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Abstract 
With the wide application of thrombolytic drugs and the advancement of 
endovascular therapeutic techniques, the recanalization treatment of acute ar-
tery occlusion in ischemic stroke (IS) has made a leap forward, but ischemic 
brain tissues still face ischemia-reperfusion injury after recanalization. Nowa-
days, effective neurological protective agents still cannot completely resist the 
multiple damages of ischemia-reperfusion injury. As an iron-dependent mode 
of programmed cell death, ferroptosis occupies an important position in is-
chemia-reperfusion injury. Selenium plays a unique protective role in ische-
mia-reperfusion injury as an active site element in the center of glutathione 
peroxidase. Therefore, the study mainly aims to review the protective role of 
selenium in IS and the related mechanisms, as well as the effect of selenium 
on the risk factors of IS. 
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1. Background 

Stroke is currently the second most common cause of death and the third leading 
cause of disability globally, after cardiovascular disease [1], imposing a heavy bur-
den on society and families, with the global stroke disability-adjusted life year 
(DALY) increasing by 32.0% from 1990 to 2019 [1]. In China, stroke is one of the 
leading causes of years of life lost (YLL) [2], with the characterization of high dis-
ability and mortality rates. Therefore, how to effectively promote neurological 
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recovery and reduce mortality in stroke patients is the focus of stroke treatment. 
Most strokes are ischemic strokes caused by decreased blood flow, which accounts 
for approximately 71% of all types of strokes globally [3]. Ischemic stroke is usu-
ally caused by acute occlusion of the arteries supplying blood to the brain [4]. 
Currently, intravenous thrombolysis and endovascular thrombolysis are the most 
effective methods for saving cerebral ischemic tissue after stroke [3]. Cerebral is-
chemic tissue is functionally divided into core infarcted tissue with irreversible 
damage and surrounding ischemic penumbra tissue, with the core infarcted tissue 
consisting of dying cells located in the central region of the ischemic tissue and 
the surrounding ischemic penumbra tissue as an area of reduced blood flow that 
can be treated with early reperfusion to reverse neuronal damage [5]. However, 
the ischemic penumbra tissue that is successfully reperfused faces a new problem, 
namely ischemia/reperfusion (I/R) injury, which is an important cause of poor 
prognosis in stroke patients involving a range of pathophysiological mechanisms 
of injury, including cellular excitotoxicity, oxidative stress, inflammatory storm, 
apoptosis, autophagy, pyroptosis, and ferroptosis [5] [6]. Currently, there are few 
clinically available drugs for treating cerebral I/R injury. Therefore, the develop-
ment of a new drug against ischemic stroke injury has great clinical promise. 

Selenium (Se) is an essential trace mineral nutrient that is mainly consumed 
through the diet, with the recommended daily intake of 60 - 400 ug/d for Chinese 
people set by the Chinese Nutrition Society in 2011 [7]. Plants absorb selenium 
from the soil, which enters the food chain through plants or plant-animals, with 
the selenium content of plants being highly dependent on the selenium content of 
soil and the ability of plants to absorb and accumulate selenium [8]. China is a 
severely selenium-deficient country, with about 500 - 600 million people with in-
adequate selenium intake [7]. The main sources of selenium for human intake are 
selenomethionine (SeMet) and selenocysteine (Sec), with SeMet mainly coming 
from plants and Sec from animal products [9]. Inadequate intake of selenium can 
lead to Creutzfeldt-Jakob disease and arthropathy [10]. Selenium that enters the 
human body is widely involved in the functioning of various systems in the body 
mainly in the form of selenoproteins. For example, the central nervous system is 
highly dependent on adequate intake of selenium [10]. Many neurodegenerative 
disorders like Alzheimer’s disease (AD) [11], Parkinson’s disease (PD) [12], Hun-
tington’s disease (HD) [13], stroke and seizures are associated with selenium de-
ficiency. Ulrich Schweizer et al. found that inactivation of the Selenop gene in 
mice significantly reduced selenium levels and selenoprotein activity in the brain. 
The selenop-deficient mice fed with recommended Se chow developed neurolog-
ical symptoms including muscle dystonic gait, tremor, hyperexcitability, and sei-
zures at weeks 4 - 5 [14]. β-amyloid (Aβ) deposition is a key factor in the devel-
opment and progression of AD, with selenoprotein K levels in the brains of AD 
patients significantly decreased. However, selenium supplementation can increase 
selenoprotein K levels in patients, increase CD36 palmitoylation levels and en-
hance Aβ phagocytosis by microglia to slow down AD progression [15]. 
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2. In Vivo Processes of Selenium 

