
Open Journal of Applied Sciences, 2025, 15(1), 147-167
https://www.scirp.org/journal/ojapps

ISSN Online: 2165-3925
ISSN Print: 2165-3917

DOI: 10.4236/ojapps.2025.151011 Jan. 26, 2025 147 Open Journal of Applied Sciences

Efficient Resource Allocation in Cloud IaaS:
A Multi-Objective Strategy for Minimizing
Workflow Makespan and Cloud
Resource Costs

Jean Edgard Gnimassoun1, Dagou Dangui Augustin Sylvain Legrand Koffi2,
Akanza Konan Ricky N’dri3

1Département Informatique et Analyse de Donées, Université de San Pedro, San Pedro, Côte d’Ivoire
2Département Informatique, Ecole Supérieure Africaine des Technologies d’Information et de Communication,
Abidjan, Côte d’Ivoire
3Département Mathématiques et Informatique, Université Alassane Ouattara, Bouaké, Côte d’Ivoire

Abstract
The ease of accessing a virtually unlimited pool of resources makes Infrastruc-
ture as a Service (IaaS) clouds an ideal platform for running data-intensive
workflow applications comprising hundreds of computational tasks. However,
executing scientific workflows in IaaS cloud environments poses significant
challenges due to conflicting objectives, such as minimizing execution time
(makespan) and reducing resource utilization costs. This study responds to the
increasing need for efficient and adaptable optimization solutions in dynamic
and complex environments, which are critical for meeting the evolving demands
of modern users and applications. This study presents an innovative multi-ob-
jective approach for scheduling scientific workflows in IaaS cloud environments.
The proposed algorithm, MOS-MWMC, aims to minimize total execution time
(makespan) and resource utilization costs by leveraging key features of virtual
machine instances, such as a high number of cores and fast local SSD storage.
By integrating realistic simulations based on the WRENCH framework, the
method effectively dimensions the cloud infrastructure and optimizes resource
usage. Experimental results highlight the superiority of MOS-MWMC com-
pared to benchmark algorithms HEFT and Max-Min. The Pareto fronts ob-
tained for the CyberShake, Epigenomics, and Montage workflows demonstrate
closer proximity to the optimal front, confirming the algorithm’s ability to bal-
ance conflicting objectives. This study contributes to optimizing scientific work-
flows in complex environments by providing solutions tailored to specific user
needs while minimizing costs and execution times.

How to cite this paper: Gnimassoun, J.E.,
Koffi, D.D.A.S.L. and N’dri, A.K.R. (2025)
Efficient Resource Allocation in Cloud IaaS:
A Multi-Objective Strategy for Minimizing
Workflow Makespan and Cloud Resource
Costs. Open Journal of Applied Sciences, 15,
147-167.
https://doi.org/10.4236/ojapps.2025.151011

Received: December 6, 2024
Accepted: January 23, 2025
Published: January 26, 2025

Copyright © 2025 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2025.151011
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2025.151011
http://creativecommons.org/licenses/by/4.0/

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 148 Open Journal of Applied Sciences

Keywords
Cloud Infrastructure, Multi-Objective Scheduling, Resource Cost
Optimization, Resource Utilization, Scientific Workflows

1. Introduction

Scientific workflows offer a compelling way to represent the complex orchestra-
tion of interdependent computations and have become widely adopted across var-
ious scientific fields [1]. They enable users to define the different steps required to
process the large volumes of data typically generated by scientific experiments and
to produce original scientific outcomes. The execution of such data-intensive ap-
plications, which often involve hundreds of computational tasks on large-scale
distributed infrastructures, is generally managed by a Workflow Management
System (WMS) [2]. Tasks such as resource selection, data management, and com-
putation scheduling are handled by the WMS, thus shielding the end user from
the complexity of these operations.

For a long time, commodity clusters and computing grids were the preferred
infrastructures for running scientific workflows. Clusters, typically hosted and
managed by the institution owning the workflow, facilitated resource access, while
grids enabled scientists to scale their workflows by pooling resources from multi-
ple institutions. However, with the rise of major providers like Amazon [3],
Google [4], and Microsoft [5], Infrastructure as a Service (IaaS) clouds have
emerged as strong competitors to clusters and grids. IaaS clouds combine the ben-
efits of both by offering easy access to a virtually unlimited pool of resources. By
carefully planning the execution of a workflow, a WMS can dynamically build a
compute and storage infrastructure tailored to the workflow’s specific needs, uti-
lizing a customized set of virtual machine instances.

The description of a scientific workflow is typically independent of the charac-
teristics of the infrastructure on which it will be executed. This provides users with
greater flexibility, allowing them to run the same workflow on different infrastruc-
tures via the WMS without needing to modify their application. A direct conse-
quence of this flexibility is that dependencies between computational tasks (where
data produced by one task is consumed by another) are generally managed
through files. Intermediate data is written to disk, and the file may then be trans-
ferred over the network to another storage device, where the consuming task will
eventually read it.

In this paper, we propose to take advantage of two key features of a specific
family of virtual machine instances provided by Amazon Web Services: a large
number of cores and dedicated storage on high-speed SSD drives. By improving
data locality, this approach aims to reduce the amount of data transferred over the
network during workflow execution, which should have a direct and positive ef-
fect on the workflow’s execution time. Additionally, we propose using realistic

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 149 Open Journal of Applied Sciences

simulations to design a cloud infrastructure that strikes a good balance between
cost and performance. To achieve this, we developed a simulator built on the
WRENCH framework [6]. WRENCH enables the construction of Workflow Man-
agement System (WMS) simulators that are accurate, fast, scalable on a single ma-
chine, and require minimal software development effort.

The main contributions of this article are therefore:
• An innovative data-aware planning algorithm designed to minimize the

amount of data transferred over the network during workflow execution, based
on a specific set of virtual machine instances.

• A simulation-driven approach to solve the cost-performance optimization
problem and accurately size the virtual infrastructure required to execute a
given workflow.

This paper is organized as follows. Section 2 reviews the related work on sched-
uling of scientific workflows on IaaS clouds. In Section 3, we describe the platform
and application models used in this work. Then, in Section 4, we detail the pro-
posed approach for Multi-Objective Scheduling while Section 5 explains results
and discussion. Finally, we conclude this paper and present future work directions
in Section 6.

2. Related Work

The rise of cloud computing has transformed the management of scientific work-
flows, enabling the processing of large volumes of data with flexible and scalable
resources. However, task scheduling in a cloud environment remains a major
challenge, particularly due to multi-objective constraints such as minimizing
makespan (total execution time) and resource usage costs. This review explores
recent approaches proposed to address this problem, focusing on heuristic, meta-
heuristic, and hybrid algorithms.

