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Abstract 
 
This paper deals with the position control of robot manipulators with uncertain and varying-time payload. 
Proposed is a set of novel N-PID regulators consisting of a linear combination of the proportional control 
mode, derivative control mode, nonlinear control mode shaped by a nonlinear function of position errors, 
linear integral control mode driven by differential feedback, and nonlinear integral control mode driven by a 
nonlinear function of position errors. By using Lyapunov’s direct method and LaSalle’s invariance principle, 
the simple explicit conditions on the regulator gains to ensure global asymptotic stability are provided. The 
theoretical analysis and simulation results show that: an attractive feature of our scheme is that N-PID regu-
lators with asymptotic stable integral actions have the faster convergence, better flexibility and stronger ro-
bustness with respect to uncertain and varying-time payload, and then the optimum response can be achieved 
by a set of control parameters in the whole control domain, even under the case that the payload is changed 
abruptly. 
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1. Introduction 
 
It is well known that PID controllers can effectively deal 
with nonlinearity and uncertainties of dynamics, and 
asymptotic stability is achieved accordingly [1–3]. Hence, 
most robots employed in industrial operations are con-
trolled through PID controllers that introduce integral 
action by integrating the error. It is well known that inte-
gral-action controllers with this class of integrator often 
suffer a serious loss of performance due to integrator 
windup, which occurs when the actuators in the control 
loop saturate. Actuator saturation not only deteriorates 
the control performance, causing large overshoot and 
long settling time, but also can lead to instability, since 
the feedback loop is broken for such saturation. To avoid 
this drawback, various PID-like controllers have been 
proposed to improve the transient performance. For ex-
ample, PID controllers consisting of a saturated-P, and 
differential feedback plus a PI controller driven by a 
bounded nonlinear function of position errors [4], a lin-
ear PD feedback plus an integral action of a nonlinear 
function of position errors [5], a linear derivative feed-
back plus a PI term driven by a nonlinear function of 
position errors [1], a linear PD feedback plus double in-
tegral action driven by the positions error and the filtered 

position [6], a linear PD feedback plus an integral action 
driven by PD controller [7], and a linear PD feedback 
plus an integral action driven by NP-D controller [8], are 
presented recently. 

In this paper, we propose a set of new global position 
controllers for robots which do not include their dynam-
ics in the control laws. Motivated by the idea that is in-
troducing the nonlinear action of the position errors into 
PD-NI controller [5] and modifying the nonlinear inte-
gral action via injection of the required damping so that 
the transient performance of the closed-loop system may 
be improved, we develop a set of new N-PID-like regu-
lators consisting of a linear combination of the propor-
tional control mode, derivative control mode, nonlinear 
control mode shaped by a nonlinear function of position 
errors, linear integral control mode driven by differential 
feedback, and nonlinear integral control mode driven by 
a nonlinear function of position errors. The simple ex-
plicit conditions on the regulator gains to ensure global 
asymptotic stability are provided. 

Throughout this paper, we use the notation )(Am  
and )(AM  to indicate the smallest and largest eigen-
values, respectively, of a symmetric positive define 
bounded matrix )(xA , for any . The norm of vec-
tor 

nRx
x  is defined as xTxx  , and that of matrix A  
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is defined as the corresponding induced norm 

 AAA T
M . 

The remainder of the paper is organized as follows. 
Section 2 summarizes the robot model and its main 
properties. Our main results are presented in Sections 3 
and 4, where we briefly review some known PID-like 
control laws and present a set of new N-PID-like control 
laws, and then provide the conditions on the controller 
gains to ensure global asymptotic stability, respectively. 
Simulation examples are given in Section 5. Conclusions 
are presented in Section 6. 

