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Abstract 
Rail defects can pose significant safety risks in railway operations, raising the 
need for effective detection methods. Acoustic Emission (AE) technology has 
shown promise for identifying and monitoring these defects, and this study eval-
uates an advanced on-vehicle AE detection approach using bone-conduct sen-
sors—a solution to improve upon previous AE methods of using on-rail sensor 
installations, which required extensive, costly on-rail sensor networks with lim-
ited effectiveness. In response to these challenges, the study specifically explored 
bone-conduct sensors mounted directly on the vehicle rather than rails by eval-
uating AE signals generated by the interaction between rails and the train’s 
wheels while in motion. In this research, a prototype detection system was de-
veloped and tested through initial trials at the Nevada Railroad Museum using 
a track with pre-damaged welding defects. Further testing was conducted at the 
Transportation Technology Center Inc. (rebranded as MxV Rail) in Colorado, 
where the system’s performance was evaluated across various defect types and 
train speeds. The results indicated that bone-conduct sensors were insufficient 
for detecting AE signals when mounted on moving vehicles. These findings 
highlight the limitations of contact-based methods in real-world applications 
and indicate the need for exploring improved, non-contact approaches. 
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1. Introduction 

In railroad transportation, the rail and wheels directly interact as trains move for-
ward. The railroads would experience wear and tear during daily operations, lead-
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ing to defects both within the rail’s internal structure and on its surface. While 
exterior defects are visible and can be detected using various detection techniques 
(e.g., vision-based detection), internal defects are hidden and thus require more 
advanced detection techniques to assess changes in the rails’ mechanical and ma-
terial properties of the rails. To address the challenges of rail defects and ensure 
the continued safe and reliable operation of railroads, various inspection and 
monitoring technologies have been developed to assess rail health. Imaging and 
ultrasound detection techniques have been applied to monitor rail health condi-
tions against rail defects. In addition, some unique methods, such as electromag-
netic tomography technology, have been proposed for addressing specific detec-
tion problems. 

1.1. Rail Defect Inspection Technologies 

The optical imaging method is a recognition technology that uses graphics scan-
ning and processing. The core component of this testing system is a high-speed, 
high-resolution camera. An optical encoder is used for graphics recognition and 
classification. Recent experimental research has demonstrated surface defect de-
tection at speeds over 135 mph [1]. An automatic optical detecting system can 
detect flaws using color line-scan cameras and a spectral image differencing pro-
cedure [2]. This system is particularly advantageous for detecting minor defects, 
including invisible cracks. Also, the employment of the system enables automa-
tion of about 95% of the inspection work, significantly increasing the efficiency of 
inspection compared to previous techniques. However, the system is limited to 
only inline checking of new rails. Advances in software for optical detection have 
been made. A new algorithm filters the image background through wavelet trans-
formation [3] [4].  

Advanced optical technologies include a 3D laser profiling system (3D-LPS) 
[5]. The system contains a laser scanner, odometer, inertial measurement unit 
(IMU), and GPS to collect the rail surface information. The results showed that 
the algorithm could recognize the surface defect and locate the defect area with a 
relatively good recognition rate. However, the whole experiment was performed 
in limited setting at approximately 3.4 mph; thus, further research on the applica-
tion at higher speeds is necessary for more rigorous validation. While research has 
improved the optical detection system, several problems still exist, limiting sys-
tem-wide implementation. The primary challenges stem from complex disturb-
ance factors, limited recognition features, and limited capability to detect internal 
defects [6].  

Another inspection technique utilizes ultrasonic without having the sensor 
make direct contact with the material being inspected. While NCU technology is 
widely used in structure health inspections, past research [7] employed pulse-echo 
for rail scanning with an excitation frequency of approximately 200 kHz. The fre-
quency provided a suitable surface wave mode and sufficient penetration depth 
for inspection. Concurrently, a spatial averaging technique was employed to re-
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move unusable wave modes and reduce signal complexity. The results demon-
strated that the technology worked well on artificial and real defects. Despite these 
findings, the research suffers a critical limitation with the very low speeds in static 
conditions, a common drawback of ultrasonic detection methods. 

Guided-wave defect detection in rails has also been applied for non-contact 
testing, and a prototype is under development [8]. Research has shown that high-
frequency waves of approximately 200 kHz are dominant. The penetration depth 
is related to the wavelength; hence, defect sizing is possible by monitoring differ-
ent frequency bands of the propagating waves. The researchers at the University 
of California at San Diego (UCSD) developed a novel non-contact ultrasonic rail 
inspection system [9]. The new system employs a focused air-coupled transmitter, 
symmetrically placed air-coupled receivers, and a novel statistical algorithm to 
maximize true outliers (defects) and minimize false positives. Results demonstrate 
excellent performance at low speeds between 1 and 5 mph and show promise at 
speeds of 10 and 15 mph.  

Laser ultrasonics was proposed as another non-contact detection technique. 
The laser ultrasonic system employed an Nd-Yag pulse laser for ultrasonic wave 
generation and a laser Doppler vibrometer for signal measurement [10]. This study 
presented the adaptability of laser ultrasonics in defect characterization, with the 
transformation of the laser beam’s shape to cater to different defect types—a line 
source for surface damage and a point source for internal defects. This method 
underscores the interaction of ultrasonic waves with defects, enabling the detec-
tion of both surface and subsurface anomalies at high speeds. 

A passive extraction method has been used to isolate defect signals based on 
non-contact ultrasonic monitoring [11]. Three options were listed to present the 
differences in isolating the defect signal: cross-correlation, normalized cross-cor-
relation, and deconvolution. According to previous research, ultrasonic energy 
and properties will change due to the rails’ discontinuities [12] [13]. A defect in-
spection prototype was developed in the experiment, placing two arrays of air-
coupled receivers to collect ultrasonic waves. Normalized cross-correlation and 
deconvolution operations were used to extract the defect properties during the 
data analysis. In their discussion, rail lubrication is an uncertain factor that may 
affect the wheel-rail contact behavior. Meanwhile, many improvements need to 
be made to increase detection accuracy and faster data analysis. 