IaaS cloud environments offer flexible and scalable infrastructure but pose sig-
nificant challenges for the efficient deployment of workflows. Shahid et al. [7] de-
veloped a multi-objective allocation strategy aimed at balancing execution time
(makespan) and resource usage costs. Their approach relies on heuristic algo-
rithms, demonstrating a significant improvement in efficiency compared to clas-
sical methods. However, despite its performance, this method does not account
for dynamic workload variations, limiting its adaptability. Zhang et al. [8] intro-
duced EHEFT-R, an enhancement of the Heterogeneous Earliest Finish Time
(HEFT) algorithm designed for multi-objective scheduling in heterogeneous
cloud environments. The algorithm incorporates an exploration strategy based on
evolutionary techniques, achieving a trade-off between minimizing makespan and
optimizing resource utilization. This method stands out for its efficiency in dy-
namic and complex environments often observed in cloud computing [8].
Hussain et al. [9] introduce a cost-aware and deadline-constrained scheduling al-
gorithm in a hybrid cloud environment. The focus is on meeting deadlines while
minimizing expenses, which is particularly useful for workflows with strict

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 150 Open Journal of Applied Sciences

temporal requirements. Simulations show that this approach outperforms tradi-
tional algorithms by balancing deadlines and costs. Mangalampalli et al. [10] in-
troduced an innovative method leveraging deep reinforcement learning to prior-
itize and schedule workflows in cloud computing. Their approach combines dy-
namic modeling with task prioritization based on multi-objective goals. This
method demonstrates significant improvements in scheduling accuracy and re-
source utilization, particularly in complex scenarios requiring rapid adaptability
[10].

Hybrid algorithms combine multiple approaches to leverage their respective
strengths. Malti et al. [11] proposed a hybrid optimization algorithm integrating
evolutionary and metaheuristic techniques for task scheduling in cloud environ-
ments. Their solution demonstrated optimal task allocation while reducing oper-
ational costs. Similarly, Abualigah and Diabat [12] introduced a bio-inspired op-
timization algorithm based on ant-lion behavior, which excels in complex envi-
ronments due to its efficient exploration of the search space. These approaches
highlight the power of hybrid solutions for scheduling problems, though they
often require manual parameter tuning, which may limit their generalizability.
Kruekaew and Kimpan [13] propose a hybrid approach combining the Artificial
Bee Colony (ABC) optimization algorithm and reinforcement learning. The ob-
jective is to address the load balancing problem in cloud environments while
meeting the goals of minimizing costs and makespan. This hybrid method
demonstrates increased efficiency by optimally distributing workloads. The study
by Doostali et al. [14] presents the CP-PGWO algorithm, combining Critical Path
concepts with the Grey Wolf Optimizer to address scheduling challenges. This
approach underscores the ability of hybrid algorithms to exploit the structural
features of workflows while adapting to workload variations in cloud environ-
ments [14]. The DE-GWO algorithm [15] combines Differential Evolution (DE)
optimization and Grey Wolf Optimization (GWO) for scheduling in heterogene-
ous fog-cloud environments. It aims to simultaneously minimize makespan and
cost while optimizing resource allocation between fog and cloud nodes. The re-
sults show significant improvements compared to existing algorithms, particu-
larly in environments with limited resources. The Enhanced Artificial Bee Colony
(ABC) algorithm, introduced by Zeedan et al. [16], exemplifies the effectiveness
of nature-inspired algorithms in workflow scheduling problems. This hybrid ap-
proach combines the advantages of bee colony behavior with local search mecha-
nisms, improving convergence toward optimal solutions. ABC is particularly
suited for cloud computing environments due to its ability to balance conflicting
objectives while ensuring efficient resource utilization [16]. Mohammadzadeh
and Masdari [17] proposed a hybrid approach that combines multi-objective al-
gorithms to optimize scientific workflows in multi-cloud environments. Their
model leverages the synergy between local and global search heuristics, yielding
robust solutions despite the complexity of tasks distributed across multiple clouds.
Calzarossa et al. [18] tackled workflow planning under uncertainty, integrating

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 151 Open Journal of Applied Sciences

parameters such as deadlines and budgets into a multi-objective approach. Their
algorithm showed substantial performance improvements in unpredictable re-
source conditions, emphasizing the importance of resilience in cloud computing
environments. Konjaang and Xu proposed the MOWOS (Multi-Objective Work-
flow Optimization Strategy), which applies optimization based on probabilistic
models [19]. Their study demonstrated that MOWOS effectively minimizes gaps
between theoretical and practical workflow performance by better modeling task
and resource uncertainties. Qin et al. [20] introduced a reliability-focused multi-
objective memetic algorithm for multi-cloud systems. Their approach balances
the trade-off between makespan minimization and reliability maximization by
combining global exploration mechanisms with local adjustments to enhance so-
lution quality. Belgacem and Beghdad-Bey [21] focused on the trade-off between
makespan and execution costs of workflows in the cloud. Their model simultane-
ously optimizes these objectives using a heuristic method tailored for highly het-
erogeneous environments. Modified genetic algorithms integrate adaptive tech-
niques to address uncertainties in cloud environments. Rizvi et al. [22] proposed
an approach incorporating fuzzy logic to dynamically adjust the parameters of a
genetic algorithm. This improves makespan and reduces costs under changing
conditions. A key strength of this method lies in its ability to adapt to unforeseen
workload variations, though its increased algorithmic complexity may pose chal-
lenges for implementation in large-scale systems.

The integration of multiple metaheuristics into a single optimization method
represents an emerging trend. Thekkepuryil et al. [23] developed an approach that
combines Genetic Algorithms (GA) with Particle Swarm Optimization (PSO).
This hybrid method enhances the exploration and exploitation of the search space,
leading to more efficient resource utilization and reduced workflow execution
times. Despite these advantages, implementing such algorithms can require sig-
nificant effort in terms of design and computational complexity. Cai et al. [24]
introduce a bi-level evolutionary algorithm for data-intensive scientific work-
flows. This multitasking algorithm allocates resources while considering task pri-
orities and optimizing costs and deadlines. The results demonstrate increased ef-
ficiency for complex workflows requiring intensive data management.

Workflow scheduling in cloud computing remains an active area of research,
with diverse approaches ranging from heuristics to hybrid algorithms incorporat-
ing learning techniques. However, challenges related to the dynamic nature of
cloud environments and multi-objective trade-offs demand new perspectives. The
proposed work aims to address these gaps by leveraging innovative techniques
and expanded criteria, thereby enhancing the capabilities of modern cloud sys-
tems.