2. Problem Formulation 

The dynamic system of an n-link rigid robot manipulator 
system [1] can be written as: 

uqgqDqqqCqqM  )(),()(           (1) 

where  is the  vector of joint positions,  is the 

 vector of applied joint torques,  is the 

symmetric positive define inertial matrix,  

is the  vector of the Coriolis and centrifugal 
torques,  is the  positive define diagonal fric-
tion matrix, and  is the  vector of gravita-

tional torques obtained as the gradient of the robot po-
tential energy  due to gravity.  

q

n

1n

n
(qg

)(q

u

)

C(

1n

nn
(qM

qqq ),

1
D n

) 1n

U

A list of properties [1] of the robot dynamic model (1) 
is recalled as follows: 

)()()(0 MqMM Mm             (2) 

  0),(2)(   qqCqMT          (3) nR

22
),(0 qCqqqCqC Mm       (4) nRqq  ,

where  and  are all positive constants. mC MC

For the purpose of this paper, it is convenient to in-
troduce the following definition and properties [5]. 

Definition 1: ),,( xF   with 01  , 0 , and 

denotes the set of all continuous differential in-
creasing functions, 

nRx

T
nxfxfxf )](,),([)( 1  such that 

|||)(||| xxfx     |:| xRx  

  |)(| xf    |:| xRx  

0)()/(1  xfdxd                    (5) 

where  stands for the absolute value. || 
Figure 1 depicts the region allowed for functions be-

longing to set ),,( xF  . For instance, the tangent hyper-

bolic function belongs to set  and the 

Arimoto sine function, whose entries are given as follows: 

),1),1(tanh( xF














2/1

2/||)sin(

2/1

)(





xif

xifx

xif

xf           (6) 

which belongs to set . ),1),1(sin( xF

The important properties of function  belonging 

to set 

)(xf

),,( xF   are now established. 

The function  satisfies for all , )(xfxT nRx

0)( xfxT                  (7) 

The Euclidean norm of  satisfies for all)(xf nRx , 
22 ||||||)(|| xxf                 (8) 

nxf ||)(||                 (9) 

Throughout this paper, we use the notation dqqq 

PK DK

, 

to indicate the position errors,  is the desired joint 

position, which is assumed to be constant; , , 

, , ,  and  are all positive define 

diagonal 

dq

SK PfK

n
IK

n
IPK IDK

  matrices. 

3. N-PID-Like Control Laws 

3.1. PID-Like Control Law Review 
 
To put our contribution in perspective, we will briefly 
review some known PID-like control laws, as follows: 

1) Semiglobally stable PID control law [1], 


t

IDP dqKqKqKu
0

)(  . 

2) Globally stable PD-NI control law [1], 

 
t

IDP dqKqKqKu
0

))(tanh(  . 

where )tanh(  is the hyperbolic tangent vector function. 

3) Globally stable PD-NPI control law [1], 

 
t

ISDP dqsKqsKqKqKu
0

))(()(  . 

 

 
Figure 1. ),,( xF   functions. 
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where  is the differential function of a class of ap-

proximate potential energy function. 

)(s

4) Semiglobally stable PI2D control law [6], 

 
t

IDP dqqKqKqKu
0

)]()([   . 

5) Semiglobally stable PD-IPD control law [7], 

 
t

IDIPDP dqKqKqKqKu
0

)]()([   . 

6) Globally stable PD-INP-D control law [8], 

 


t

IDIP

DP

dqKqK

qKqKu

0
)]())(tanh([  


. 

7) Globally stable SP-D-NPI control law [4], 

 


t

bI

bPfDP

dqfK

qfKqKqsatKu

0
))((

)()(




. 

where  is the normal saturated function and 

 is a bounded nonlinear function. 

)(sat

)(bf

8) Globally stable PD-NI control law [5], 

 
t

IDP dqfKqKqKu
0

))((        (10) 

where  is a continuous differential increasing 

bounded functions shown in Figure 1. 

)(f

Most of the present industrial robots are controlled 
through PID-like controllers above. Although these con-
trollers have been shown in practice to be effective for 
position control of robot manipulators, unfortunately 
most of them often suffer a serious loss of performance, 
that is, causes large overshoot and long settling time due 
to unlimited integral action.  

