρ ρ

ρ ρ ρ

∂ ∂∂ ∂
= ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

 (66) 

6.2. Case 2: Two FX Rates 

For the two FX rates case, the option payoff is given by: 

 
( ) ( ) ( )(
( ) ( ) )

USD 1 GBP USD/GBP 2

EUR USD/EUR 3

Payoff max , ,

,0

S T K S T FX T K

S T FX T K

= − ⋅ −

⋅ −
 (67) 

Here, Cora and Gora metrics need to account for multiple correlations: between 
GBP and USD asset prices and between EUR and USD asset prices. The Cora for 
each of these correlations would be defined as: 

 GBP,USD
GBP,USD

Cora C
ρ
∂

=
∂

 (68) 

 EUR,USD
EUR,USD

Cora C
ρ
∂

=
∂

 (69) 

Similarly, the Gora metrics would measure the second-order sensitivity for each 
of these correlations, indicating how each Cora changes with respect to changes 
in the corresponding correlations: 

 
2

GBP,USD 2
GBP,USD

Gora C
ρ
∂

=
∂

 (70) 

 
2

EUR,USD 2
EUR,USD

Gora C
ρ
∂

=
∂

 (71) 

Using the chain rule, the first partial derivative of C  with respect to ,GBP USDρ  
is: 

 

GBP USD

GBP,USD GBP GBP,USD GBP,USD

EUR USD/GBP

EUR GBP,USD USD/GBP GBP,USD

USD

S SC C C
S S

S FXC C
S FX

ρ ρ ρ

ρ ρ

∂ ∂∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ ⋅ + ⋅
∂ ∂ ∂ ∂

 (72) 
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Similarly, the first partial derivative of C  with respect to EUR,USDρ  is: 

 

EUR USD

EUR,USD EUR EUR,USD USD EUR,USD

GBP USD/EUR

GBP EUR,USD USD/EUR EUR,USD

S SC C C
S S

S FXC C
S FX

ρ ρ ρ

ρ ρ

∂ ∂∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ ⋅ + ⋅
∂ ∂ ∂ ∂

 (73) 

Simplifying further, we get: 

 GBP USD EUR
GBP,USD

GBP GBP,USD USD GBP,USD EUR GBP,USD

Cora
S S SC C C

S S Sρ ρ ρ
∂ ∂ ∂∂ ∂ ∂

= ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

 (74) 

 EUR USD GBP
EUR,USD

EUR EUR,USD EUR,USD GBP EUR,USD

Cora
USD

S S SC C C
S S Sρ ρ ρ

∂ ∂ ∂∂ ∂ ∂
= ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

 (75) 

For the second partial derivatives: 
2

GBP USD
2

GBP,USD GBP GBP,USD USD GBP,USDGBP,USD

EUR

EUR GBP,USD

GBP GBP

GBP,USD GBP GBP,USD GBP GBP,USD GBP,USD

GBP,USD USD

S SC C C
S S

SC
S

S SC C
S S

C
S

ρ ρ ρρ

ρ

ρ ρ ρ ρ

ρ

 ∂ ∂∂ ∂ ∂ ∂
= ⋅ + ⋅∂ ∂ ∂ ∂ ∂∂ 

∂∂
+ ⋅ ∂ ∂ 

   ∂ ∂∂ ∂ ∂ ∂
= ⋅ + ⋅     ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂
+
∂ ∂

USD USD

GBP,USD USD GBP,USD GBP,USD

EUR EUR

GBP,USD EUR GBP,USD GBP,USD GBP,USDEUR

S SC
S

S SC C
S S

ρ ρ ρ

ρ ρ ρ ρ

  ∂ ∂∂ ∂
⋅ + ⋅     ∂ ∂ ∂ ∂  

   ∂ ∂∂ ∂ ∂ ∂
+ ⋅ + ⋅     ∂ ∂ ∂ ∂ ∂ ∂   

 (76) 

Similarly, for EUR,USDρ : 
2

EUR USD
2

EUR,USD EUR EUR,USD USD EUR,USDEUR,USD

GBP

GBP EUR,USD

EUR EUR

EUR,USD EUR,USD EUR EUR,USD EUR,USD

EUR,USD

EUR

USD

S SC C C
S S

SC
S

S SC C
S S

C
S

ρ ρ ρρ

ρ

ρ ρ ρ ρ

ρ

 ∂ ∂∂ ∂ ∂ ∂
= ⋅ + ⋅∂ ∂ ∂ ∂ ∂∂ 

∂∂
+ ⋅ ∂ ∂ 

   ∂ ∂∂ ∂ ∂ ∂
= ⋅ + ⋅     ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂
+
∂ ∂