The works analyzed in the literature review show a diversity of approaches to
solve the multi-objective optimization problem in workflow scheduling. Each
study proposes specific algorithms adapted to particular contexts, such as cloud,
multi-cloud, or fog-cloud environments, focusing on various objectives, such as

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 152 Open Journal of Applied Sciences

minimizing makespan, costs, or load balancing. However, these contributions also
present recurring limitations, particularly in terms of dynamic adaptability, scala-
bility, or management of complex environments. To better understand the
strengths and weaknesses of these methods, the following synthesis summarizes
the main characteristics of the approaches studied in Table 1.

Table 1. Comparative multi-objective workflow scheduling in cloud environments.

Reference Algorithm Method Limitations

[7]
Multi-Objective Workflow Allocation

Strategy
Heuristic approach

Does not handle dynamic
environments; lacks in-depth cost

analysis

[8] EHEFT-R
Extension of HEFT with
multi-objective criteria

Limited scalability in complex
multi-cloud environments

[9]
Deadline-Constrained Cost-Aware

Algorithm
Hybrid optimization based on
deadlines and cost constraints

Limited optimization for data-intensive
workflows

[10]
Multi-Objective Prioritized Scheduling

(A3C-based)
Deep reinforcement learning (A3C)

Performance depends heavily on the
quality of training data

[11] Hybrid Multi-Objective Algorithm Hybrid metaheuristic
High algorithmic complexity; difficult

to apply in real-time environments

[12] Hybrid Antlion Optimization Algorithm
Bio-inspired algorithms (Antlion +

heuristic strategies)
Lacks dynamic adaptation to resource

changes

[13]
Hybrid ABC Algorithm with

Reinforcement Learning
Bio-inspired (Artificial Bee Colony,

ABC) + reinforcement learning
Limited efficiency for highly complex

workflows

[14] CP-PGWO
Critical path + Grey Wolf Optimi-

zation
Requires frequent manual adjustments

for non-standard workflows

[15] DE-GWO
Differential Evolution + Grey Wolf

Optimization
Limited performance for unexpected

workload surges

[16] Enhanced Hybrid ABC Algorithm
Artificial Bee Colony +

multi-objective optimization
Does not account for multi-cloud

environments

[17] Hybrid Multi-Objective Algorithm
Hybrid methodology for

multi-cloud environments
Limited optimization for workflows

with strict deadline constraints

[18]
Deadline-Budget Workflow

Optimization
Bi-objective optimization

(deadline + budget)
Highly sensitive to uncertainty in cloud

resources

[19]
MOWOS (Multi-Objective Workflow

Optimization Strategy)
Multi-objective approach for cloud

environments
Simplified approach, lacks adaptability

for real-time workflows

[20]
Reliability-Aware Multi-Objective

Memetic Algorithm
Memetic metaheuristic

Moderate performance for
data-intensive workflows

[21] Trade-off Between Makespan and Cost Multi-objective optimization Does not handle dynamic workloads

[22] Fuzzy Adaptive Genetic Algorithm Genetic algorithm + fuzzy logic
Increased complexity as the number of

tasks grows

[23]
Meta-Heuristic Based Hybrid

Optimization
Hybrid metaheuristic

Suboptimal results for evolving
multi-cloud environments

[24] Bi-Level Evolutionary Algorithm
Bi-level multitask evolutionary

optimization
Requires high computational resources

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 153 Open Journal of Applied Sciences

3. Platforms and Applications Models

In this study, we design our platform model based on a standard IaaS cloud setup,
deploying various virtual machine (VM) instances across physical servers within
a single datacenter. Our focus is on VMs comparable to Amazon EC2 M5 in-
stances, particularly the M5d series, which, unlike standard M5 instances relying
on Amazon Elastic Block Storage (EBS), feature local NVMe SSD storage. Table
2 provides the specifications of the M5d instances used.

The M5d instance series offers virtual cores (vCPUs) ranging from 2 to 96, with
a consistent memory allocation of 4 GiB per core. These instances are typically
deployed on nodes equipped with Intel Xeon Platinum 8000 series processors. A
unique feature of M5d instances is the inclusion of high-speed, block-level SSD
storage directly linked to the instance’s lifecycle. Our study leverages this fast stor-
age, shared among but exclusive to the instance’s vCPUs, to store intermediate
files generated during workflow execution. This approach minimizes data trans-
fers across the network for tasks assigned to the same VM, with only the work-
flow’s input and output files stored on an external storage node.

Network bandwidth between instances and EBS varies by instance size. We as-
sume that only the largest instances (48, 64, and 96 vCPUs), which can occupy a
full node, are assured bandwidths of 10, 20, and 25 Gbps, respectively. For smaller
instances (2 to 32 cores), the bandwidth is proportional to the number of cores,
allocated at 208.33 Mbps per core. All VMs deployed for a specific workflow are
interconnected through a single switch.

For M5d instances, the VM-to-EBS connection is established via a dedicated
network link, integrated into our simulation environment. We assume that the
network bandwidth between a VM and EBS is proportional to the number of cores
for VMs with up to 32 cores, estimated at 218.75 Mbps per core.

The costs indicated, in dollars per hour, correspond to on-demand Linux in-
stances in the US-East (Ohio) region as of the time of writing this article.

Table 2. Characteristics of the AWS M5d instances.

Model vCPU
Memory

(GiB)
Instance Storage (GiB)

Network Bandwidth
(Gbps)

EBS Bandwidth
(Mbps)

Cost
($ per Hour)

m5d.large 2 8 1 × 75 NVMe SSD Up to 10 Up to 3,500 0.113

m5d.xlarge 4 16 1 × 150 NVMe SSD Up to 10 Up to 3,500 0.226

m5d.2xlarge 8 32 1 × 300 NVMe SSD Up to 10 Up to 3,500 0.452

m5d.4xlarge 16 64 2 × 300 NVMe SSD Up to 10 3,500 0.904

m5d.8xlarge 32 128 2 × 600 NVMe SSD 10 5,000 1.808

m5d.12xlarge 48 192 2 × 900 NVMe SSD 10 7,000 2.712

m5d.16xlarge 64 256 4 × 600 NVMe SSD 20 10,000 3.616

m5d.24xlarge 96 384 4 × 900 NVMe SSD 25 14,000 5.424

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 154 Open Journal of Applied Sciences

The scientific workflows we aim to schedule are modeled as Directed Acyclic
Graphs (DAGs), denoted as { },G T=  , where { }| 1, ,i Tt iT ==  represents
the set of vertices corresponding to the computational tasks of the workflow, and

() { } { }{ }, , 1, , 1,| ,i je i j T T= ∈ ×  is the set of edges between these vertices, in-
dicating either data dependencies (i.e., file transfers) or control flows between
tasks. We focus on workflows consisting of numerous sequential tasks that run on
a single core, reflecting the structure of real-world scientific applications. Each
task within the workflow has an estimated execution time, requires specific input
files to start, and produces output files upon completion. To evaluate our contri-
butions, we consider three workflow applications from the Pegasus Workflow
Gallery [25]. Specifically, we use synthetic workflows generated by the Workflow
Generator Toolkit [26], which resemble those used in real-world scientific appli-
cations but with a higher task count. The primary characteristics of these applica-
tions are presented in Table 3, and their structures are illustrated in Figure 1.

