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Abstract 
Geographical variations in all-cause mortality rates may be influenced by res-
idents’ place of residence and the time period under study. Understanding 
these variations is essential for designing effective public health interventions 
and optimizing resource allocation. This study aimed to identify small area 
level factors associated with all-cause mortality and to map hotspots of excess 
deaths across a region. The analysis produced relative mortality rates and ex-
ceedance probabilities to pinpoint areas with an excess burden of death. Re-
sults showed that all-cause mortality was particularly concentrated in the up-
per central and northern regions of the region, where many rural counties are 
located. Key factors associated with higher mortality rates included lower me-
dian income, younger median age, and a lower percentage of Hispanic popu-
lation in the counties studied. These findings highlight the importance of ad-
dressing income disparity in high-mortality areas, particularly in rural re-
gions, to guide resource allocation and develop targeted interventions that can 
most effectively reduce mortality rates where they are needed most. 
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1. Introduction 

One of the main indicators for assessing an overall population health status is the 
rate of all-cause mortality over time [1]-[4]. This indicator (mortality) portrays 
the cumulative effects of health care facilities and expenditures, socioeconomic 
factors, and environmental factors, among others [5]-[8]. The impacts of these 
factors on mortality may vary by geographic location, as some studies have shown 
that these factors occur at relatively high levels (e.g., state, country) [9]-[11], but 
limited work has been done at small-area levels. To fill this gap at the small-area 
level, this paper’s objective is to identify small areas (counties) with unusually high 
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or low mortality and assess the relationship between mortality rates and county-
level risk factors. For this purpose, we examined spatiotemporal trends in mortal-
ity for the counties of Florida from 2016 to 2020 by using Bayesian hierarchical 
models. 

Bayesian hierarchical models are very flexible for incorporating spatial and 
temporal structures of morality rates [12] [13]. Having such structures greatly in-
creases the computational time of the Markov chain Monte Carlo algorithm [14] 
[15], which is traditionally used to estimate Bayesian models. Alternatively, a 
more efficient algorithm is the integrated nested Laplace approximation (INLA) 
in R [16], which is suitable for assessing spatiotemporal variations in mortality 
rates in small areas such as counties. To explain spatiotemporal variations in mor-
tality rates, a modeling process incorporates risk factors for all-cause mortality, 
such as high-risk behaviors, sociocultural factors, accessibility to health care re-
sources, and environmental factors of residential areas [6] [7] [17]-[19]. At the 
individual level, high-risk behaviors (e.g., smoking, drinking, sedentary and poor 
diet), socioeconomic factors (e.g., income, education level, unemployment, pov-
erty), health resources (e.g., insurance, personal doctor, availability of health fa-
cilities), and environmental factors (e.g., infections, air and water pollution, occu-
pation) have an impact on all-cause mortality rates. Depending on the availability 
of data at the individual level, a unit-level model that is often used in small area 
estimation can also be used for disease mapping [20]. In residential areas, county-
level characteristics may also explain the variation in all-cause mortality rates. For 
this purpose, several county-level covariates are included in this study, such as the 
percentages of unemployment, education and health insurance, median income, 
income inequality index, median age, and health expenditure, which may impact 
mortality rates. Examining which of these risk factors contribute to geographic 
disparities in the all-cause mortality rate is an important endeavor for developing 
small-area-level health-related policies and interventions.  

2. Methods: Data and Modeling 

2.1. Sources of Data  

The data for this study were obtained from the Department of Health State of 
Florida, Bureau of Community and Health Assessment, Division of Public Health 
Statistics & Performance Management (DPHSM). All-cause death counts were 
aggregated at the record level by county for the 2016-2020 period. Those counts 
were the most recent publicly available data. Because an all-cause death count 
is not impacted by bias in determining the cause of death, it is an appropriate 
outcome for assessing the heterogeneity of mortality rates across counties over 
time to help develop interventions and policies for those most at risk. In Florida, 
there are 67 counties, and from each county, data on county-level characteristics 
(factors) were also obtained from the DPHSM. These factors (see Table 1) are 
used in the geospatial model, which is defined below.  
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2.2. Statistical Analysis 

For space-time mapping of mortality rates in small areas, total death counts are 
recorded along with the characteristics of the areas over time. To determine which 
areas exhibit higher or lower mortality rates, the standardized mortality ratio 
(SMR) is commonly computed for each area and specific time. The SMR is defined 
as the ratio of observed death counts to expected death counts [21] [22]. An SMR 
greater than 1 suggests higher mortality, and vice versa. Although its interpreta-
bility is simpler, it is usually an unstable indicator due to variation in the sizes of 
populations of small areas. A better approach is to use a spatiotemporal model 
that borrows information from neighboring areas and time points. To specify the 
spatiotemporal model, let the outcome variable itY  be the observed death count 
for the ith area and tth time ( 1,2, , ; 1, 2, ,i n t T= =  ), and let a q-dimensional 
vector itX  contain county-level risk factors with associated parameters β , hav-
ing a 1q×  dimension. We assume that the outcome variable follows a Poisson 
distribution with mean it it itEµ θ= , where itE  is the number of expected  

deaths in the ith area and at the tth time, calculated as iti
it it

iti

Y
E N

N
 

=   
 

∑
∑

; itN  is  

the number of individuals at risk; and itθ  is the county-specific relative risk of 
death from all causes. Specifically,  