1.2. AE Techniques and Its Applications 

AE is an elastic wave generated by changes in the material’s internal structure, 
which are typically caused by a sudden change in internal stress or external impact 
[14] [15]. These changes can include crack growth in the body, sectional displace-
ment in material, phase change, fiber breakage, and decomposition.  

An AE testing system that can be used for detection of such changes contains 
bone-conduct sensors, preamplifiers, and a data acquisition (DAQ) system (e.g., 
control software, data recording devices, and personal computers). When AE sig-
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nals are generated due to elastic deformation, sensors respond to the dynamic mo-
tion and collect the signals. However, these signals can be too weak to effectively 
present the AE patterns. In response to this, preamplifiers are used to filter interfer-
ence signals. The frequency of collected AE signals is generally between 20 KHz and 
1 MHz; a high-pass filter is applied to filter out the ambient noise. After the noise 
filtering, the signals are transferred to the AE processing equipment for analysis and 
storage. During signal processing, the signal goes through a measurement circuit 
that compares the conditioned signals with a threshold voltage value previously pro-
grammed. Finally, the signal is recorded into the storage device. 

AE technology differs from other non-destructive testing technologies in sev-
eral aspects [14] [16]. First, the origin of the signal is different. Instead of provid-
ing energy to the object during the examination, AE technology receives the en-
ergy released by the material. Second, AE technology only responds to dynamic 
processes or changes in material. Dynamic response is critical because it can be 
used to trace the continuous changes in the material. Through the initial research 
on AE technology, advantages have been presented, such as the ability to detect 
rail defects at speeds over 100 mph, easy installation and manipulation, and the 
ability to monitor internal structural changes [14] [17] [18].  

In summary, traditional AE techniques present the potential to monitor rail 
health conditions passively. This potential can be understood in several terms: the 
capability of detecting both internal and external defects, the potential to monitor 
the development progress of defects, and the classification of defect types. How-
ever, due to the utilization of bone-conduct sensors, such an approach can only 
be installed on the rails due to the requirement of contact. This installation re-
quirement for contact is translated into an extensive network of sensors to cover 
the whole rail track where inspection is required. While technically promising, 
this technique can be practically unfeasible.  

2. Objective 

Past research on the application of AE techniques for detecting damage in railway 
tracks has primarily focused on lab tests and rail-mounted field experiments. 
These studies include fatigue tests of rail steel specimen experiments with small-
scale models to simulate the wheel-rail impacts, with AE sensors installed on the 
rails to collect AE signals as trains pass by. However, these approaches have lim-
itedly demonstrated potential for real-world applications due to several con-
straints. A notable one is the requirement of an extensive network of sensors along 
the entire length of the railway, which poses significant challenges for real-world 
implementation.  

To address these limitations, this research explored a vehicle-mounted AE ap-
proach. The work conducted and presented in this research is essential as it rigor-
ously evaluates an AE technique given its potential identified by past research. The 
research has taken this approach to a full-scale test in various real-world scenarios 
for comprehensive evaluation of its feasibility for automated rail health monitor-
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ing in operational environments. 

3. Methodology 

This research builds on previous studies, identifying AE technology as a promising 
solution for detecting internal defects in rail. AE technology can be implemented 
using bone-conduct sensors for rail inspection. The project explores these sensors 
by 1) conducting lab tests, small-scale rail-train tests, and full-scale real-world rail-
train tests, and 2) performing analytical studies using various algorithmic tech-
niques to analyze AE signals associated with defects. In this research, bone-conduct 
sensors are mounted on running trains to detect rail defects. This involves an inves-
tigation on the characteristics of the rail defect-induced AE signals for defect iden-
tification and evaluation of the AE characteristics alongside identification algo-
rithms. The conclusion of the study will reveal insights into the feasibility, perfor-
mance, and potential limitations of a bone-conduct sensor-based detection system 
for automated railroad safety inspections. 

3.1. On-Vehicle AE Detection Prototype 

The prototype developed included data acquisition equipment, bone-conduct 
sensors, pre-amplifiers, and high-speed cameras (Figure 1). Three identical AE 
sensors S9215 were used, operating within a 50 - 650 KHz bandwidth and a reso-
nant frequency of 100 kHz. They offer a high limit up to 540 ̊ C, allowing adequate 
testing in the extreme summer weather conditions in Nevada. A National Instru-
mental cRio 9041 with module NI 9223 were utilized as DAQ equipment with the 
sampling rate of 1 MHz. Mistras 2/4/6 voltage preamplifiers were employed to 
amplify AE signals prior to recording by the DAQ system. The preamplifiers’ gain 
was set to 60 dB and a 20 - 500 kHz bandwidth was used to minimize low-fre-
quency noises during the test. LabVIEW was used to manage the data collection 
and storage. A go-pro camera set at 240 fps recording recorded geo-information 
during the field tests. Hammer hit was employed when each test started to sync 
the time between video and AE signals. 

 

 
Figure 1. AE detection prototype. 
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3.2. Test Lay-Out and Procedure 
3.2.1. Field Test in Nevada Railroad Museum 
To assess the feasibility of using the AE sensors mounted on trains to detect rail 
defects, on-vehicle field tests were conducted in the Nevada Railroad Museum. 
One rail section containing two pre-damaged internal defects (Figure 2) was se-
lected. Approximately 100 feet of track was replaced to include these defects. The 
sensors were installed on the vehicle to collect AE signals as the train ran over the 
defect locations.  