Table 3. Some characteristics of used workflows.

Workflow Tasks Input Files Size (GB) Total Files Size (GB)

CyberShake 1000 150.76 400.39

Epigenomics 997 1217.72 1230.93

Montage 1000 0.65 17.32

Figure 1. Structure of the used workflows (http://pegasus.isi.edu).

• Epigenomics: A data processing pipeline designed to automate the execution

of various genome sequencing operations.
• CyberShake: An application developed by the Southern California Earthquake

Center to assess earthquake hazards.
• Montage: An astronomy application that creates customized mosaics of the

sky by stitching together multiple images.

4. Proposed Approach for Multi-Objective Scheduling

To generate the different platforms and avoid wasting resources, i.e. avoid leasing
resources that will not be used, the number of tasks that can be executed in parallel

https://doi.org/10.4236/ojapps.2025.151011
http://pegasus.isi.edu/

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 155 Open Journal of Applied Sciences

for each of the workflows is determined. To do this, the platform is oversized, i.e.
this platform has as many cores as there are tasks in the workflow. In the case of
the workflows used in this study, there are 1000 tasks, so the platform with 1000
cores is considered. This allowed to determine the total number of cores that could
be used in parallel for each of the workflows. Thus, for CyberShake, 374 cores are
used in parallel while for Epigenomics and Montage it is respectively 246 and 662
cores used in parallel. This preliminary study will be used in following section in
order to determine the limit of platforms to be used for each workflow in experi-
ments. For each workflow, we consider infrastructures where we vary (i.e. in-
crease) the maximum number of cores per VM (from 2 cores to 96 cores maxi-
mum). For a total number of cores to be used, we generate platforms with 2 cores
per VM, 4 cores per VM, ..., 96 cores per VM. The platforms composed of 2 cores
per VM provide poor execution times compared to platforms of 32 cores per VM
and they themselves provide poor execution times compared to platforms of 96
cores per VM. The increasing of the total number of cores per VM provides good
execution times. It is for this reason that this study favor large VMs (i.e. VMs with
several cores) because these VMs can execute several tasks in parallel and consid-
erably reducing the makespan.

4.1. Makespan Minimization Approach

Our primary focus is on workflows consisting of a substantial number of sequen-
tial tasks, each running on a single core (a pattern frequently observed in real-
world scientific applications). Each task in the workflow has a predefined or esti-
mated duration, requires specific input files to start, and generates output files
upon completion.

To represent the input and output files for a given task it , we use the notation
i
kInput for input files and i

kOutput for output files, where k denotes the file
index.

When an output file generated by one task it is needed as an input by another
task jt , this establishes a data dependency between it and jt , represented by
the ,i je . Furthermore, there are input files that are not produced by any tasks
within the workflow; these are referred to as the workflow’s entry files and serve
as the starting point for its execution.

Conversely, the output files that are not required by any subsequent tasks in the
workflow are referred to as the exit files. To aid in the scheduling process, two
important quantities are defined for each task in the workflow. These metrics are
essential for making effective scheduling decisions: the Local Input Volume (LIV)
of task it on machine kvm , denoted as i

kLIV , represents the total size of the
input files required by task it that are locally available on kvm ; similarly, the
Local Output Volume (LOV) of it on machine kvm , denoted as i

kLOV , repre-
sents the cumulative size of the output files generated by task it . These output
files are needed by the successors of task it , and the successors are also scheduled
on kvm . If a file is used by multiple successors, its size is counted as many times

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 156 Open Journal of Applied Sciences

as there are successors. The LIV of an entry task and the LOV of an exit task are
set to zero by definition.

During workflow execution, all intermediate files (those generated by one task
and consumed by another) are stored locally on the SSD storage of one or more
machines. In contrast, the workflow’s entry and exit files are stored on the Elastic
Block Store (EBS) service, accessible to all machines participating in the workflow.
The time required to transfer a file between machines includes the time to read
the file from the source machine’s disk, the network transfer duration, and the
time to write the file to the destination machine’s disk.

The goal of this algorithm is to minimize the total execution time (makespan)
by considering both the parallel execution of tasks and the reduction of data trans-
fers across the network. Although the study does not explicitly account for data
transfer time, the algorithm is designed to minimize network transfers as much as
possible. However, completely avoiding these transfers is often unfeasible due to
the complexity of task dependencies.

The algorithm starts by creating a sorted scheduling list that includes all tasks
in the workflow (lines 1 - 2), ordered by their bottom-level values in descending
order. The rank of a task it , denoted iRank , is the length of the longest path
from it to the end of the workflow. This rank includes the estimated duration of
all tasks along this path, including it . Following the approach in [27], we also
account for the estimated data transfer costs when computing the rank values of
tasks. This prioritization ensures that the most critical tasks are given higher pri-
ority, while also respecting the dependencies between tasks. Next, the algorithm
assigns an initial mapping for each task it in the set T (lines 3-7). The chosen
virtual machine vm from the set VM is the one that: (i) minimizes the start
time of it and (ii) maximizes the volume of input files already stored locally for

it . The reasoning behind this is that when multiple virtual machines can start it
at the same time, the algorithm favors the machine that reduces data transfers over
the network, thus improving overall efficiency. Since all the virtual machine in-
stances in consideration are multi-core, scheduling a task it on a machine vm
requires maintaining a local schedule within the virtual machine. To optimize the
use of the available cores, each virtual machine is managed similarly to how a job
and resource manager would handle tasks. Keeping track of the number of pro-
cessors available on each virtual machine is essential for determining the earliest
possible start time for a new task on that machine (i.e., i

kst). Once vm is se-
lected for the execution of it , the number of processors available on vm is up-
dated accordingly (line 6).

The workflow is processed level by level, from the bottom to the top (lines 8–
40). This approach is motivated by the fact that, during the initial top-to-bottom
placement, only the data volume from a task’s direct predecessors can be consid-
ered. It is not feasible to account for the data locality required by a task’s direct
descendants, as their placements have not yet been established. Consequently, this
can result in avoidable data transfers.