Based on the above fact, we get intuitively an idea that 
the transient performance of the closed-loop system may be 
improved if the nonlinear action of position errors is intro-
duced into the control law (10) and the damping is injected 
into its integrator. Following this idea, a set of novel 
N-PID-like regulators is developed in the next subsection. 
 
3.2. Our N-PID Control Laws 
 
The new nonlinear PID control laws are proposed as fol-
lows, 

 


t

IDIP

PfDP

dqKqfK

qfKqKqKu

0
)]())(([

)(

 


         (11) 

It is worthy to note that the control law above is con-
sisting of a linear combination of the proportional control 
mode, derivative control mode, nonlinear control mode, 
linear integral control mode and nonlinear integral control 
mode. Hence, based on the five control modes above, five 
differential N-PID-like control laws with the same stability 

as the control law (11) can be derived, as follows: 

 
t

IDIPDP dqKqfKqKqKu
0

)]())(([    

(12) 

 


t

IDIP

PfD

dqKqfK

qfKqKu

0
)]())(([

)(

 


       (13) 

 
t

IDIPD dqKqfKqKu
0

)]())(([       (14) 

 
t

IPDP dqfKqKqKu
0

))((        (15) 

 
t

IPPfDP dqfKqKqKqKu
0

))(()(    (16) 

Discussion 1: It is obvious that the control law (11) 
can be simplified to other PID-like control laws such as 
P-NI control, NPI control, PD-INP-D control [8], and so on. 
Moreover, the control law (15) is the same as the one (10) 
reported by [5]. This shows that the control law (11) is a 
natural extension of them and implies that its application 
is not limited in the robots, too. 

Discussion 2: Notice that the integral actions in con-
trol laws (10) and (11) can be rewritten as 

)( qfKI   and qKqfK IDIP   )( , respec-
tively. From this, it is easy to see that the latter has the 
same stability as the one presented by [7,8], that is, they 
are all asymptotically stable but the former has the same 
stability as the classical integral action, qKI

IP

, 
that is, they are all only stable. This means that the con-
troller (11)-(14) should have faster convergence, better 
flexibility than the one (10), and then the controller 
(11)-(14) can yield higher performance of control, too. 
Moreover, integrator windup can be avoided by choosing 
suitable parameters K  and IDK . 

Discussion 3: Compared to the classical PID con-
trol and PD-NI control [5], the following observations 
can be made during the control process: when 

0)(  qKqfK IDIP  , the integral action remains con-

stant; if the integral action is large,  increases, and 
then the integral action instantly decreases, vice versa. 
However, the integral action produced by the classical or 
nonlinear integrator [5] always increases as long as the 
error does not cross over zero, only when the error 
crosses over zero, the integral action will start to de-
crease. This shows that the control laws with the asymp-
totically stable integrator should have the faster conver-
gence and better flexibility, and then can yield higher 
transient performance, once again. 

q

4. Stability Analysis 

For analyzing the stability of the closed-loop system, it is 
convenient to introduce the following notation. 

Defining , )]0()([))(()( 1

0
qKqgKdqftz IDdIP

t

  
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and then the control law (11) can be rewritten as, 

)()(

)(

dIPPf

DIDP

qgzKqfK

qKqKKu


 

          (17) 

The closed-loop system dynamics is obtained by sub-
stituting the control action  from (17) into the robot 
dynamic model (1), 

u

0)()(

)()()(),()(




qfKzKqKK

qgqgqDKqqqCqqM

PfIPIDP

dD 
  (18) 

From the closed-loop system dynamics above, it is 
easy to see that the origin nTTTT Rzqq 30),,(    is 

the unique equilibrium point. 
Now, the objective is to provide conditions on the con-

troller gains , , PK DK
PfK , 

IPK and IDK  ensuring 

global asymptotic stability of the unique equilibrium 
point. This is established in the following. 