USD

EUR,USD USD EUR,USD EUR,USD

GBP GBP

EUR,USD EUR,USD GBP EUR,USD EUR,USD

USD

GBP

S SC
S

S SC C
S S

ρ ρ ρ

ρ ρ ρ ρ

  ∂ ∂∂ ∂
⋅ + ⋅     ∂ ∂ ∂ ∂  

   ∂ ∂∂ ∂ ∂ ∂
+ ⋅ + ⋅     ∂ ∂ ∂ ∂ ∂ ∂   

 (77) 

Therefore, we get: 

 

22
GBP GBP

GBP,USD 2
GBP GBP,USD GBP,USD GBP GBP,USD

22
USD USD

2
USD GBP,USD GBP,USD USD GBP,USD

22
EUR EUR

2
EUR GBP,USD GBP,USD EUR GBP,USD

Gora
S SC C

S S
S SC C

S S
S SC C

S S

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

∂ ∂∂ ∂
= ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

 (78) 
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22
EUR EUR

EUR,USD 2
EUR EUR,USD EUR,USD EUR EUR,USD

22
USD USD

2
USD EUR,USD EUR,USD USD EUR,USD

22
GBP GBP

2
GBP EUR,USD EUR,USD GBP EUR,USD

Gora
S SC C

S S

S SC C
S S

S SC C
S S

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

∂ ∂∂ ∂
= ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

 (79) 

7. Conclusions & Future Work 

Ultimately, we conclude that to accurately price and hedge multi-asset foreign eq-
uity quanto options, it is essential to incorporate stochastic correlations alongside 
stochastic volatilities and the appropriate modeling of stochastic FX rates. The 
payoffs of our Quanto call options incorporate multiple correlated underlying as-
sets weighted by the FX rate values (which are uncorrelated in our paper). This 
makes accurate modeling of the FX rates and stochastic correlation between the 
BMs of the underlying assets essential for achieving optimal performance in MC 
simulations. By systematically testing all combinations of choices for a varied se-
lection of SDEs for SC, SV, and SER, we identify the most effective configuration 
of our model. Overall, the combination of GARCH-Jump SV, OU FX rates, 
Weibull SC, and the Milstein or Runge-Kutta discretization scheme consistently 
performs well across both cases of the option and start dates we tested. We also 
find that incorporating mean reversion into stochastic correlation or stochastic 
FX rate modeling is beneficial for MC simulation pricing. Specifically, it seems 
that incorporating mean reversion into stochastic correlation models is beneficial 
not only to ensure simulated correlation paths stay within the realistic range [−1, 
1] but also since the motions of correlations between assets observed in the market 
demonstrate this property. 

Moreover, hedging correlation risks is a crucial aspect of using multi-asset 
Quanto options effectively in practice. We derive formulas for Cora and Gora of 
our Quanto options in terms of partial derivatives. Our derived Cora and Gora 
expressions can be made even more explicit by evaluating the partial derivatives 
for specific choices of SV and SC of the underlying assets, which allows for effi-
cient hedging of correlation risk for both cases of the options. The next step in 
our research is to extend our framework to handle payoffs involving three or 
more assets without necessarily including an asset in the investor’s domestic 
currency. The primary challenge of this extension is the increased number of 
stochastic differential equations (SDEs) that must be discretized and simulated, 
which grows quickly with the addition of more currencies and foreign equity 
indices. Another potential consideration for future work is introducing jumps 
into the stochastic correlation processes as we did with volatility (Bates and 
GARCH-Jump models). Whilst we do not test such models in this paper, sudden 
moves in correlations are also feasible in some market conditions, so this should 
be studied. In addition, modeling volatilities as driven by fractional Itô processes 
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(“fractional stochastic” or “rough” volatility models) is worth exploring. Fractional  

Brownian motion (fBM) with Hurst parameter 1
2

H >  can be used to better 

capture the long-memory property of volatility. The FSV model utilizes fractional 
Brownian motion H

tB  to incorporate long-memory effects, where the incre-

ments of H
tB  are positively correlated when 1

2
H > . This allows the model to 

capture the mean-reverting nature of volatility without explicit mean-reversion 
terms. The significance of the Hurst exponent H  lies in its ability to describe 

the roughness or smoothness of the volatility paths, with 1
2

H <  indicating 

roughness and 1
2

H >  indicating smoothness. This approach has the advantage  

of supposedly aligning better with observed market volatilities compared to tradi-
tional models. Additionally, there is potential to extend this framework to model 
stochastic correlation, allowing for both fractional stochastic volatility and frac-
tional stochastic correlation. As shown in Figure S32, for shorter rolling windows 
the observed correlations look like they could potentially be modeled more effec-
tively by a fractional stochastic process. 
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