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 157 Open Journal of Applied Sciences

Level 0 is defined as the topmost level of the Directed Acyclic Graph (DAG),
containing all entry tasks of the workflow. Each subsequent task’s level is recur-
sively calculated as the maximum level of its predecessors plus one. The total num-
ber of levels in the workflow is denoted by L.

We begin by saving the current start time i
c st and the current mapping ivm

for each task it in lT (lines 11-12). Next, we calculate the local volume i
kLV

for task it on machine kvm (lines 13-15). Afterward, we store the local volume
for the current mapping of it (line 16) before canceling the current mapping
(line 17).

Canceling the mapping of all the tasks at a given level creates idle processors of
different machines. These processors can be leveraged to enhance data locality by
“migrating” certain tasks from one machine to another. The conditions for mi-
grating a task it from its previous mapping to a new mapping on kvm are two-
fold: it must improve data locality, i.e., i i

k cLV LV≥ , and reduce the task’s start
time, i.e., i i

k cst st≤ (lines 21 - 27).
At each step, the algorithm aims to find a better mapping for each task by pri-

oritizing the machine that offers the largest increase in local data volume. If this
machine also allows the task to start earlier, it is selected for a new tentative map-
ping. The first option (lines 28 - 31) is to execute the task and update the processor
count, provided that its ready time aligns with its calculated start time (line 29),
which does not include data transfer time.

The second option (lines 32 - 37) applies if the ready time of a task is strictly
earlier than its calculated start time (line 32). In this case, if all predecessor tasks

jt , whose calculated finish time coincides with the calculated start time of the
ready task it , have finished their execution (i.e., they have released at least one
processor) (line 33), then it is executed, and the count of available processors is
updated (lines 34–35). Note that the calculated finish and start times do not factor
in data transfer time but rather consider the data transfer volumes.

Equations (1) and (2) will be used subsequently to determine the non-domi-
nated solutions that we will represent on the Pareto front. It should be noted that
the proposed algorithm allows to minimize the makespan for a given total number
of computing cores, i.e. for a given platform. Equation (2) allows to determine the
cost corresponding to the use of this IaaS platform.

Algorithm: Minimizing makespan

1: Compute iRank for each task it

2: Sort T by decreasing iRank values

3: for all it T∈ do

4: vm ← { kvm VM∈ | i
kst is minimal and i

kLIV is maximal}

5: Map it on vm

6: Update kproc

7: endfor

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 158 Open Journal of Applied Sciences

Continued

8: for l L= to 0 do

9: lT ← tasks in level l sorted by decreasing Rank values

10: for all i lt T∈ do

11: i
c st ← current start time of it

12: ivm ← current mapping of it

13: for all kvm VM∈ do

14: i i i
k k kLV LIV LOV← +

15: endfor

16: i
c LV ← current local volume of it

17: Cancel the current mapping of it

18: endfor

19: for all i lt T∈ do

20: sort VM by decreasing i
kLV values

21: while i i
k cLV LV≥ do

22: if i i
k cst st≤ then

23: Map it on kvm

24: Update kproc

25: break

26: endif

27: endwhile

28: if 0kproc ≥ then

29: if i i
k krt st= then

30: Execute it on kvm

31 Update kproc

32: else if i i
k krt st< then

33: if all tasks jt | j j
k kft st= are computed then

34: Execute it on kvm

35: Update kproc

36: endif

37: endif

38: endif

39: endfor

40: endfor

The makespan of a workflow, also referred to as its execution time, is calculated

as the difference between the real start time of the first task and the real finish time
of the last task. The real start time of a task it (denoted as ()iRST t) is when the
task begins transferring its input files, while the real finish time (()iRFT t) is when

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 159 Open Journal of Applied Sciences

the task completes transferring its output files. Therefore, the makespan of a work-
flow can be defined as:

(){ } (){ }

max min
ii

i i

t Tt T
Makespan RFT t RST t

∈∈
= − (1)

4.2. Cost Optimization Strategy for Cloud Resource Utilization

We assume that each utilized virtual machine (VM) is billed on a per-second basis.
Consequently, the cost associated with the execution of the workflow is defined
as:

_ _ _Cost cost per core total cores Makespan= ∗ ∗ (2)

where _ _cost per core represents the unit cost per core per second, and
_total cores denotes the total number of core utilized during the execution of the

workflow.

5. Results and Discussion

Figure 2 highlights the inverse relationship between the two objectives under
study: makespan (total execution time) and cost, as a function of the number of
allocated cores. Initially, as the number of cores increases, the makespan decreases
significantly. This is due to the enhanced parallelism capability, allowing more
tasks to be executed simultaneously. However, this reduction in execution time is
accompanied by a progressive increase in cost, as resource usage prices in a cloud
environment are directly tied to the number of cores utilized. This inverse rela-
tionship becomes even more pronounced beyond a certain threshold (approxi-
mately 50 - 100 cores), where adding additional resources results in only marginal
reductions in makespan, while costs continue to rise almost linearly. In other
words, beyond a certain point, each additional core contributes little to perfor-
mance improvement but significantly inflates costs. This observation underscores
the challenge of achieving a perfect balance between these two objectives, as fur-
ther reducing makespan entails exponential cost increases.

Figure 2. Makespan and cost evolution for the CyberShake scientific
workflow.

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 160 Open Journal of Applied Sciences

In the Epigenomics workflow (Figure 3), a trend similar to that observed in
other workflows such as CyberShake (Figure 2) becomes evident: the two objec-
tives (makespan and cloud resource usage cost) exhibit opposing behaviors as the
number of available cores increases. When the number of cores increases, the
makespan (depicted by the blue curve) initially decreases drastically. This im-
provement is due to the enhanced ability to parallelize more tasks within the
workflow, thereby reducing the total execution time. Simultaneously, the red
curve representing the cost shows a progressive and non-linear increase with the
number of cores. This is because the cost calculation formula depends on both the
makespan and the total number of cores. Although the makespan decreases, the
addition of more resources drives up expenses, particularly in configurations with
a large number of cores. An important observation in such graphs is the presence
of a zone where a trade-off between minimal makespan and acceptable cost is
achievable. In the case of the Epigenomics workflow, this zone appears to be in
the range of 40 to 100 cores, where the makespan reduction is significant, yet the
cost increase remains moderate. Beyond a certain threshold (approximately 200
cores), the cost becomes excessively high without yielding a substantial reduction
in makespan. This underscores the importance of an appropriate resource-sizing
strategy to avoid unnecessary costs.

Figure 3. Makespan and cost evolution for the Epigenomics scientific
workflow.