The used track was an AREMA 130-lb rail with internal defective welds char-
acterized by the crack types and locations. As shown in Figure 2, the size of the 
first defect was 0.2 inches by 0.3 inches, located 0.7 inches below the rail surface. 
The second defect measured 0.2 inches by 0.2 inches, located 1 inch below the rail 
surface. Both defects were evaluated by an Olympus Epoch 1000i ultrasonic in-
spector to be in the early stages of defect development based on size. The rail track 
was supported by wood sleepers and ballast. The rail gauge was 4 feet 8.5 inches, 
and the slipper spacing was about 19 inches. 

 

 
Figure 2. Two internal defects and their locations (red x-marked). 

 
Three identical AE sensors were mounted on a steel plate attached to the rail 

suspension frame (Figure 3(a)). This location was selected as it is optimal for 
collecting AE signals generated by wheel-rail impacts. Ultrasonic coupling gel 
was applied to ensure signal transmission, and a GoPro camera was installed 
on the back of the steel plate to record the track geo-information. The DAQ 
equipment and laptop were placed on the platform above the bogie (Figure 
3(b)).  

Acoustic signals were recorded as a 30-ton empty hopper moved back and forth 
over the defect locations at about 5 mph. As explained before, a hammer strike 
was used for synchronization of data between the camera and DAQ equipment at 
the start of each test. The field tests were conducted in four sets with five runs per 
set (back and forth as one run). Due to time-restricted access to the test site, the 
tests were conducted during specific scheduled time slots. 
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(a)                           (b) 

Figure 3. Prototype installation. 

3.2.2. Field Test in TTCI 
The defects used at the Nevada Railroad Museum were inside the joint bars, 
known to produce AE signals that can mimic those generated by rail defects. To 
mitigate the influence of such confounding factors, further evaluations in a con-
trolled and specialized testing facility are essential. Therefore, a series of field tests 
were designed and conducted at the TTCI, involving three different loops to vary 
factors, such as defect quantity and types, axial load, and testing speed.  Testing 
in differently conditioned loops was critical to rigorously assess the system per-
formance in defect detection.  

Three tested loops were the Rail Defect Test Facility (RDTF), the High Tonnage 
Loop (HTL), and the Railroad Test Track (RTT). The RDTF (Figure 4) contains 
over 300 known artificial rail defects. It included a System Evaluation Zone, which 
spans 4,000 feet and contains over 250 defects with known locations, and a System 
Calibration Zone, which had approximately 30 defects distributed in dense clus-
ters. Additionally, there was a Blind Zone, which contained various defects with 
unknown locations and characteristics, designed for verification purposes.  

It is important to note that artificial defects like ones in the RDTF might not gen-
erate AE signals in the same way natural defects do due to inherent differences in 
how defects are generated. Analysis of defects whether it is natural or artificial 
should account for these potential differences in a careful examination. A high-rail 
vehicle (Figure 4), used in the RDTF test, produced an axial load significantly lower 
than that of real train cars. The low axial load used in testing does not fully replicate 
real-world scenarios, as commercial railcars typically have much higher weights. 
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Figure 4. RDTF loop and used hi-rail vehicle in RDTF. 

 
Consequently, additional field tests were designed on the HTL (Figure 5) to 

verify the system’s performance under a broader range of load scenarios, ensuring 
a comprehensive evaluation. It is approximately 6.4 miles in length and includes 
over 30 naturally generated rail defects. The heavy-duty hoppers were utilized for 
these tests, with a speed limit of 40 mph. The final evaluation test was conducted 
on the RTT (Figure 5), which is 13.5 miles long with a speed limit of 105 mph. No 
defect information was provided for this loop; instead, the algorithms developed 
during the earlier tests were employed to identify defects on the RTT. 

 

 
Figure 5. HTL and RTT loops. 

 
Test Setup in RDTF: Defects in RDTF were artificially created by cutting or 

drilling the tracks, as shown in Figure 6. Three identical AE sensors and two Go-
Pro cameras were mounted on a steel plate mounted on the bottom frame of the 
Hi-rail vehicle (Figure 7). The mount locations were carefully selected to ensure 
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safety and the detectability of AE signals generated by wheel-rail impacts. Ultra-
sonic coupling gel was applied to the sensor surfaces to ensure effective signal 
transmission between the sensors and the steel plates. The DAQ equipment and a 
laptop were housed inside the vehicle.  

Acoustic signals were collected as the Hi-rail vehicle, weighing 5 tones, trav-
ersed the defects. The same hammer hit was used for data synchronization. Field 
tests were conducted at four different speeds—5 mph, 10 mph, 15 mph, and 20 
mph. The 20-mph setup included 10 runs (each run consisting of a back-and-forth 
motion), while the other setups had 5 runs each. This ensured sufficient rail-wheel 
impacts to generate AE events. These tests aimed to collect AE signals at various 
speeds, enabling a comprehensive evaluation of AE features based on different 
defect types and vehicle speeds. 

 

  
Figure 6. Defects in RDTF loop. 

 

  
Figure 7. Prototype installation on hi-rail vehicle. 

 
Test Setup in HTL. The HTL loop field tests are different as this loop involves 

naturally created rail defects. It had 39 defects over a loop span of 6.4 miles. As an 
example, a typical web crack defect is shown in Figure 8. For accurate assessment 
of rail defects, a preliminary inspection was conducted on all defects, one at a time 
to identify the size, type, and location of each defect. The results were documented 
by TTCI. Eight defects were located on the bypass track (zone marked by the red 
area) and thus were excluded from this field testing (Figure 8). Therefore, 31 de-
fects distributed on the main loop were used for data collection and further anal-
ysis. The vehicle used in this field test was a 30-ton empty hopper (Figure 9). The 
sensors and cameras were installed in the same configuration as in the RDTF tests, 
and the DAQ equipment was securely placed on top of the bogie.  