25 known selenoproteins in the human body contain Sec residues in their active 
sites [16]. Plants absorb inorganic selenium from the soil to convert to organic 
selenium, which is ingested and absorbed by the human body mainly in the form 
of Sec and SeMet [17]. A small amount of selenium is absorbed in the form of 
inorganic ions, such as selenite and selenonate. The human body absorbs organic 
selenium from the intestinal tract to provide it to the liver for the synthesis of 
selenoprotein P (SELENOP) [18]. Selenium intake is strongly correlated with SE-
LENOP concentration [18]. The human tRNA[Ser]Sec gene, known as Trsp, is local-
ized on chromosome 19q13.2 ± 13.3 and is a key molecule and a central compo-
nent in the biosynthesis of selenoproteins, which contains 2 isoforms containing 
mcm5U or mcm5Um at position 34, both of which are affected by changes in sele-
nium levels in vivo and regulate the synthesis of selenoproteins in vivo, including 
SELENOP and Glutathione Peroxidase 4 (GPx4) [19]. The liver transmits sele-
nium outward to the liver through SELENOP, which transports it to the endocrine 
glands and important tissues like brain [18]. 

2.1. GPx4 

Selenoproteins of the Glutathione peroxidase (GPx) family are widespread in life 
and are the only enzymes capable of reducing lipid hydroperoxides within biolog-
ical membranes [20]. There are eight GPx analogs only in mammals, five of which 
(GPx1, GPx2, GPx3, GPx4, GPx6) contain Sec residues in their active site, and the 
Sec residues in the active site of the remaining three (GPx5, GPx7, GPx8) are re-
placed by Cys [19]. The biosynthesis of Sec is mediated by its own tRNA and relies 
on multiple enzymatic steps [21]. The synthesis of selenoproteins by Sce requires 
specific cis-acting progenitors in the mRNA of selenoproteins element, also 
known as sele-nocysteine insertion sequence (SECIS) [22] which recognizes the 
terminator codon UGA in organisms [21]. In eukaryotes, the SECIS element binds 
to the trans-acting protein factor Sec-tRNA(Ser)Sec, which is regulated by SECIS-
binding protein 2 (SBP2) and Sec-specific translation elongation factor (eEFSec) 
to synthesize selenoproteins through a series of complex processes of selenium-
phosphate synthesizing enzyme SEPHS2, 1-seryl-tRNA (Sec) kinase PSTK, and 
Sec synthase SEP-SECS [19] [23]. Mammalian GPx1 was the first identified sele-
noprotein and the most abundant selenoprotein in mammals [19]. GPx1 is an im-
portant cellular antioxidant enzyme found in the cytoplasm and mitochondria of 
mammals [24] that can reduce intracellular oxidative damage by reducing hydro-
gen peroxide to water through the depletion of glutathione (GSH) [19]. GPx1 and 
GPx4 can exert brain protection and scavenge reactive oxygen species (ROS) by 
inhibiting the phosphorylation cascade after preventing the inactivation of phos-
phatases by hydrogen peroxide [25].  

Gene inactivation studies of GPx4 in mice have shown that GPx4 is an essential 
selenoprotein for several types of neuronal cells, with embryos with inactivation 
of the GPx4 gene being lethal around day [26] Similarly, deletion of the Trsp gene 
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can also lead to embryonic death [10]. GPx4 plays an essential role in mammalian 
cells, with three different isoforms of mitochondrial (MGPX4), cytoplasmic 
(CGPX4), and spermatid nuclear (SNGPX4) having been found in GPx4 [27]. The 
human GPX4 gene consists of seven exons and six introns [27] localized on chro-
mosome 19, band 19q13.3, including 197 residues, with a molecular mass of 22 
kDa and the typical thioredoxin motifs [28]. Mutations in any one of the residues 
on GPx4 can decrease the GPx4 activity, where mutation of Sec to cysteine reduces 
GPx4 activity by 90% [28], suggesting that the role of GPx4 in exerting cerebral 
protective effect is highly dependent on the presence of Se. 

GPx4 differs from GPx1 in the role that GPx4 was found to play a key inhibitory 
role in cellular ferroptosis by Xuejun Jiang et al. [29] In the cytoplasm, cells reverse 
the exchange of glutamate with cysteine through the Xc− system and synthesize 
GSH in the cytoplasm as a GPx4 substrate via the Xc−-GSH-GPx4 pathway, which 
reduces phospholipid hydroperoxides (PLOOHs) to their corresponding alcohols 
(PLOHs), reducing the ferroptosis process triggered by PLOOHs [29]. If GPx4 is 
inactivated, the PLOOHs will react with phospholipids containing chains of pol-
yunsaturated fatty acids (PUFA-PLs), which ultimately results in the formation of 
myriad subclasses of products, the disruption of cell membrane integrity, and or-
ganelle rupture [29]. Although recent studies have shown that 2 other pathways 
are thought to initiate ferroptosis in addition to the Xc−-GSH-GPx4 pathway, 
namely the NAD(P)H/FSP1/CoQ10 and the GCH1/BH4/DHFR systems [28] [30]. 
In fact, the Xc−/GSH/GPX4 axis system is still referred to as the core pathway [31], 
with its upstream nuclear transcription factor E2-related factor 2 (Nrf2) also in-
volved in the regulation of this axis, and an active Nrf2 directly or indirectly up-
regulated the expression of GPx4 to protect the cells against ferroptosis [31]. 

