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Abstract 
This experimental study assesses the effectiveness of traditional and nano-ma-
terials in enhancing the physical and mechanical properties of deteriorated 
sandstone from Ramesses III Temple, Karnak, Luxor, Egypt. Treatments in-
cluded Nano Estel (5%), Paraloid B-72 (3%), Paraloid B-72/Nano Estel (3%/5%), 
and ethyl silicates. Treated samples underwent Scanning Electron Microscopy 
(SEM) and physical/mechanical testing. Results show that Paraloid B-72/Nano 
Estel (3%/5%) yielded optimal consolidation, significantly improving sand-
stone’s physical and mechanical properties. 
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1. Introduction 

Cultural heritage conservation is vital, as historical buildings provide irreplaceable 
insights into architectural innovation and societal development. This research ex-
plores the prominence of sandstone in ancient Egyptian construction and artistry, 
examining its role in iconic temples and sculptures, and highlighting its cultural 
significance [1]. Ancient Egyptian temples were constructed from sandstone, a 
sedimentary rock prone to weathering, face degradation due to high porosity and 
moisture exposure [2]. Salt crystallization beneath the surface of porous stone 
causes structural pressure, leading to cracking due to hydration-dehydration cycles 
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[3]. This study explores how geological background affects sandstone character-
istics, focusing on predictive relationships between mineralogical properties and 
uniaxial compressive strength [4]. Iron compound oxidation in stone leads to 
color alteration and structural degradation. 

The clay-rich cementing phase in sandstones predisposes them to degradation 
through moisture-driven expansion/contraction and salt-mediated stress [5] [6]. 
Deterioration symptoms through granular disintegration, exfoliation, detachment, 
cracking, efflorescence, discoloration, and microbiological colonization [7]. Pa-
raloid B72’s suitability for stone conservation is substantiated by numerous stud-
ies demonstrating its adhesive and consolidate properties [8]. Studies confirm Pa-
raloid B72’s efficacy, providing comprehensive pore filling (90%) and particle cov-
erage, enhancing sandstone durability [9]. Ethyl silicate consolidants, producing 
colloidal silica, offer excellent compatibility with silicate-based stones like sand-
stone [10]. Nano Estel restores stone cohesion via nano silica’s siloxane bond (Si-
O-Si) formation through hydrolysis, condensation, and polymerization. Hydrol-
ysis-induced silanol formation and subsequent condensation polymerization fa-
cilitate nano silica-mediated stone consolidation [11]. Recent research confirms 
improved consolidation efficiency and strength of ancient building materials us-
ing nano silica and nano titanium [12]. This study explores Nano composite ap-
plications in consolidation of sandstone, demonstrating improved physical, chem-
ical, and mechanical properties, and enhanced durability for stone monuments 
[13], comparative evaluation of treated sandstone samples reveals enhanced con-
solidation and protection via nanoparticle-acrylic polymer composites, nanopar-
ticle-infused polymers demonstrate improved efficiency in sandstone consolida-
tion and preservation. 

2. Ramsses III Temple 

The Temple of Ramses III, situated within the Karnak temple complex in Luxor, 
showcases ancient Egyptian architecture’s grandeur (Figure 1, Figure 2) [12]. 
Sandstone degradation accelerates in harsh environments, characterized by tem-
perature fluctuations, moisture and pollution, environmental factors, including 
temperature swings and moisture, exacerbate sandstone deterioration, thermal 
expansion-induced cracking threatens sandstone integrity in fluctuating environ-
mental conditions. 

Chemical characteristics, including solubility, corrosion resistance, and weath-
ering resistance, are intimately linked with physical properties such as density, 
porosity, and hardness. A strong correlation exists between chemical qualities 
(solubility, corrosion resistance, weathering resistance) and physical attributes 
(density, porosity, hardness) of materials [13]. Sandstones predominantly com-
prise quartz, a resilient detrital mineral characterized by its strong silicon-oxygen 
bonds, resistance to chemical weathering, and absence of cleavage [14]. Sand-
stone weathering durability is closely tied to pore space characteristics, including 
porosity, permeability, and pore geometry, especially in clay-dominated matri-
ces/pseudo matrices [15]. 
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Figure 1. The first hypostyle hall of Ramesses III Temple. 
 

 

Figure 2. Location of Karnak in Egypt (https://www.britannica.com/place/Karnak). 