( )~ Poisson , 1, , ; 1, ,it itY i n t Tµ = =                   (1) 

where, 

( ) ( ) ( )log log logit it itEµ θ= +                      (2) 

Furthermore, the log-risk is modeled as 

( )log it it i itθ α ψ= + + +X β                      (3) 

where α  is the overall log-risk and the q-dimensional vector of covariates, itX , 
contains the following county-level variables: median income, median age, ex-
penditure on health, percentage of health insurance, percentage of people with 
less than a high school education, income inequality index and unemployment 
rate. In Model (3), the spatial term i , is modeled as i i iu v= + , where iu  rep-
resents spatially unstructured heterogeneity distributed as ( )2~ 0,i uu N τ , while 

iv  represents spatially structured random effects, accounting for similarities of 
neighboring counties to have similar relative risks because of sharing common 
risk factors [23]-[25]. The distribution of iv  is given, based on the conditional 
autoregressive model [26], as  

( )2| , ~ ,i j i ii j Nν ν ν σ≠                       (4) 

where i i ij ijj jw wν ν= ∑ ∑  and 2 2
i ijj wνσ σ= ∑  and 1ijw =  if area i  and 

area j  are neighbors; otherwise, 0. The temporal term, itψ , is defined as 

it t t itψ ζ δ η= + + , where tζ  represents the temporally structured effect and is 
modeled using a random walk of first order as given below.  
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( )2
1| ~ , for 1,t t tN tζζ ζ ζ τ− + =  

( )( )2
1 1| 2 , 2 for 2, 1~ ,t t t tN t Tζζ ζ ζ ζ τ− − ++ = − , 

( )2
1| ~ , fort t tN t Tζζ ζ ζ τ− − = ; 

and tδ  represents temporally unstructured heterogeneity distributed as 

( )2~ 0,t N δδ τ ; and itη  denotes the interaction between space and time, 

( )2~ 0,it N ηη τ  [27].  
The parameters in models (1 - 4) are estimated using the Bayesian approach. 

For these parameters, noninformative prior distributions are determined. Accord-
ingly, each element of β  has a normal distribution with mean zero and a small 
precision (i.e., N(0, 0.001)); 1/ 2τ , 21 νσ , 21 ζτ , 21 δτ  and 21 ητ , each, follow a 
Gamma (1, 0.01), a default prior in INLA. Using the posterior distribution of itθ  
(relative rate of all-cause mortality for the ith county and in the tth year), it is pos-
sible to compute and map the probability that the mortality risk in a county ex-
ceeds a given threshold [28]. Thus, an exceedance probability can be used to de-
termine whether a county should be classified as having an excess risk (hotspot) 
of mortality [29]. In the Bayesian context, model comparisons can be performed 
using the deviance information criterion (DIC) [30] and the Watanabe-Akaike 
information criterion (WAIC) [31] [32]. The model with the smallest values of 
DIC and WAIC is preferred as the “best” model in terms of goodness of fit to the 
data. For estimation, we used the integrated nested Laplace approximation 
(INLA) software [16]. The software is particularly efficient for fitting spatial map-
ping models for disease incidences and can easily be used by researchers and prac-
titioners [33].  

3. Results  

The descriptive statistics of the county-level characteristics are given in Table 1. 
The average number of all-cause deaths per county showed a slight upward in-
crease from 2016 to 2020, except for a decrease in 2019. The median income, me-
dian age and health insurance coverage increased over time, while the percentage 
of adults with less than a high school education and unemployment rate (except 
for 2020) declined over time. The means of the income inequality index and ex-
penditures remained roughly constant. Looking at the magnitude of the standard 
deviations of death counts over time, it was clear that there was heterogeneity in 
mortality across counties. The presence of variation was also visually confirmed 
by examining spatial mappings of SMR over time (see Figure 1). According to the 
spatial distribution of SMR, higher mortality was observed in the northern coun-
ties than in the southern part of Florida. To explain such variability, a Bayesian 
spatiotemporal model (GSTM), given in Equation (3), was used to provide spatial 
smoothing of the unadjusted SMR estimates, providing more stable estimates of 
mortality rates.  
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Table 1. Descriptive statistics of county-level variables by year. 