2.2. Ferroptosis 

The term “ferroptosis” was formalized in 2012, which is a unique cell death path-
way mediated by iron-dependent phospholipid peroxidation, with many organ 
injuries and degenerative changes mediated by ferroptosis [29]. Lipoxygenases 
(LOXs) play a pro-inflammatory role in the body [32]. In ferroptosis, elemental 
oxygen is added to the polyunsaturated tails of cell membrane phospholipids to 
produce lipid hydroperoxides, a process mediated by LOXs, long-chain acyl-co-
enzyme A (CoA) synthase 4 (ACSL4) and other enzymes [29] [33] [34]. Cells in-
hibiting GPx4 with RSL3 or depleting GSH with erastin exhibited elevated sensi-
tivity to ferroptosis, with cells treated by ferrostatin-1 and liproxstatin-1 enhanc-
ing resistance to ferroptosis [35]. Cui Y et al. found that down-regulation of 
ACSL4 exhibited cerebral protective effects in mouse cerebral ischemia and inhib-
ited the expression of inflammatory factors in microglia [36]. Ferroptosis occupies 
an important part of cell death in human organs and is the main mechanism of 
cell death associated with ischemic organ injury, including ischemic heart disease, 
brain injury, and renal failure [37]. Inhibition of the ferroptosis process through 
multiple pathways can effectively improve the prognosis of many diseases, 
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especially organ I/R injury. 
There is an inseparable relationship between GPx4 and ferroptosis, with sele-

nium utilization by GPx4 necessary to prevent the induction of ferroptosis [38]. 
For now, selenium supplementation to combat ferroptosis is a very promising 
therapeutic approach. 

3. Selenium and Ischemic Stroke 

IS presents a rather paradoxical I/R injury in reperfusion of acutely occluded ves-
sels. I/R injury involves a variety of pathological processes, including cellular in-
jury (apoptosis, necrosis, and ferroptosis), oxidative stress, inflammatory response, 
blood-brain barrier disruption, extracellular matrix remodeling, and angiogenesis 
[39], determining that I/R injury is difficult to intervene effectively. Edaravone is 
a commonly used post-stroke antioxidant in clinical practice that can improve the 
clinical prognosis of IS by quenching hydroxyl radicals and inhibiting the perox-
idative system [40]. However, there are still fewer drugs available to resist I/R in-
jury in IS, which still fail to cover the various stages of I/R injury. Therefore, the 
development of a new drug for the amelioration of I/R injury would be of great 
practical significance. 

It was found in a case-control study that the risk of IS associated with selenium 
quartiles shows a downward trend, with lower plasma selenium concentrations 
increasing the probability of IS [41]. In the Chinese region, plasma selenium levels 
are significantly negatively correlated with the risk of first IS, with the risk of de-
veloping a first ischemic stroke significantly lower in participants with plasma se-
lenium levels ranging from 65.8 to 77.8 μg/L [42]. Furthermore, Zhao K et al. also 
found a linear relationship between serum selenium levels and IS [43]. It was 
noted in a study encompassing the Chinese National Health and Nutritional In-
take Survey from 2003 to 2018 that there was a negative correlation between die-
tary selenium and the risk of stroke in adults and that a daily intake of approxi-
mately 105 μg of selenium was effective in the prevention of IS [44]. Selenium in 
the human body seems to be inseparably linked to stroke, with HEK293 cells se-
lectively upregulating selenoproteins (GPx1, GPx4, TR1, SeIS, SeIK, and Sps2) to 
protect against oxidative damage in response to oxidative stress in vitro cultured 
cells [45]. The only other selenoprotein that has been shown to play an important 
role in the brain is selenoprotein T, whose exact mechanism of action remains 
unclear [26]. Selenium influences the human body to develop IS and I/R injury 
through various pathways in the form of selenoproteins. Therefore, selenium sup-
plementation acting as a means of resisting brain I/R injury and reducing the 
probability of IS occurrence would be practical and have unique advantages in 
reducing cellular ferroptosis. 