Three tests were conducted at 20 mph, and ten tests were conducted at 40 mph, 
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the maximum speed allowed on the HTL loop. The 20-mph tests were designed 
to collect AE signals with relatively low ambient noise, serving as a baseline or 
“ground truth” for comparison with the 40-mph tests. The AE signals collected 
during this phase were later compared with those obtained from the previous tests 
involving artificially induced defects, highlighting differences between natural 
and artificial defects. Additionally, AE signals and ambient noises from both field 
test sets were extracted and used to train machine learning (ML) models to dis-
tinguish defects from ambient noise and classify different defect types. 

 

 

 
Figure 8. Rail defect and HTL loop. 

 

  
Figure 9. Testing vehicle and prototype installation on HTL loop. 
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Test Setup in RTT. After completing the tests in the RDTF and HTL loops, AE 
signals were collected with detailed information and precise defect locations, 
providing a foundational dataset for model training. Unlike the RDTF and HTL, the 
RTT loop was designed to include defects without their identified information. That 
is, their locations and sizes are unknown to the research team. This sequence of 
tests—RDTF, HTL, and RTT—was intentionally structured to allow the research 
team to utilize advanced ML techniques for studying rail defects. The data from 
RDTF and HTL serves as the training data while the data from RTT is used to make 
predictions of defects captured during high-speed rail operation. These field tests 
collectively designed with three real-world loops offer a unique testing environment 
to validate the system’s predictive capabilities under real-world scenarios. This ap-
proach ensures that the ML models are both trained on reliable data and validated 
in scenarios that closely mimic operational challenges. These field tests collectively 
designed with three real-world loops offer a unique testing environment to validate 
the system’s predictive capabilities under real-world scenarios. 

The entire length of the RTT loop was 13.5 miles, with a maximum allowable 
speed of 165 mph. The testing system was installed similarly as installed in the 
Nevada field test, as presented in Figure 10. However, due to safety concerns re-
garding the sensors and cameras, the maximum speed during this test was limited 
to 105 mph. Five tests were conducted: two at 40 mph and three at 105 mph. The 
purpose of the 40 mph tests was to evaluate and compare the effects of ambient 
noise with those observed during the HTL tests. 

Key information of the field tests was summarized in Table 1. These tests were 
systematically conducted, with multiple runs at each speed, to ensure robust data 
collection for subsequent analysis and model training. 

 

   
Figure 10. Testing car and sensor installation on RTT Loop. 

 
Table 1. Summary of field tests in TTCI. 

Test Location 
Length 
(miles) 

Defect 
Amount 

Test Speed 
(MPH) 

Number 
of Runs 

Goal 

RDTF 1.04 ≥ 280 

5 5 
Evaluate AE 
features at  

various speeds 

10 5 
15 5 
20 10 

HTL 6.4 39 
20 3 Explore and 

ML models 40 10 
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Continued  

RTT 13.5 Unknown 
40 2 Evaluate ML 

model at high 
speed 

105 3 

4. Data Analysis 
4.1. Time-Frequency Analysis of Nevada Railroad Museum Test 

The time-frequency characteristics of AE signals collected in the field tests were 
processed using Continuous Wavelet Transform (CWT). Due to the early stage of 
the defect development for both defects, only three AE events were detected dur-
ing the entire test. Two events were collected from the first defect and one from 
the second defect. 

To effectively present the AE features, a high-pass filter with 60 kHz was em-
ployed to reduce the effects of low-frequency noises. Figure 11 indicated that the 
wave energy was primarily concentrated in the 60 - 120 kHz and a notable amount 
of energy was in the 200 - 300 kHz range. In contrast, Figure 12 presented the 
CWT of two typical ambient noises, where the energy was mainly concentrated 
below 150 kHz. This is significantly different from the defect-induced AE signals. 
Therefore, filtering out the lower frequency components of the AE signal can sig-
nificantly reduce the impact of noise. Additionally, these visible differences made 
identifying and canceling ambient noise possible in the future. 

The field test in the Nevada Railroad Museum provided a promising result that 
AE signals caused by rail defect development could be detected and recognized. 
Meanwhile, general ambient noises presented significantly different characteris-
tics from the AE signals. However, due to the existence of joint bar which can also 
generate noises affecting the detection of defect signals, further analysis of the field 
tests from TTCI was presented in the following chapters. 

 

 
(a)                                                  (b) 

Figure 11. Defect-induced AE signals: (a) single impulse; (b) dual impulses. 

https://doi.org/10.4236/jtts.2025.151006


L. Jia et al. 
 

 

DOI: 10.4236/jtts.2025.151006 107 Journal of Transportation Technologies 
 

 
(a)                                                  (b) 

Figure 12. Ambient noise-induced signals: (a) braking noise; (b) mechanical vibration. 

4.2. Time-Frequency Analysis of RDTF Loop in TTCI 

Following the preliminary data analysis of the tests conducted at the Nevada Rail-
road Museum, the CWT analysis was performed to evaluate the AE characteristics 
of naturally generated defects on RDTF. A 20 kHz high-pass filter was applied in 
this test to mitigate the impact of low-frequency noise. Preliminary CWT analysis 
was conducted using a 0.05-second time window, a duration chosen to balance 
signal resolution with data processing efficiency. Afterwards, the GoPro video rec-
ords were cross-referenced with the CWT data to identify potential AE events for 
further analysis.  

AE events, summarized in Table 2, were selected based on the following AE 
characteristics: notable impulses detected and frequencies typically ranging from 
20 to 500 kHz. As shown in the table below, with the testing speed increased, the 
AE events detected also increased accordingly, which indicated that higher speeds 
would increase more. The defect developments were due to higher dynamic loads, 
which resulted in AE events. Additionally, these signals were confirmed with 
video records that wheel-rail impacts generated them. 

 
Table 2. Summary of AE events in RDTF loop. 