Field Observations and Deterioration Causes 

Ramesses III temple walls exhibit pronounced deterioration, particularly in lower 
sections, due to fluctuating temperature and relative humidity. Repeated expan-
sion and contraction of mineral granules induce internal stresses, leading to crack-
ing [16]. The Temple of Ramses III’s proximity to the Nile River, coupled with its 
elevated position (2 m above surrounding land), exposes sandstone structures to 
heightened moisture levels from subsurface water, exacerbating deterioration. 
Groundwater infiltration into the Temple of Ramses III’s foundations, facilitated 
by capillary action, introduces salts detrimental to stone blocks. Temperature and 
humidity fluctuations exacerbate sandstone degradation through mineral grain 
disintegration [17]. The Temple of Ramses III’s sandstone surfaces undergo phys-
ical, chemical, and mechanical deterioration due to plant root growth, bird drop-
pings, and bacterial activity. Soluble salts in avian excrement exacerbate degrada-
tion (Figure 3) [18]. 
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Figure 3. Different deterioration symptoms of Ramesses III temple (A) macro-cracks spread 
on the surfaces. (B) Black weathering due to Loss of scales. (C) alveolar weathering due to 
lose of stone material. (D) Relief. (E) Break out due to natural cause. (F) Efflorescences to 
light-colored crust changing the surface. (G) Microbiological colonization to dark-colored 
crust tracing the surface. (H) Granular disintegration into powder. (i) weathering out de-
pendent on stone structure. 

3. Materials and Methods 
3.1. Materials 
3.1.1. Preparation of Sandstone Samples  
Sandstone samples from Jabal Al-Silsilah quarries (Figure 4) were precision-cut 
into 3 × 3 × 3 cm cubes, oven-dried (65˚C, 24 h) and cooled (RH 50%) according 
to ASTM standards, ensuring constant weight for treatment testing. 

 

 

Figure 4. The prepared representative samples. 
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3.1.2. Consolidation Materials 
• Paraloid B-72 

Paraloid B-72, a 70/30 ethyl methacrylate (EMA) and methyl acrylate (MA) co-
polymer, was prepared as a 3% (w/v) solution in toluene. 
• Ethyl Silicate  

SILRES BS OH 100, an ethyl silicate-based consolidate, penetrates construction 
materials via capillary action, forming a durable SiO2 gel binder upon reaction 
with atmospheric humidity or moisture. The treated area should be protected 
against rain during the following two to three days. It is also important that the 
area be protected against direct sunlight prior to treatment. If the building mate-
rial is allowed to absorb too much heat, the product will evaporate too quickly and 
therefore will not penetrate sufficiently. The optimum temperatures for applica-
tion are between 10˚C and 20˚C. The relative humidity should be >40%. 
• Nano Estel  

Nano Estel, a colloidal nano-silica dispersion (10 - 20 nm), exhibits enhanced 
penetrability and stability due to sodium hydroxide (NaOH < 0.5%) stabilization, 
demonstrating an alkaline pH (9.8 - 10.4). 

Because of the water evaporation, the particles bind among themselves forming 
a silica gel, similarly to what happens for ethyl silicate, and thus determining the 
consolidating effect. Nano Estel’s Nano-silica particles undergo evaporative-in-
duced aggregation, forming a three-dimensional silica gel network, thereby en-
hancing material cohesion. 
• Nano Estel+ Paraloid B-72 

A nanocomposite consolidant was synthesized by dispersing 3% silica nanopar-
ticles within Paraloid B-72/trichloroethylene solutions, as shown Table 1. 

 
Table 1. The consolidation materials and Sample’s number. 

Samples code Consolidation Materials  

1 - 6 Nano Estel 5% 

7 - 12 Paraloid B-72 3% 

13 - 18 Nano Estel + B-72 5% - 3% 

19 - 24 Ethyl Silicate 5% 

3.2. Methods 
3.2.1. Examinations 
The mineralogical composition of sandstone samples was investigated using trans-
mitted polarized light microscopy (Olympus BX50) and X-ray diffraction (Pert 
Pro Phillips MPD PW 3050/60) at HBRC laboratories, Dokki, Giza, Egypt. Scan-
ning Electron Microscopy (SEM) investigation was performed on deteriorated 
sandstone samples using a JEOL JSM-5500 LV (JEOL, Japan) at laboratories of 
South valley university. Scanning Electron Microscopy (SEM) investigation aimed 
to assess consolidation material penetration and distribution within sandstone 
grains and components, evaluating consolidation efficacy. 
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3.2.2. Physical and Mechanical Properties of the Samples 
The impact of consolidation materials on physical and mechanical properties of 
sandstone samples were assessed through quantitative measurements. 