In IS, the ischemic penumbra is a key area for treatment and also for I/R injury. 
Selenium compounds not only inhibit ROS generation during I/R and hypoxia 
but also activate the physiological function of mitochondria, and increase the in-
tracellular levels of ATP and Ca2+ to promote cell survival in the ischemic 
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penumbra [46]. Shi Y et al. found that selenium supplementation significantly at-
tenuated oxidative stress and inhibited iron accumulation in the MCAO model 
and N2A cells in the middle cerebral artery occlusion (MCAO) model and oxy-
gen-glucose deprivation reoxygenation (OGD/R) N2a cell model in mice, up-reg-
ulating Mfn1 expression to promote mitochondrial fusion and mitigate oxidative 
stress and ferroptosis [47]. Furthermore, Yang B et al. found that selenium also 
reversed PI3K/AKT/mTOR pathway-mediated cellular autophagy, attenuated 
blood-brain barrier damage induced by I/R injury during hyperglycemia, and in-
creased tight junction (TJ) expression in a diabetic rat model of MCAO [48]. Se-
lenium concentration in the region of the ischemic penumbra is also a key factor 
influencing the efficacy of selenium supplementation. Large amounts of selenium 
supplementation may even trigger selenocytotoxicity because of the narrow safe 
dosage range of selenium in the body [49]. However, selenium nanoparticles 
(SeNPs) have the advantage over traditional dietary selenium supplementation in 
that they are low toxicity and highly efficient [46] and can even be transported in 
a targeted manner to the site of oxidative stress [50] [51]. Elena G et al. found that 
a 100 nm-sized nano-selenium particles composite (Se-TAX) consisting of SeNPs 
and firnin can inhibit ROS production in neurons and astrocytes under OGD/R 
conditions, addressing the issue of potentially insufficient concentrations of sele-
nium in conventional supplementation [52]. 

Selenium not only has a protective effect against IS but also has an inhibitory 
effect on the risk factors leading to IS. Atherosclerotic lesions in the human body 
involve the recruitment and transit of leukocytes by vascular endothelial cells, a 
process that requires the involvement of adhesion factors (e.g., VCAM-1, ICAM-
1, E-selectin, etc.) and cytokines. In addition, a decrease in selenium levels in the 
body correlates with an increase in adhesion factors, which is a process that can 
exacerbate atherosclerosis and ultimately lead to cardiovascular and cerebral vas-
cular disease [53]. However, the supplementation with SeMet can significantly re-
duce aortic atherosclerotic plate formation, improve vascular function, and re-
duce the accumulation of M1 inflammatory macrophages in mice [54]. Swart R et 
al. found that selenium had a long-term vascular protective effect in Africans with 
normal selenium levels [55]. At the same time, lower serum selenium levels were 
an independent predictor of undermined vascular endothelial function as evi-
denced by lower values of flow-mediated dilatation [56]. Nano-selenium has also 
been shown to have a significant effect on arterial atherosclerosis as well [49] [57], 
which can inhibit blood homocysteine-induced mitochondrial oxidation and 
apoptosis by increasing vascular endothelial cells GPx1 and GPx4 to effectively 
prevent vascular endothelial dysfunction in rats [57]. In addition, dyslipidemia is 
also an important risk factor for IS, and a case-control study of elderly people from 
a Chinese community suggests that a high level of selenium in the urine has a 
protective effect on dyslipidemia risk protective effect. A case-control study of 
Chinese community-dwelling older adults suggested that high urinary selenium 
levels were protective against the risk of dyslipidemia and that appropriate 
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selenium supplementation could reduce the incidence of dyslipidemia [58]. A 
meta-analysis suggested that selenium may have a role in lowering total choles-
terol and very low-density lipoprotein [59]. Statins are commonly used to amelio-
rate dyslipidemia, with long-term use of stains (mevalonate pathway inhibitors) 
found to inhibit translation of selenoproteins by Friedmann Angeli JP and 
coworkers [60] and that increased selenoprotein activity may exert a vascular en-
dothelial protective effect by reducing abnormal cell adhesion induced by proin-
flammatory cytokines and destroying cholesterol accumulating in the vascular 
wall [13], suggesting that appropriate selenium supplementation in dyslipidemic 
populations has some positive effects. 

4. Conclusion 

In conclusion, selenium supplementation through dietary supplementation or 
supplementation with selenium nanoparticles can achieve improvement of neu-
rological function in IS patients by scavenging ROS as well as inhibiting many 
processes of ferroptosis in the I/R injury produced after IS, but there is still a lack 
of effective and safe selenium supplements for the treatment of IS in the clinic. 
The unique mechanism of selenoprotein GPx4 to inhibit ferroptosis makes sele-
nium supplements have an irreplaceable role in resisting I/R injury, and the suc-
cessful translation of selenium supplements from animal and cellular experiments 
to the clinic will be exciting. In addition, selenium also has a certain protective 
effect on atherosclerosis in the human body, with a broad development prospect 
in the secondary prevention of cardiovascular and cerebrovascular diseases. 
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