Theorem: Consider the robot dynamics (1) together 
with control law (11). There exists positive constant  
small enough, and choose the gain matrices , , 

,  and  such that 

a

DPK K

PfK IPK IDK

IMKKK MIPIDP )(4             (19) 

2||||)(
4

1

)()()(

qaqKKKq

qgqqUqU

IPIDP
T

d
T

d




    (20) 

2||)(||

))((

)()()]()()[(

qfa

qKKKqf

qfKqfqgqgqf

IPIDP
T

Pf
T

d
T







   (21) 

 InCMDK MMD   )(            (22) 

hold, and then the closed-loop system (18) is globally 

asymptotically stable, i.e. 0lim 


q
t . 

Proof: To carry out the stability analysis, we consider 
the following Lyapunov function candidate: 













n

i

q

iiDiPfii
T

IPIDP
T

T
d

T
d

IP
TT

i

dxDKKxf

qKKKq

qqMqfqgqqUqU

qzKqzqqMqV

1
0

))((

)(
2

1

)()()()()(

)()(
2

1
)(

2

1





  (23) 

where ; , and  are the diagonal 

element of the matrices ,  and , respec-

tively. 

ii qx  PfiK DiK

K
iD

DKPf D

1) Positive definition of Lyapunov function candidate. 
Now, considering the following inequality, and using 

(8), we have, 

)())(4)((
4

1

)(
4

1

)()()(

)](2)[()](2[
4

1

)()(

)(
4

1
)(

4

1

qfIMKKKqf

qKKKq

qfqMqf

qfqqMqfq

qqMqf

qKKKqqqMq

MIPIDP
T

IPIDP
T

T

T

T

IPIDP
TT
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

















 (24) 

Substituting (20) and (24) into (23), and using (7) and 

(19), for any , we obtain, 0),,(  TTTT zqq 

0)()(
2

1

))((

||||)(
4

1

1
0

2












qzKqz

dxDKKxf

qaqqMqV

IP
T

n

i

q

iiDiPfii
T

T

i



         (25) 

This shows that the Lyapunov function candidate (23) 
is positive define.  

2) Time derivative of Lyapunov function candidate. 
The time derivative of Lyapunov function candidate (23) 

along the trajectories of the closed-loop system (18) is, 

)()())((

)()()(

)()()()(

)())(()(
2

1
)(

qzKqzqDKKqf

qKKKqqgqqgq

qqMqfqqMqf

qqMqqfqqMqqqMqV
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T

DPf
T

IPIDP
T

d
TT

TT

TTT
















 

(26) 

Substituting )( qfz  , and  from (18) into 

(26), and using (3), we have, 

qqM )(

)()(

))((

)]()()[(),()(

)())(()(

qfKqf

qKKKqf

qgqgqfqqqCqf

qqMqqfqDKqV

Pf
T

IPIDP
T

d
TT

T
D

T












     (27) 

Now, using (2) and (5), we get, 
2||||)()())(( qMqqMqqf M

T            (28) 

By using (4) and (9), we obtain, 
2||||),()( qnCqqqCqf M

TT          (29) 

Incorporating (21), (28) and (29) into (27), we obtain, 

2||)(||

))((

qfa

qInCIMDKqV MMD
T



  
   (30) 

From (22), (30) and , we can conclude .  0a 0V
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rge 

 and 

, in th

he n

Using the fact that the Lyapunov function candidate 
(23) is a positive define function and its time derivative 
is a negative semi define function, we conclude that the 
equilibrium point of the closed-loop system (18) is stable. 

In fact,  means  and . By invoking 

the LaSalle’s invariance principle, it is easy to know that 

the equilibrium point is globally asymp-

totically stable, i.e., . 

0V 0q

),( TT qq 
0


q

0q

0T

lim
t

Remark 1: For the control laws (12)-(16), the globally 
asymptotically stable results can be derived under some 
similar sufficient conditions presented by (19)-(22). The 
proof can follow the similar argument and procedure. It 
is omitted because of the limited space. 