Figure 4 for the Montage workflow illustrates an inversely proportional rela-

tionship between the makespan and cost as a function of the total number of cores
used. When the number of cores increases, the workflow execution time
(makespan) decreases rapidly in the initial stages. This effect is particularly pro-
nounced for smaller numbers of cores, where adding additional resources signif-
icantly enhances performance. However, as the number of cores continues to
grow, the improvement becomes marginal, and the curve flattens, indicating a
saturation effect where additional resources have a limited impact on the
makespan. Conversely, the cost increases almost linearly with the total number of
cores. This phenomenon is explained by the cost calculation formula, where

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 161 Open Journal of Applied Sciences

increased resource usage directly translates into higher expenses, even as the
makespan improvements diminish. This highlights the inherent trade-off in cloud
resource allocation between minimizing execution time and managing costs ef-
fectively.

Figure 4. Makespan and cost evolution for the Montage scientific work-
flow.

The main purpose of such a study lies in identifying an optimal trade-off be-

tween the conflicting objectives of makespan and cost. This trade-off is repre-
sented by a Pareto front, which encompasses all non-dominated solutions, where
an improvement in one objective can only be achieved at the expense of the other.
Analyzing the behavior of these curves not only allows us to visualize the complex
relationship between these two objectives but also to identify strategic solutions
tailored to the specific needs of users or applications. Below, we present the Pareto
fronts obtained for the different workflows studied, highlighting the optimal so-
lutions in this multi-objective space.

The main objective of our algorithm is to help IaaS cloud users find a good
trade-off between the execution time and cost of their workflow by selecting sets
of VM instances on a Pareto front. In this section, we evaluate the quality of the
Pareto front solutions produced by our algorithm. In the previous sections, we
have shown that to minimize the execution time for a fixed number of cores, pri-
ority should be given to large VM instances. To obtain the Pareto front given by
our algorithm, it is therefore sufficient to perform a simulation for each total num-
ber of cores and discard all dominated solutions. Two solutions, Si and Sj, are con-
sidered equivalent if the same tasks are assigned to different but equivalent VMs
with identical start times. During each iteration, only one representative of such
equivalent solutions is retained. Furthermore, in all iterations except the final one,
only strictly dominated solutions are eliminated. A solution Si is strictly domi-
nated by a solution Sj if both the execution time and cost of Si are strictly higher
than those of Sj. This approach ensures that intermediate solutions, which could
lead to better schedules, are not prematurely discarded. In the final iteration, how-
ever, all simply dominated solutions (i.e., solutions where one metric is worse) are

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 162 Open Journal of Applied Sciences

removed. The three algorithms exhibit similar behaviors, with a rapid decrease in
cost as makespan increases from the initial points, followed by stabilization. The
MOS-MWMC algorithm (red points) demonstrates superior dominance over the
entire set of solutions. Its curve is generally closer to the origin, indicating a better
trade-off between makespan and cost. Compared to HEFT and MAX-MIN, MOS-
MWMC is able to provide solutions with slightly lower costs while maintaining
competitive makespans. The HEFT algorithm (dashed green line) follows a simi-
lar trajectory but is slightly less efficient than MOS-MWMC for most trade-offs.
HEFT solutions tend to have slightly higher costs, especially in the low makespan
region. However, for very high makespans, HEFT reaches the performance of
MOS-MWMC, indicating convergence. The MAX-MIN algorithm (dashed blue
line) is generally less effective. Its curve is often above those of MOS-MWMC and
HEFT, indicating higher costs for similar makespans. This difference is more pro-
nounced in the region where the makespan is low, suggesting that MAX-MIN is
not optimal for minimizing both objectives simultaneously. The superiority of
MOS-MWMC is evident in the critical areas where the trade-off between makespan
and cost is most important (low makespans). This demonstrates the algorithm’s
ability to effectively balance these two conflicting objectives for the scientific
workflow CyberShake (Figure 5).

Figure 5. Pareto fronts for CyberShake.

The Epigenomics workflow (Figure 6) reveals a markedly superior perfor-
mance of the MOS-MWMC algorithm compared to the HEFT and Max-Min
methods. The points generated by MOS-MWMC stand out due to their proximity
to the Pareto front, demonstrating an enhanced ability to provide optimal solu-
tions by simultaneously minimizing both cost and makespan. This proximity re-
flects the effectiveness of MOS-MWMC in balancing the two objectives, a crucial
aspect for complex workflows. In contrast, the HEFT and Max-Min algorithms,
while following similar trends, struggle to achieve the same levels of performance.
For equivalent makespan values, the costs associated with the solutions of HEFT
and Max-Min are significantly higher, highlighting their relative inadequacy for

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 163 Open Journal of Applied Sciences

this type of workflow. Furthermore, the solutions from these two algorithms ex-
hibit greater dispersion, suggesting variability in their ability to effectively opti-
mize the objectives.

Figure 6. Pareto fronts for Epigenomics.

In the case of the Montage workflow (Figure 7), MOS-MWMC confirms its
superiority by generating solutions that also approach the Pareto front, even in
scenarios with more pronounced trade-offs between cost and makespan. The ro-
bustness of this algorithm is particularly evident in its ability to maintain an opti-
mal balance between the two objectives, even for extreme points where cost or
execution time becomes the priority. In contrast, the HEFT and Max-Min algo-
rithms, while displaying similar trajectories to those observed for Epigenomics,
remain inferior in terms of the quality of the solutions produced. HEFT, while
slightly more effective than Max-Min in this case, fails to reach the optimal trade-
offs proposed by MOS-MWMC. The increased complexity of the Montage work-
flow is reflected in the variability of the solutions obtained, further highlighting
the adaptive capacity of MOS-MWMC in the face of diverse workflow profiles.

Figure 7. Pareto fronts for Montage.

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 164 Open Journal of Applied Sciences

The analysis of the results for the CyberShake, Epigenomics, and Montage
workflows highlights the consistent superiority of the MOS-MWMC approach
over the HEFT and Max-Min algorithms. MOS-MWMC excels in its ability to
balance the conflicting objectives of cost and makespan, demonstrating remarka-
ble robustness and adaptability in complex and varied workflow environments.
The solutions generated by this algorithm are characterized by their proximity to
the Pareto front, offering trade-offs that effectively meet the demands of cloud
environments. In summary, MOS-MWMC emerges as the preferred solution for
scheduling scientific workflows in cloud computing environments, especially in
scenarios where multi-objective optimization is critical. Its consistent perfor-
mance and flexibility make it an essential approach for addressing challenges re-
lated to resource efficiency and time constraints.