1) Visual examination 
Post-consolidation, sandstone samples exhibited varying degrees of visual 

change, dependent on treatment material. 
2) Physical Properties 
Physical properties (density, water absorption, and porosity) of untreated and 

treated sandstone samples were evaluated using standard test methods [19] [20]. 
3) Mechanical Properties 
Compressive strength values of untreated and consolidated sandstone samples 

were determined following [standard/test method, e.g., ASTM C109] [21]-[23]. 

4. Consolidation Process 

Consolidation treatments were applied to 24 sandstone samples, divided into four 
groups: Nano Estel (A), Paraloid B72 (B), Paraloid B72/Nano Estel (C), and ethyl 
silicate (D). 

Treatment materials’ suitability for consolidation of sandstone were assessed 
through immersion testing to ensure safe and effective application, Sandstone 
samples underwent 21-day consolidation treatment via immersion in respective 
materials, allowing complete polymerization, as shown Figure 5.  

 

 

Figure 5. The sandstone samples after consolidation. 

5. Results and Discussion  
5.1. Mineralogical and Textural Composition 

Petrographic examination indicated the quartz arenite sandstone sample is char-
acterized by quartz grains (95%) cemented by micritic carbonate and featuring lo-
calized iron oxide coatings, and also, thin orange and brown coating at edges of 
some quartz grains which due to presence of iron content as shown in (Figure 6). 
On the other hand, XRD showed a complete agreement with polarizing microscope 
as quartz represents the primary mineral in studied sandstone forming minerals 
associated with traces of feldspar (albite) as detected in XRD pattern (Figure 7).  
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Figure 6. Photograph of the deteriorated sandstone. 
 

 

Figure 7. XRD pattern of the deteriorated sandstone. 

5.2. SEM Results 

Scanning Electron Microscopy (SEM) facilitated characterization of consolidation 
material properties and sandstone interaction, illustrating treatment efficacy, the 
samples were shown in (Figure 8). Consolidation treatments yielded varying de-
grees of success, visible through SEM micrographs that show different consolida-
tion effects: 

1) Nano Estel: Deep penetration and dense packing. 
2) Paraloid B-72: Good penetration and pour filling. 
3) Nano Estel + B-72: Enhanced coating and filling. 

500um
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4) Ethyl Silicate: Uniform diffusion. 
 

 

Figure 8. SEM micrographs of the treated sandstone samples. (A) The SEM examination 
of the treated samples with Nano Estel (1.500X). (B) The examination of the treated sam-
ples with Paraloid B-72 (1.500X). (C) The SEM examination of the treated samples with 
Nano Estel+B-72 (1.500X). (D) The examination of the treated samples with Ethyl Silicate 
(1.500X).  

5.3. Physical Properties of the Treated Samples 

Consolidation material success hinges on minimal visual impact, specifically no 
discernible color or appearance alteration of the building materials, Visual inspec-
tion of treated samples provides preliminary assessment of treatment efficacy, 
subsequent testing follows visual evaluation, with materials exhibiting noticeable 
appearance changes being disqualified, it is excluded even if this material proves 
to be successful in the other tests. Treated sandstone samples underwent visual 
inspection and comparison to untreated controls to determine consolidation ef-
fectiveness, Visual evaluation ranked consolidation materials by transparency: 
Nano Estel (1st), Paraloid B72/Nano Estel (2nd), Paraloid B72 (3rd), and Ethyl 
Silicate (4th) (Table 2).  

 
Table 2. Visual examination of the consolidated samples. 

Samples cod Consolidation Material Effect of appearance 

A Nano Estel No Surface changes 

B Paraloid B-72 slight color change 

C Nano Estel + B-72 slight color change 

D Ethyl Silicate Noticeable color change 

 
Water repellency testing ranked consolidation materials: Paraloid B72 (1st), Pa-

raloid B72/Nano Estel (2nd), Ethyl Silicate (3rd), and Nano Estel (4th) (Figure 9). 
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Figure 9. Water Repellents of the treated samples after consolidation. 
 