Test Location Test Speed (MPH) AE Events Amount Total 

RDTF 

5 12, 10, 11, 17, 9 59 
10 14, 10, 11, 15, 17 67 
15 23, 15, 19, 11, 15 83 

20 
22, 25, 16, 20, 22 

204 
17, 24, 18, 21, 19 

 
Figure 13 presents the CWT of typical impulse signals from different testing 

speeds involving complicated frequency distributions. While these signals gener-
ally lasted very short, the frequency range was typically distributed from 60 to 500 
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kHz across the tested speeds. Meanwhile, the wave energy was primarily concen-
trated in the 60 - 150 kHz range, and a notable amount of energy was observed in 
the 200 - 300 kHz range. These findings are aligned with the conclusions of the 
first stage field test in Nevada. 

 

 
(a)                                                 (b) 

 
(c)                                                   (d) 

Figure 13. AE signals in RDTF tests: (a) 5 mph; (b) 10 mph; (c) 15 mph; (d) 20 mph. 

 
Figure 14 presents the time-frequency plots of ambient noise across four testing 

speeds, where the energy was primarily concentrated below 150 kHz, a clear distinc-
tion from the defect-induced AE signals. Ambient noise, compared to the impulse 
signals, is characterized by relatively low frequency, continuity, and randomness. 
This observation is consistent with findings from the initial stage of the field test in 
Nevada. Further analysis was conducted with a narrower time scale to examine the 
time-frequency characteristics, as shown in Figure 15. This figure represents a typ-

https://doi.org/10.4236/jtts.2025.151006


L. Jia et al. 
 

 

DOI: 10.4236/jtts.2025.151006 109 Journal of Transportation Technologies 
 

ical AE pattern for events collected during the test. It is interesting to note that the 
signal did not exhibit significant attenuation during the impulse period. However, 
given the defect density within this loop, the number of detected events was rela-
tively low. Two factors may have contributed to this: firstly, the testing vehicle was 
a hi-rail vehicle modified from a pickup truck, resulting in a significantly lower axial 
load than a commercial hopper. Secondly, all defects in the loop were artificially 
induced through cutting or drilling, which may have stabilized these defects, pre-
venting further development under low compression conditions. 

Based on these findings, it is essential to analyze the data collected from the 
HTL loop and compare the characteristics of artificial defects with those of natural 
defects. Additionally, the comparison should extend to the rate of AE events oc-
curring with the commercial hopper. 

 

 
(a)                                                     (b) 

 
(c)                                                     (d) 

Figure 14. Ambient noise signals in RDTF tests. 
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(a)                                                        (b) 

Figure 15. CWT of impulse signals: (a) overview; (b) narrower time window. 

4.3. Time-Frequency Analysis of HTL Loop 

As with the RDTF test, time-frequency analysis was performed to evaluate the AE 
characteristics of naturally generated defects on HTL, using the CWT with a 20 
kHz high-pass filter. The CWT analysis was cross validated using the same meth-
ods applied to the RDTF data. Specifically, the time window for CWT analysis was 
set to 0.05 seconds, and GoPro video recordings were validated with the CWT 
data to identify potential AE events. A total of 31 defects were analyzed from the 
tests on the HTL Loop. 

Unfortunately, the CWT features observed from different defects showed sig-
nificant variations in certain defect area plots. Some plots clearly identified AE 
characteristics, as shown in Figure 16, where a distinct AE impulse is visible with 
a major energy distribution between 20 - 90 kHz along with a notable high fre-
quency range from 120 kHz to 500 kHz. However, other plots presented more 
complex patterns. In many defect areas, multiple AE-like impulses were observed 
throughout the defect regions (Figure 17). These impulses also appeared in non-
defect areas, complicating the identification of AE signals. When the analysis was 
conducted on a narrower time scale, the signals exhibited continuous features, 
making it challenging to distinguish AE characteristics. 

In response to this challenge, this project used ML techniques to study the com-
plexity of identifying AE features in these intricate scenarios. Such advanced ana-
lytical tools could enable the automated extraction and classification of AE signals 
from extensive datasets. The ML models were trained using the data from the HTL 
field tests, attempting to learn the characteristics of AE signals associated with 
different defect types and conditions. The application of ML in this context rep-
resents a significant advancement in the analysis of AE signals contributing to 
more efficient and reliable rail defect detection methods in future studies. 
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(a)                                                     (b) 

Figure 16. Visible AE signal detected in HTL loop. 

 

 
(a)                                                    (b) 

Figure 17. Ambient noise affected signals in HTL loop. 

4.4. Machine Learning Analysis in Defect Analysis 

Considering the challenges of managing large datasets characterized by compli-
cated noise interference in real-world data analysis, traditional methods often fall 
short in efficiently classifying such complex data. To address this problem, ML 
algorithms, such as artificial neural networks (ANNs), support vector machines 
(SVMs), and relevance vector machines (RVMs), have been widely adopted for 
fault diagnosis and damage detection [19]. In recent years, convolutional neural 
networks (CNNs) have demonstrated exceptional capabilities in handling intri-
cate, high-dimensional data [20].  

CNNs are designed to automatically and adaptively learn the grid-like topology 
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of datasets, such as images or time-series data, through multiple layers of pro-
cessing. Their architecture, which includes convolutional layers, pooling layers, 
and fully connected layers, allows them to capture complex patterns while reduc-
ing computational costs through parameter sharing and dimensionality reduc-
tion. CNNs have proven to be highly successful in a wide range of applications, 
including image detection, segmentation, and pattern recognition. In the context 
of structural damage detection, CNNs have been used to analyze visual images, 
vibration signals, and AE signals with remarkable accuracy. Their ability to pro-
cess and interpret AE signals’ spatial and temporal features makes CNNs espe-
cially suited for identifying subtle patterns that may indicate the presence of de-
fects. 