Discussion 4: From the proof procedure above, it is 
easy to see that: 1) if we chooses gain matrix, IDK  la

enough, the linear term, qK P the nonlinear term, 

fK Pf e control law (11) is not necessary for 

guaranteeing global asymptotic stability of the closed- 
loop system and this means that the global asymptotic 
stability can still be ensured by the simplified form of the 
control law (11); 2) on the other hand, with the linear 
term, qKP , and t linear term, )( qfK Pf

,

on

)( q

 , it is 

at the condition (19)-(21) is more easily satis-
fied and this results in that the control engineers have 
more freedom to choose the controller parameters, and 
then make them more easily tune a high performance 
controller. 

obvious th

 
5. Simulations 
 
To illustrate the effect of the controller given in this pa-
per, two-link manipulators shown in Figure 2 are consid-
ered. The dynamics (1) is of the following form [9] 








222112
2
111222112

112112
2
211212111

2

2

uGqqFqFqMqM

uGqqFqFqMqM




 

where: ,  )cos(2)( 2212
2
22

2
12111 qllmlmlmmM 

 , , 2
2222 lmM  )cos( 2212

2
2212 qllmlmM 
)sin( 22121211 qllmFF  , 

)sin()sin()( 212211211 qqglmqglmmG 
)sin( 21222 qqglmG 

 

. 

The normal parameter values of the system are se-

lected as: , , 2 . kgmm 121  mll 121  /10 smg 
The desired (set point) positions are chosen as:  
when , ,st 10 11 dq 12 dq ;  

when , , ;  sts 2010  31 dq 22 dq

when , .  st 20 021  dd qq

The simulation is implemented by using the control 
laws (11) and (14), respectively. In simulation, Arimoto 

 
Figure 2. The two-link robot manipulators. 

sine function (6) is used as the nonlinear function of the 
control laws. 

The gain matrices of the control law (11) are selected as: 
)310,310(diagK P  , ,  )150,150(diagKD 
)500,500(diagKIP  , ,  )200,200(diagKID 

and )100,100(diagKPf  . 

The gain matrices of the control law (14) are given as: 

)30,60(diagK D  ,  , )500,1000(diagKIP 

and )600,1250(diagKID   . 
The simulations with sampling period of 2ms are im-

plemented. Figures 3 and 5 present the response of the 
robot manipulators under the normal parameters. Figures 
4 and 6 are the simulation results under the case that the 
mass  is substituted for  when kgm 12 

st 20
kgm 32 

s10  , corresponding to moving payload of 2kg. 
From the simulation results, it is easy to see that:  
1) The optimum response can all be achieved, respec-

tively, by the control laws (11) and (14) with a set of 
control parameters in the whole domain of interest, even 
under the case that the payload is changed abruptly;  

2) These tow controllers used in simulation all have 
the faster convergence, better flexibility and stronger 
robustness with respect to uncertain payload, which 
means that the controllers (12) and (13) should have the 
same high performance of control as the controllers (11) 
and (14) because they all employ the same integrators; 

3) Comparing the Figures 3 and 5, the controller (11) 
is easier to achieve the control of high speed and high 
performance than the controller (14) because the former 
has two freedom parameters. 

 
Figure 3. Under normal parameters, the simulation results 
with controller (11). 
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exact knowledge of the payload. An attractive feature of 
our scheme is that the control laws with the asymptoti-
cally stable integrators have the faster convergence, bet-
ter flexibility and stronger robustness with respect to 
uncertain and varying-time payload, and then the opti-
mum response can be achieved. The explicit conditions 
on the regulator gains to ensure global asymptotic stabil-
ity of the overall closed-loop system are given in terms 
of some information exacted from the robot dynamics. 
Our findings have been corroborated numerically on a 
two DOF vertical robot manipulators.  
 Figure 4. Under perturbed parameters, corresponding to 

moving payload, the simulation results with controller (11). 7
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