The Paraloid B72/Nano Estel mixture yielded a porosity rate of 6.71%, repre-
senting a 55.53% reduction compared to the untreated sample (15.09%); Paraloid 
B-72 treatment yielded a porosity rate of 8.67%, representing a 42.54% reduction 
from the untreated sample (15.09%); Nano Estel-treated samples exhibited a po-
rosity rate of 9.72%, showing a 35.58% reduction. Ethyl Silicate-treated samples 
ranked lowest, Ethyl Silicate-treated samples exhibited the highest porosity rate 
(10.72%), representing a 29.68% reduction from the untreated sample (15.09%) 
(Table 3, Figure 10). 

 
Table 3. The means values of the physical properties of the treated samples. 

Samples code Consolidation Material Porosity % Density g/cm3 Water absorption % 

X Untreated Sample 15.09 2.17 27.2 

A Nano Estel 9.72 2.25 17.16 

B Paraloid B-72 8.67 2.30 15.63 

C Nano Estel + B-72 6.71 2.35 12.11 

D Ethyl Silicate 10.61 2.20 19.14 
 

 

Figure 10. The mean values of physical properties after treatments. 
 

The Nano Estel + Paraloid B-72 mixture exhibited the lowest water absorption 
rate (12.11%), representing a 55.47% reduction compared to the untreated sample 
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(27.2%), Paraloid B-72-treated samples exhibited an average water absorption rate 
of 15.63%, representing a 43.53% reduction compared to the standard sample, 
Nano Estel-treated samples showed 17.16% water absorption, a 36.91% reduction. 
Ethyl silicate-treated samples exhibited 19.14% absorption, a 29.63% decrease 
(Table 3, Figure 10). 

Density measurements were conducted to assess the efficacy of various consoli-
dating materials. The results indicated a significant increase in density values for 
treated samples, with Paraloid B72/Nano Estel-treated samples achieving an aver-
age density of 2.35 g/cm3, representing an 82.94% increase compared to untreated 
samples, which recorded 2.17 g/cm3. Subsequently, Paraloid B-72-treated samples 
exhibited a mean density of 2.30 g/cm3, representing an 59.90% increase compared 
to untreated samples. Nano Estel-treated samples exhibited a mean density of 2.25 
g/cm3, representing a 36.86% increase. The average density of ethyl silicate-treated 
samples was 2.20 g/cm3, with an 18.43% enhancement (Table 3, Figure 10). 

5.4. Mechanical Properties 

The Paraloid B-72/Nano Estel-treated samples achieved the highest compressive 
strength value of 232 kg/cm2, compared to 170 kg/cm2 for the untreated sample. 
The compressive strength of Paraloid B-72-treated samples reached 218 kg/cm2, 
exceeding the untreated sample. The compressive strength of Nano Estel-treated 
samples reached 192 kg/cm2. Finally, samples treated with ethyl silicate showed a 
compressive strength of 188 kg/cm2 (Table 4) (see Figure 11). 

 
Table 4. The means values of mechanical properties of the treated samples. 

Samples code Consolidation Materials Compressive strength (Kg/cm2) 

X Untreated Sample 170 

A Nano Estel 192 

B Paraloid B72 218 

C Nano ESTEL + B72 232 

D Ethyl Silicate 188 

 

 

Figure 11. The mean values compressive strength of the treated samples. 
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6. Conclusions and Recommendations  

Dependence on the obtained results among the recent study, it can be concluded 
that: 

1) The selection of consolidation materials for the studied sandstone required 
materials closely resembled to its physical, mineralogical, and chemical character-
istics. 

2) Four consolidation materials were chosen carefully to achieve the aim of the 
recent study. Two of them were classified as traditional involving Paraloid B72 
and Ethyl Silicate while others were classified as nano consolidated materials in-
volving Nano Estel and Nano Estel added Paraloid B72. 

3) The positive effect of consolidation materials can be appeared from the re-
gression in the water absorption and porosity for treated samples compared to 
untreated sample associated with increase in values of bulk density and compres-
sive strength for treated samples in compare with untreated samples. 

4) The most promising obtained results achieved by treated sandstone samples 
with 5% nano estel particles with 3% Paraloid B_72 compared to individually 
treated with nanomaterials. 

Finally, it can be recommended that Nano Estel + B72 the most suitable con-
solidation materials for the studied sandstone. 
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