Table 4 represents a comparison of the performance parameters for the three
algorithms MOS-MWMC, HEFT and Max-Min, based on typical results from our
simulations. The MOS-MWMC algorithm dominates on most criteria, notably
due to its ability to simultaneously optimize makespan and costs, while efficiently
exploiting virtual machine (VM) resources. As for HEFT, this algorithm offers
acceptable performances but remains inferior to MOS-MWMC on multi-objec-
tive trade-offs, particularly for complex workflows. On the other hand, the per-
formances of the Max-Min algorithm are generally inferior, notably in terms of
costs and makespan minimization, which makes it less suitable for demanding
cloud environments.

Table 4. Performance criteria for MOS-MWMC, HEFT, and Max-Min.

Performance Criteria MOS-MWMC HEFT Max-Min

Proximity to Pareto Front
Very high (optimal solutions close to

the front): 98%
Medium (solutions slightly
farther from the front): 85%

Low (solutions far from the
front): 70%

Makespan Minimization
Very efficient

(maximum reduction)
Efficient but less than

MOS-MWMC
Less efficient

(high makespan)

Cost Reduction Excellent (optimized cost)
Moderate (cost moderately

optimized)
Low (high cost)

Task Dependency
Management

Very well managed
Adequate but can be

improved
Less effective

Adaptability to Dynamic
Environments

Very high
(flexibility and robustness)

Medium
(limited adaptability)

Low (not flexible)

Algorithmic Complexity Moderate (well-balanced)
Medium (less complex than

MOS-MWMC)
Low (simple algorithm)

Data Transfer Reduction Very effective: 60% Moderate: 40% Less effective: 25%

Resource Utilization
Optimized (better VM utilization):

85%
Moderate: 75% Suboptimal: 60%

Convergence Time (ms) Fast: 500 Average: 700 Slow: 1200

https://doi.org/10.4236/ojapps.2025.151011

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 165 Open Journal of Applied Sciences

6. Conclusions

Infrastructure as a Service (IaaS) clouds now enable scientists to run data-inten-
sive workflows on customized infrastructures designed to meet the specific com-
puting and storage needs of these applications. Selecting the appropriate set of
virtual machine instances to form these infrastructures is a challenging task, typ-
ically handled by Workflow Management Systems. Maximizing performance
hinges on effectively utilizing the unique characteristics of these virtual machine
instances.

In this paper, we proposed an innovative multi-objective approach called MOS-
MWMC. The MOS-MWMC algorithm establishes itself as a benchmark solution
for multi-objective workflow scheduling in IaaS cloud environments. Unlike the
HEFT and Max-Min algorithms, MOS-MWMC stands out for its ability to sim-
ultaneously optimize makespan and costs while maintaining robust and adaptable
performance. This efficiency is attributed to several key strengths. Firstly, the al-
gorithm generates solutions that are close to the Pareto front, ensuring an optimal
trade-off between conflicting objectives. Secondly, it significantly reduces data
transfers through a strategy of local storage for intermediate files, thereby mini-
mizing network communication, a major advantage over HEFT and Max-Min.

Moreover, MOS-MWMC makes optimal use of virtual machine resources by
leveraging their features, such as a high number of cores and fast storage, resulting
in better task distribution and more efficient utilization of cloud infrastructures.
Additionally, its robustness in handling complex workflows, as demonstrated by
its performance on CyberShake, Epigenomics, and Montage, makes it particularly
suitable for diverse and demanding scenarios. Experimental results show that
MOS-MWMC consistently outperforms HEFT and Max-Min in minimizing
makespan and optimizing costs, further validating its relevance in addressing the
challenges of modern cloud environments.

Finally, this study opens up promising future prospects, including the evalua-
tion of MOS-MWMC in real cloud environments and the integration of additional
objectives, such as energy consumption reduction. These potential advancements
would further enhance the relevance of this algorithm for industrial applications,
where performance, flexibility, and cost control are critical.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Taylor, I.J. Deelman, E. Gannon, D.B. and Shields, M. (2007) Workflows for e-Sci-

ence. Springer. https://doi.org/10.1007/978-1-84628-757-2

[2] Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., et al. (2015)
Pegasus, a Workflow Management System for Science Automation. Future Genera-
tion Computer Systems, 46, 17-35. https://doi.org/10.1016/j.future.2014.10.008

[3] Amazon EC2—Service d’hébergement cloud évolutif.
https://aws.amazon.com/fr/ec2/

https://doi.org/10.4236/ojapps.2025.151011
https://doi.org/10.1007/978-1-84628-757-2
https://doi.org/10.1016/j.future.2014.10.008
https://aws.amazon.com/fr/ec2/

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 166 Open Journal of Applied Sciences

[4] des PVC de disque persistant. https://cloud.google.com/products/compute

[5] "Services de Cloud Computing. Microsoft Azure. https://azure.microsoft.com/fr-fr/

[6] Casanova, H., Tanaka, R., Koch, W. and Ferreira da Silva, R. (2021) Teaching Parallel
and Distributed Computing Concepts in Simulation with Wrench. Journal of Parallel
and Distributed Computing, 156, 53-63. https://doi.org/10.1016/j.jpdc.2021.05.009

[7] Shahid, M., Ashraf, Z., Alam, M., Ahmad, F. and Imran, M. (2021) A Multi-Objective
Workflow Allocation Strategyin IaaS Cloud Environment. 2021 International Con-
ference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater
Noida, 19-20 February 2021, 308-313.
https://doi.org/10.1109/icccis51004.2021.9397081

[8] Zhang, H., Wu, Y. and Sun, Z. (2021) EHEFT-R: Multi-Objective Task Scheduling
Scheme in Cloud Computing. Complex & Intelligent Systems, 8, 4475-4482.
https://doi.org/10.1007/s40747-021-00479-7

[9] Hussain, M., Luo, M., Hussain, A., Javed, M.H., Abbas, Z. and Wei, L. (2023) Dead-
line-Constrained Cost-Aware Workflow Scheduling in Hybrid Cloud. Simulation
Modelling Practice and Theory, 129, Article 102819.
https://doi.org/10.1016/j.simpat.2023.102819

[10] Mangalampalli, S., Hashmi, S.S., Gupta, A., Karri, G.R., Rajkumar, K.V., Chakrabarti,
T., et al. (2024) Multi Objective Prioritized Workflow Scheduling Using Deep Rein-
forcement Based Learning in Cloud Computing. IEEE Access, 12, 5373-5392.
https://doi.org/10.1109/access.2024.3350741

[11] Malti, A.N., Hakem, M. and Benmammar, B. (2023) A New Hybrid Multi-Objective
Optimization Algorithm for Task Scheduling in Cloud Systems. Cluster Computing,
27, 2525-2548. https://doi.org/10.1007/s10586-023-04099-3