Variables 
2016 2017 2018 2019 2020 

Mean SD Mean SD Mean SD Mean SD Mean SD 

All-cause death count 787.2 146.25 795.4 149.00 797.9 154.86 774.2 147.13 877.6 180.80 

Median income ($) 45,205 8382.3 47144 9125.6 49,046 9807.5 51,290 10,300 53,012 11,145 

Health insurance (%) 84.16 3.87 85.39 3.63 86.57 3.46 87.15 3.55 87.35 3.36 

Expenditure ($) 60.74 37.73 59.44 34.53 60.83 36.37 60.15 37.41 60.22 38.10 

Less than high school (%) 15.81 6.71 15.17 6.48 14.64 6.17 14.39 6.22 14.07 6.09 

Median age (year) 43.09 6.26 43.30 6.34 43.57 6.42 43.76 6.53 44.00 6.58 

Income inequality index 0.461 0.05 0.461 0.049 0.463 0.049 0.463 0.049 0.466 0.048 

Unemployment rate 5.08 0.85 4.34 0.71 3.78 0.62 3.67 0.68 6.64 1.53 

 

 
Figure 1. Spatial distribution of standardized mortality ratios (SMRs) of all-cause deaths 
in Florida (2016-2020). 

 
We fitted our data with three competing models (see Table 2 for model speci-

fications): 1) A fixed-effects model without spatial or temporal random effects 
(Model 1); 2) A mixed-effects model with a parametric temporal trend (Model 2); 
3) A mixed-effects model with a nonlinear nonparametric trend (Model 3). Ac-
cording to the Bayesian model comparison criteria displayed in Table 2, Model 1 
has the largest values of DIC (8005.22) and WAIC (18820.35), suggesting that ig-
noring spatial or temporal variation is not a good approach. Alternatively, both 
Model 2 and Model 3 incorporate spatial and temporal variations. Model 3 has a 
better fit to the data than Model 2 since its values of DIC (3536.84) and WAIC 
(3526.38) are smaller than those of Model 2. Thus, Model 3 is the best model, and 
the results from this model are presented in Table 3.  
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Table 2. Model specifications and comparisons (DIC = deviance information criterion, WAIC = Watanabe–Akaike information 
criterion). 

Model Specification Formula DIC WAIC 

Model 1: Fixed effects (no spatial or temporal  
random effects) 

( )log it it tθ α λ= + +X β   8005.22 18820.35 

Model 2: Mixed effects with parametric trend  
(spatial and temporal random effects) 

( )log it it i i iu v t tθ α λ ρ= + + + + +X β   3619.97 3991.69 

Model 3: Mixed effects with nonparametric trend 
(spatial and temporal random effects) 

( )log it it i i t t itu vθ α ζ δ η= + + + + + +X β   3536.84 3526.38 

 
Table 3. Estimated posterior mean (PM) and standard deviation (SD) of population pa-
rameters of Model (3) along with a lower limit (LCL) and upper limit (UCI) of the 95% equal-
tail credible interval (CI). 

Predictor PM SD LCL  UCI  

Black percent −0.0010 0.0017 −0.0043 0.0023 

Expenditure 0.0002 0.0003 −0.0005 0.0008 

Hispanic percent −0.0048 0.0018 −0.0083 −0.0011 

Income inequality 0.0155 0.0832 −0.1480 0.1783 

Insurance −0.0036 0.0028 −0.0091 0.0019 

Less than high school 0.0034 0.0025 −0.0015 0.0083 

Median income −0.0055 0.0013 −0.0081 −0.0028 

Median age −0.0067 0.0028 −0.0121 −0.0012 

Unemployment 0.0008 0.0027 −0.0045 0.0061 

 

 
Figure 2. Spatial distribution of the posterior means of the RRs of all-cause deaths in Flor-
ida (2016-2020). 
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Figure 3. The county-specific posterior exceedance probability that a county’s relative rate 
of all-cause mortality is greater than 1 (2016-2020). 

 
In Table 3, the posterior means, standard deviations and 95% credible intervals 

(CIs) for the fixed-effects parameters are displayed. The results show that the me-
dian income has a strong inverse association with the all-cause mortality rate 
( : 0. 55ˆ 00β = − , CI: (−0.0081, −0.0028), which does not include zero) after con-
trolling for other variables. This shows that residents living in counties with higher 
median incomes have a decreased mortality rate. It was also observed that there 
was a strong decrease in mortality for counties with higher percentages of His-
panic people per county after adjusting for other variables ( : 0. 48ˆ 00β = − , CI: 
(−0.0083, −0.0011)). In addition, the greater the median age per county was, the 
lower the rate of mortality ( : 0. 67ˆ 00β = − , CI: (−0.0121, −0.0012)).  