In the following chapter, we will utilize CNNs to process two-dimensional rep-
resentations of time-series data; we aim to improve the robustness and reliability 
of our defect detection approach, ultimately contributing to more efficient and 
accurate railway maintenance and safety protocols. 

4.4.1. CNN Model for AE Classification 
The application of CNNs, which is traced back as early as 1998 [21], has revolu-
tionized various fields, including activity recognition, sentence classification, text 
recognition, face recognition, object detection, image characterization, and more. 
The power of CNNs lies in their unique architecture, which mimics the visual 
cortex’s processing of visual stimulations. This makes CNNs particularly effective 
for high-dimensional data such as images and videos. A typical CNN architecture 
consists of several layers, including convolutional layers, pooling layers, and fully 
connected layers, each playing a crucial role in the network’s ability to learn and 
generalize from data.  

The CNN model employed in this study is custom designed to accommodate 
various needs, such as dataset variations and CNN dimension modifications. In 
past research, CWT plots were utilized as data inputs for CNN analysis [20], which 
converted acoustic datasets into image datasets. However, the resolution and plot-
ting method of the images significantly influenced the outcome of CNN models. 
In this study, Mel Frequency Cepstral Coefficients (MFCCs) and their deltas were 
introduced to extract the features of datasets and utilized as input datasets. 
MFCCs represent the short-term power spectrum of a sound signal commonly 
used in acoustic processing. They are derived by taking the Fourier transform of 
a signal, mapping the powers of the spectrum onto the Mel scale, and then apply-
ing a logarithm transformation, followed by the inverse Fourier transform. The 
resulting coefficients provide a compact and perceptually relevant acoustic signal 
representation. The deltas of MFCCs, also known as delta coefficients, capture 
temporal dynamics by calculating the difference between consecutive MFCCs. 
Such delta coefficients provide additional information about how the acoustic fea-
tures change over time, enhancing the ability to recognize patterns in acoustic 
signals. MFCCs and their deltas are commonly used as features in machine learn-
ing models for tasks like speech recognition and audio classification.  
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In this study, the model took MFCCs and deltas as input, initially structured 
into 256 × 98 × 2, where 256 represents the number of Mel bands, 98 is the number 
of frames, and two channels denote the original MFCCs and their delta values. 
The architecture comprised multiple convolutional layers with batch normaliza-
tion and ReLU activation functions to ensure stable and efficient learning, as 
shown in Figure 18. The convolutional layers progressively extract features from 
the input data, with the layers and the subsequent layers using various filter setups, 
with the consideration of optimizing the classification rate. The kernel size was 
set to 3 × 3. Max pooling layers with a pool size of 2 × 2 followed each convolu-
tional layer, reducing the spatial dimensions of the feature maps while retaining 
the most salient information. A global max pooling layer was incorporated to con-
dense the feature maps further, followed by fully connected layers. The first dense 
layer had 16 units with ReLU activation, and the output layer consisted of 2 units 
with SoftMax activation, corresponding to the two classes in the classification task. 
The model was compiled with the Adam optimizer, using a learning rate 1e-4, and 
trained with the sparse categorical cross-entropy loss function, with accuracy as 
the primary evaluation metric. To ensure robust performance, the model under-
goes K-fold cross-validation, allowing it to be trained and validated on different 
data splits, providing a comprehensive evaluation of its classification capabilities. 
However, the data structures were modified to optimize the training performance, 
including revising the layer numbers, input structure, and layer filter amount. 

 

 
Figure 18. General architecture for defect classification. 

4.4.2. Training Process and Results 
The datasets used in the training consist of potential AE signals extracted from 
defect locations from the HTL loop tests and non-AE signals, including ambient 
noise and impulse-like mechanical vibrations, extracted from non-defect areas. 
Like before, a preliminary time window of 0.05 seconds was initially employed for 
data processing. However, to accurately label the datasets for the CNN model, it 
is essential to determine an appropriate time window length that captures AE sig-
nal components while excluding unrelated signal components.  

Basic setups for the used devices in relation to parameters used in analysis are 
as follows. The GoPro frame rate was set to 60 Hz at its highest resolution, with 
an error margin of ±0.017 seconds. Additionally, the defect zone was set at 15 
inches—a value deemed appropriate based on information from TTCI and con-
sidering the maximum testing speed of 40 mph, corresponding to a passing time 
of 0.02 seconds. Consequently, a minimum time window length of 0.054 seconds 
was determined for the datasets. To ensure that all AE signal components were 
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captured, the time window was finally doubled to 0.11 seconds.  
The AE signal datasets were selected through initial visual inspection, focusing 

on those exhibiting significant AE characteristics or those combined with ambient 
noise. As previously mentioned, data from the three identical sensors were used 
in the analysis. Consequently, the total number of datasets extracted from defect 
areas, regardless of whether AE signals were detected, was 31 defects per run × 12 
runs × 3 sensor sets = 1,116. Additionally, noise datasets were extracted from 
noisy areas, resulting in a total of 756 × 3 = 2,268 samples. To start with the train-
ing, the dataset was set up as explained in the previous chapter; each CNN model 
utilized K-fold cross-validation (with K = 7) to ensure robustness and minimize 
overfitting.  

In the initial trials, two configurations of convolutional layers and dataset sizes 
were evaluated: 8 × 8 × 16 × 16 for the first setup and 16 × 16 × 32 × 64 for the 
second. In both configurations, 1,116 samples were utilized as defect datasets, and 
2,268 samples were employed as noise datasets. As shown in Table 3, the 8 × 8 × 
16 × 16 setup exhibited consistently low-test accuracy and training accuracy, sug-
gesting that this simpler architecture may not effectively capture the necessary 
features for the datasets in this analysis. In contrast, the 16 × 16 × 32 × 64 archi-
tecture achieved higher training accuracy and lower training loss, indicating bet-
ter model fitting. However, the test accuracy showed fluctuations, suggesting po-
tential overfitting issues or poor-quality data in the sets. Therefore, as an effort to 
improve the quality of training data and enhance model’s generalization, data 
lacking significant AE patterns was removed from the training. 