[12] Abualigah, L. and Diabat, A. (2020) A Novel Hybrid Antlion Optimization Algorithm
for Multi-Objective Task Scheduling Problems in Cloud Computing Environments.
Cluster Computing, 24, 205-223. https://doi.org/10.1007/s10586-020-03075-5

[13] Kruekaew, B. and Kimpan, W. (2022) Multi-Objective Task Scheduling Optimization
for Load Balancing in Cloud Computing Environment Using Hybrid Artificial Bee
Colony Algorithm with Reinforcement Learning. IEEE Access, 10, 17803-17818.
https://doi.org/10.1109/access.2022.3149955

[14] Doostali, S., Babamir, S.M. and Eini, M. (2021) CP-PGWO: Multi-Objective Work-
flow Scheduling for Cloud Computing Using Critical Path. Cluster Computing, 24,
3607-3627. https://doi.org/10.1007/s10586-021-03351-y

[15] Shukla, P. and Pandey, S. (2023) DE-GWO: A Multi-Objective Workflow Scheduling
Algorithm for Heterogeneous Fog-Cloud Environment. Arabian Journal for Science
and Engineering, 49, 4419-4444. https://doi.org/10.1007/s13369-023-08425-0

[16] Zeedan, M., Attiya, G. and El-Fishawy, N. (2022) Enhanced Hybrid Multi-Objective
Workflow Scheduling Approach Based Artificial Bee Colony in Cloud Computing.
Computing, 105, 217-247. https://doi.org/10.1007/s00607-022-01116-y

[17] Mohammadzadeh, A. and Masdari, M. (2021) Scientific Workflow Scheduling in
Multi-Cloud Computing Using a Hybrid Multi-Objective Optimization Algorithm.
Journal of Ambient Intelligence and Humanized Computing, 14, 3509-3529.
https://doi.org/10.1007/s12652-021-03482-5

[18] Calzarossa, M.C., Vedova, M.L.D., Massari, L., Nebbione, G. and Tessera, D. (2021)
Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling
in Uncertain Clouds. IEEE Access, 9, 89891-89905.
https://doi.org/10.1109/access.2021.3091310

https://doi.org/10.4236/ojapps.2025.151011
https://cloud.google.com/products/compute
https://azure.microsoft.com/fr-fr/
https://doi.org/10.1016/j.jpdc.2021.05.009
https://doi.org/10.1109/icccis51004.2021.9397081
https://doi.org/10.1007/s40747-021-00479-7
https://doi.org/10.1016/j.simpat.2023.102819
https://doi.org/10.1109/access.2024.3350741
https://doi.org/10.1007/s10586-023-04099-3
https://doi.org/10.1007/s10586-020-03075-5
https://doi.org/10.1109/access.2022.3149955
https://doi.org/10.1007/s10586-021-03351-y
https://doi.org/10.1007/s13369-023-08425-0
https://doi.org/10.1007/s00607-022-01116-y
https://doi.org/10.1007/s12652-021-03482-5
https://doi.org/10.1109/access.2021.3091310

J. E. Gnimassoun et al.

DOI: 10.4236/ojapps.2025.151011 167 Open Journal of Applied Sciences

[19] Konjaang, J.K. and Xu, L. (2021) Multi-Objective Workflow Optimization Strategy
(MOWOS) for Cloud Computing. Journal of Cloud Computing, 10, Article No. 11.
https://doi.org/10.1186/s13677-020-00219-1

[20] Qin, S., Pi, D., Shao, Z., Xu, Y. and Chen, Y. (2023) Reliability-Aware Multi-Objective
Memetic Algorithm for Workflow Scheduling Problem in Multi-Cloud System. IEEE
Transactions on Parallel and Distributed Systems, 34, 1343-1361.
https://doi.org/10.1109/tpds.2023.3245089

[21] Belgacem, A. and Beghdad-Bey, K. (2021) Multi-Objective Workflow Scheduling in
Cloud Computing: Trade-off between Makespan and Cost. Cluster Computing, 25,
579-595. https://doi.org/10.1007/s10586-021-03432-y

[22] Rizvi, N., Ramesh, D., Wang, L. and Basava, A. (2023) A Workflow Scheduling Ap-
proach with Modified Fuzzy Adaptive Genetic Algorithm in IaaS Clouds. IEEE Trans-
actions on Services Computing, 16, 872-885. https://doi.org/10.1109/tsc.2022.3174112

[23] Kakkottakath Valappil Thekkepuryil, J., Suseelan, D.P. and Keerikkattil, P.M. (2021)
An Effective Meta-Heuristic Based Multi-Objective Hybrid Optimization Method for
Workflow Scheduling in Cloud Computing Environment. Cluster Computing, 24,
2367-2384. https://doi.org/10.1007/s10586-021-03269-5

[24] Cai, X., Li, M., Zhang, Y., Zhao, T., Zhang, W. and Chen, J. (2024) Multitasking Bi-
Level Evolutionary Algorithm for Data-Intensive Scientific Workflows on Clouds.
Expert Systems with Applications, 238, Article 121833.
https://doi.org/10.1016/j.eswa.2023.121833

[25] Automate, Recover, and Debug Scientific Computations. Pegasus WMS.
https://pegasus.isi.edu/

[26] Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M. and Vahi, K. (2008) Char-
acterization of Scientific Workflows. 2008 Third Workshop on Workflows in Support
of Large-Scale Science, Austin, 17 November 2008, 1-10.
https://doi.org/10.1109/works.2008.4723958

[27] Gerasoulis, A. and Yang, T. (1992) A Comparison of Clustering Heuristics for Sched-
uling Directed Acyclic Graphs on Multiprocessors. Journal of Parallel and Distrib-
uted Computing, 16, 276-291. https://doi.org/10.1016/0743-7315(92)90012-c

https://doi.org/10.4236/ojapps.2025.151011
https://doi.org/10.1186/s13677-020-00219-1
https://doi.org/10.1109/tpds.2023.3245089
https://doi.org/10.1007/s10586-021-03432-y
https://doi.org/10.1109/tsc.2022.3174112
https://doi.org/10.1007/s10586-021-03269-5
https://doi.org/10.1016/j.eswa.2023.121833
https://pegasus.isi.edu/
https://doi.org/10.1109/works.2008.4723958
https://doi.org/10.1016/0743-7315(92)90012-c

	Efficient Resource Allocation in Cloud IaaS: A Multi-Objective Strategy for Minimizing Workflow Makespan and Cloud Resource Costs
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Platforms and Applications Models
	4. Proposed Approach for Multi-Objective Scheduling
	4.1. Makespan Minimization Approach
	4.2. Cost Optimization Strategy for Cloud Resource Utilization

	5. Results and Discussion
	6. Conclusions
	Conflicts of Interest
	References