From the fitted model, adjusted relative rates (RR) of mortality were also ob-
tained for the purpose of spatial mapping. Figure 2 displays the spatial and tem-
poral distributions of RR. Figure 2 shows that there was not much temporal var-
iation from 2016 to 2020, implying that the trend of the relative rates of mortality 
for counties in Florida remained stable over that period. Figure 2 shows that there 
is a spatial clustering of high relative rates of mortality (pink and red) in the north-
ern part of Florida. Specifically, Union and Washington Counties had the highest 
mortality rates consistently across the 5-year period considered. On the other 
hand, Collier County in South Florida experienced the lowest relative mortality 
rate (blue) throughout the study period. Identifying hot spots for all-cause mor-
tality is a useful guide for implementing prevention and health policies. For this 
purpose, we can use an exceedance probability. The exceedance probability is the 
probability that a relative risk estimate for a county is greater than a given thresh-
old value, such as 1 or more. Figure 3 shows a map of the exceedance probabilities 
at a threshold value of 1. For ease of interpretation of the exceedance map, note 
that for those counties with probabilities close to 1, it is likely that their relative 
rates (RR) exceed 1; close to zero suggests that it is not very likely that their RRs 
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are greater than 1. As shown in Figure 3, the highest exceedance probabilities (i.e., 
Pr(RR > 1) was greater than 0.8) were found in northern Florida and partly in 
central Florida, accounting for approximately 73% of the total counties (67). Thus, 
further investigation is warranted for identifying other prominent risk factors (ob-
servable or unobservable) with the aim of reducing the burden of high mortality. 
Specifically, effective intervention programs may be implemented for those coun-
ties with high mortality rates.  

4. Discussion 

In this study, our analysis showed that there was not much temporal heterogeneity 
in the mortality rate over the 2016-2020 period, while there was substantial varia-
bility in mortality across small areas (counties). The geographical distributions 
(see Figures 1-3) of mortality rates revealed that relatively worse occurrences of 
mortality were clustered in the northern part of the state, and better mortality 
rates were consistently found in the southern part throughout the study period. 
Specifically, in the northern part, 84% of the counties had high mortality where 
the RRs were greater than 1, which means that there were more deaths than ex-
pected and implies the existence of health disparities. To explain this disparity, 
county-level covariates were used in Model 3. The findings indicated that county-
level relative rates of mortality were greater in counties with lower median in-
comes, younger median ages, and lower percentages of the Hispanic population 
after controlling for unemployment rate, health insurance, education, income in-
equality index, and health expenditure.  

One of the significant results of this study was that the percentage of the His-
panic population at the county level had an inverse association with all-cause mor-
tality. A plausible reason for such a finding may be that a greater percentage of the 
Hispanic population lives in southern Florida and larger cities with higher median 
incomes. This is consistent with what is known as a Hispanic paradox [34] [35]. 
In other words, although the fact that most Hispanic subpopulations have lower 
socioeconomic status and access to health care, their health and mortality out-
comes are better or similar to those of the white population [34]-[36]. Another 
variable that had a strong negative association with the mortality rate was the me-
dian age per county. Higher mortality rates were observed in counties of Florida 
with relatively younger populations (those with a lower median age) [37]. This 
may seem contrary to expectations but considering the structure of the number of 
deaths by county, approximately 72% of the rural counties had a median age of 
less than 45 years. Of the total number of counties (67) in Florida, 48% are rural 
counties that carry 73% of the high death burden. The reason why higher mortal-
ity occurs mostly in rural areas warrants further investigation. For our study, the 
unit of analysis is a county but not an individual. Accordingly, the interpretations 
of our results should reflect ecological effect. All our variables considered in this 
study were aggregated over individual residents and thus the results of our anal-
yses cannot be interpreted at the individual level. 
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There are some limitations to our ecological analyses. First, the analyses were 
limited by not having data on important risk factors for mortality. It was not pos-
sible to obtain county-level data on unhealthy lifestyle behaviors, health-impair-
ing environmental exposures, or access to resources. Second, interpretations of 
the results of the analyses require caution since our ecological model (the unit of 
analysis is a county) does not lead to inferences at the individual level. Third, if 
possible, using smaller granular-level detailed data may provide more insight to 
support policy decision-making.  

In conclusion, using a Bayesian method, we investigated county-level charac-
teristics that partly explained the spatiotemporal variations in all-cause deaths in 
the 2016-2020 period in Florida. The findings showed that counties with a higher 
median income, percentage of Hispanic population and median age had a lower 
mortality rate after adjusting for other covariates. Although we showed that there 
was geographical variation in all-cause mortality rates across counties, we ob-
served a high burden of death and a stagnation in the decline of mortality in rural 
counties. Thus, a better understanding of other risk factors would help practition-
ers and public officials use measures such as interventions and proper resource 
allocations to high-risk areas.  
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