 
Table 3. Training results with full datasets. 

Conditions 
Defect 

samples 
Noise 

samples 
Layers 

Training 
accuracy 

Training 
loss 

Test  
accuracy 

F1 score 

All the data 
in defect 

zone 
1116 2268 8 * 8 * 16 * 16 

0.771 0.486 0.693 0.356 
0.791 0.449 0.741 0.42 
0.785 0.453 0.708 0.492 
0.79 0.471 0.703 0.388 

0.822 0.394 0.693 0.519 
0.793 0.448 0.651 0.412 
0.819 0.394 0.571 0.455 

All the data 
in defect 

zone 
1116 2268 

16 * 16 * 32 * 
64 

0.959 0.21 0.73 0.54 
0.97 0.22 0.77 0.53 
0.96 0.2 0.69 0.34 
0.96 0.18 0.82 0.68 
0.94 0.23 0.67 0.55 
0.94 0.2 0.64 0.51 
0.96 0.19 0.56 0.49 

 
In Table 4, around 25% of the poor-quality data was removed from the defect 

dataset, and the same portion of the noise data was removed from the noise dataset 
randomly to maintain the data proportions the same as before. In this follow-up 
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analysis, both configurations (8 × 8 × 16 × 16 and 16 × 16 × 32 × 64) were re-
evaluated using datasets that included only potential AE data.  

Compared with the previous setup, which included all data from defect zones, 
this refined dataset increased model performance in both configurations. For the 
8 × 8 × 16 × 16 configuration, the test accuracy showed a significant increase, 
particularly reaching 84% one-fold, with the F1 score also improving to a maxi-
mum of 0.716, which is promising. This suggests that even simpler architectures 
can achieve better generalization when data quality is improved by filtering out 
irrelevant data. Conversely, the 16 × 16 × 32 × 64 configuration showed signs of 
overfitting, with high training accuracy but less consistent test accuracy, along 
with fluctuations in performance. Although there were some improvements in the 
F1 score, reaching up to 0.6, the overfitting suggests that more complex architec-
tures may not necessarily improve precision or generalization. 

However, while the refinement of data improved performance, the overall test 
accuracy still remained lower than expected, indicating that further improve-
ments in defect data quality are necessary for achieving higher accuracies. This 
highlights that simply removing bad data might not be sufficient; enhancing the 
overall quality and relevance of defect data is crucial for better model perfor-
mance. 

 
Table 4. Training results with potential AE data only. 

Conditions 
Defect 

samples 
Noise 

samples 
Layers 

Training 
accuracy 

Training 
loss 

Test  
accuracy 

F1 score 

Potential AE 
data only 

831 1671 8 * 8 * 16 * 16 

0.865 0.292 0.7 0.475 
0.97 0.15 0.72 0.453 
0.97 0.136 0.49 0.485 
0.965 0.148 0.73 0.417 
0.94 0.21 0.84 0.691 
0.98 0.13 0.78 0.716 
0.99 0.11 0.76 0.725 

Potential AE 
data only 

831 1671 
16 * 16 * 32 * 

64 

0.99 0.09 0.73 0.57 
0.99 0.11 0.78 0.6 
0.98 0.17 0.75 0.61 
0.99 0.11 0.73 0.37 
0.98 0.16 0.72 0.51 
0.97 0.16 0.7 0.54 
0.99 0.1 0.58 0.42 

 
For further enhancement, this project separated the internal defects (transverse 

defects) and external defects (surface defects) into two distinct datasets. These da-
tasets were then fed into the model separately to determine whether the accuracy 
results would improve with higher clarity in provided defect data. Out of the 831 
defect samples presented in Table 4, 399 data samples were categorized as internal 
defects and the remaining 432 were designated as external defects. 

Initially, the layers were set as 8 × 8 × 16 × 16 to possibly avoid overfitting or 
underfitting. As shown in Table 5, the results for the internal defects (transverse 
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defects) indicated a range of test accuracies from 0.55 to 0.71, with corresponding 
F1 scores ranging from 0.09 to 0.36. The training accuracy varied between 0.73 
and 0.78, while the training loss was relatively stable, ranging from 0.47 to 0.53. 
Despite some improvement in test accuracy, the F1 scores suggest that the model’s 
ability to balance precision and recall was still limited. As to the external defects 
(surface defects), the results show a similar trend, with test accuracies ranging 
from 0.57 to 0.66 and F1 scores between 0.03 and 0.24. The training accuracy was 
slightly higher, reaching 0.82, with training loss decreasing to as low as 0.45. How-
ever, the lower F1 scores indicate that while the model was able to achieve better 
training accuracy, it still failed to properly classify all the defects and noises 
properly. 

 
Table 5. Training results with internal (a) and external (b) defects only. 

(a) 

Conditions 
Defect 

samples 
Noise  

samples 
Layers 

Training 
accuracy 

Training 
loss 

Test  
accuracy 

F1 score 

Transverse 
defects only 

399 798 8 * 8 * 16 * 16 

0.73 0.53 0.67 0.17 
0.74 0.52 0.66 0.19 
0.77 0.5 0.63 0.29 
0.76 0.5 0.71 0.36 
0.74 0.52 0.64 0.14 
0.76 0.5 0.64 0.26 
0.78 0.47 0.55 0.09 

(b) 

Conditions 
Defect 

samples 
Noise  

samples 
Layers 

Training 
accuracy 

Training 
loss 

Test  
accuracy 

F1 score 

Transverse 
defects only 

432 864 8 * 8 * 16 * 16 

0.73 0.54 0.66 0.15 
0.79 0.5 0.65 0.24 
0.76 0.53 0.65 0.03 
0.74 0.53 0.64 0.18 
0.76 0.51 0.64 0.08 
0.82 0.45 0.59 0.21 
0.76 0.5 0.57 0.15 

 
These results suggest that separating the defects into internal and external cat-

egories did not lead to significant improvements in the model performance, par-
ticularly in terms of the F1 score, which remained low in both cases. After such 
attempts, no significant improvement in overall performance was observed, and 
the quality of the raw data collected in the field tests was necessary to be validated.  

4.5. Additional Tests to Validate Data Quality 

The tests that have been conducted so far emphasized the importance of data qual-
ity, leading to several critical questions with respect to system capability to collect 
quality data and adequateness of system deployment, which mounts sensors onto 
a train frame as a non-contact method. In fundamental investigations into these 
aspects, additional tests were designed. A series of pencil lead break (PLB) tests 
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were conducted both in the lab and in the field. The PLB test is also known as the 
Hsu-Nielsen test, is commonly employed to replicate AE signals by breaking the 
tip of a pencil lead against the material surface. As the pencil lead in a specially 
designed pencil breaks, an elastic wave can be generated as a result of the sudden 
stress release. The ASTM E976-15 [22] recommends using a mechanical pencil 
with 2H leads of 0.5 mm diameter as the AE source for reliable results. Each lead 
to be broken was approximately 3 mm in length. The Nielsen shoe is used to po-
sition the pencil lead correctly towards the testing materials at a 30˚ angle (Figure 
19). Researchers adopted PLB as a simulation tool to produce AE signals and in-
vestigate the acoustic features of AE signals. 

 

 

 
Figure 19. PLB test and time-frequency analysis. 

 
The first question focused on whether the detection prototype was properly 

configured to receive AE signals. To evaluate the system setup and ensure the pro-
totype’s ability to capture acoustic signals accurately, a PLB test was made with 
sensors attached to the surface of a steel plate. The results from this test were pos-
itive, with the time-frequency analysis clearly indicating successful detection of 
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the PLB signals (Figure 19). 
The second question aimed to determine whether AE signals generated in the 

rail could be effectively captured by sensors mounted on the train frame. For this 
evaluation, a field test was conducted at the Nevada Railroad Museum. Sensors 
were installed at various locations on the wheel and suspension frame, and PLB 
tests were performed multiple times under the rail head to simulate AE signal 
generation. These tests were designed to verify if the AE signals could propagate 
through the rail into the wheel and be detected by the sensors. However, the re-
sults from the second test were discouraging, with all sensor locations failing to 
capture the AE signals properly. The tests were repeated multiple times at various 
sensors to verify the outcome. In all cases, the PLB signals were not properly de-
tected by the sensors, regardless of their installation positions.  

This consistent failure suggests that the AE signals were unable to propagate 
through the rail into the wheel without proper coupling. AE signals are highly 
dependent on the medium they propagate through, and any discontinuity at the 
interface between different materials can lead to significant signal attenuation. In 
this case, the rail and train frame presented multiple medium changes, including 
metal-to-metal and metal-to-air interfaces, which caused significant energy loss 
during propagation. 

Based on these findings, it can be concluded that the acoustic signals collected 
in previous tests at the TTCI and the Nevada Railroad Museum did not originate 
from the rails but from the train itself. These signals were likely mechanical vibra-
tions that presented similar patterns of AE signals, which explains the consistently 
low performance of the machine learning model. Given that the bone-conduct 
sensors cannot capture AE signals when installed on trains, it is necessary to ex-
plore alternative methods for collecting acoustic signals that do not suffer from 
propagation issues. This exploration is critical to improving the capability of AE 
signal detection in field applications. 

5. Discussion and Conclusion 

This study explored the feasibility of on-vehicle AE detection for rail defect detec-
tion using bone-conduct sensors. CWT analysis and machine learning were em-
ployed to identify AE characteristics. Key findings revealed several limitations in 
this approach, indicating the need for significant advancements in AE-based rail 
health monitoring. 

1) Signal Detection and Analysis Challenges: The CWT analysis and machine 
learning models failed to identify AE features of rail defects. Despite testing across 
multiple defect types and speeds, the AE characteristics essential for reliable defect 
detection were not consistently detected, indicating limitations in current data 
processing methods for in-motion applications. 

2) Propagation Limitations: Further investigations using PLB tests presented 
that AE signals generated by rail defects failed to propagate from the rail through 
the wheel and into the sensors. This finding indicated a fundamental limitation in 
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using contact-based methods for defect detection, as AE signals attenuate signifi-
cantly before reaching vehicle-mounted sensors. 

3) Implications of Findings: The findings indicate a critical limitation for on-
vehicle AE detection: ensuring effective AE signal propagation. In this research, 
the inability of AE signals to propagate across different media due to insufficient 
coupling led to the failure to detect rail defects. To address this challenge, two 
approaches are recommended: (1) improving the coupling between the media to 
facilitate uninterrupted AE signal transmission, and (2) adopting non-contact 
techniques for AE signal collection to eliminate the need for signal propagation 
through multiple media, thereby preserving signal integrity. 

4) Future Recommendations for Non-Contact AE Detection: Given the chal-
lenges with contact-based AE signal transmission, the results suggest that effective 
on-vehicle rail defect inspection requires the development of non-contact AE de-
tection methods. Non-contact approaches, such as air-coupled sensors, may ena-
ble non-contact AE signal detection without physical contact between the vehicle 
and the rail, addressing the signal propagation challenge in this research. 

In conclusion, while on-vehicle AE detection shows promise for automated rail 
health monitoring, this study illustrates the limitations of contact-based approaches 
and emphasizes the potential of non-contact technologies for addressing these 
challenges. Future research should focus on refining non-contact detection meth-
ods and improving signal processing algorithms to realize reliable, high-speed rail 
defect inspection. 
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