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Abstract 
The use of solar energy is today widely recognized for the green transition but 
also for addressing societal challenges associated with the rise in global surface 
temperature. The design of a photovoltaic solar panel field may require an un-
derstanding of how solar radiation oscillates with other variables or factors 
since multiple interactions occur during its transfer within the atmosphere. In 
this study, three years of the incoming shortwave radiation (SWin) and air 
temperature (Tair) data acquired within the “Institut de Mathématiques et de 
Sciences Physiques” were analyzed using the continuous wavelet transform to 
extract the inherent variability of these signals. The underlying characteristics 
meaning the timescale of these variabilities as well as the lead-lag relationship 
between SWin and Tair were also examined. With the wavelet power spec-
trum, the highest variability was evidenced at the 2 - 8 band period for the 
SWin, coinciding almost with that of Tair. This suggests that these two signals 
are well interconnected at this temporal scale. The results obtained with the 
phase ( xy∅ ) difference analysis, reveal that SWin leads Tair by ~ 23.5˚ on av-
erage when (0 < xy∅  < π/2) whereas when (−π/2 < xy∅  < 0), Tair leads 
SWin. They demonstrate at least that at the short time scale (i.e., periods ≤ 32 
days), Tair increases with an increasing SWin since the lags between these two 
signals range between 0.09 - 2.30 days. However, when looking at their inter-
dependence at a larger temporal scale (> 32 days), Tair lags SWin. An increase 
in SWin might not directly imply an increase in Tair. Overall, these findings 
give insight into complex relationships across scales between the incoming 
shortwave radiation and air temperature in a tropical humid region of Bénin. 
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1. Introduction 

The use of solar energy is today undeniable not only for the green transition but 
also for addressing societal challenges associated with the rise in global surface 
temperature. The deployment of this environmentally-friendly form of renewable 
energy allows fulfilling a number of Sustainable Development Goals (SDGs) while 
lowering atmospheric greenhouse gas emissions [1] [2], reducing air pollution 
[3]-[5], and as well as already demonstrated worldwide, supporting energy self-
sufficiency [6] [7] and economic development [8]-[10]. Indeed, solar rays are 
composed of different wavelengths, and the most targeted for photovoltaic solar 
resources, passive solar design and solar-thermal systems [11] are those coming 
from the visible and near infrared domains where the maximum energy is ex-
pected [12]. However, several factors affect this natural resource during its trans-
fer within the atmosphere. The incident shortwave radiation emitted by the sun, 
for example, undergoes several processes of diffusion, reflection and transmission 
by the atmospheric particles which lower its amount before it reaches the ground 
[12]. Thus, the amount of radiation arriving at the surface depends mainly on the 
state, characteristics of the atmosphere, topography of the surface etc. Thereby, it 
remains crucial in the design of operational solar energy projects, performance 
assessment or preferably before installing a solar firm at a site for example, to 
conduct an experimental campaign and analyze the acquired data to extract in-
formation on the variability of this natural resource. A campaign will be useful to 
extract the inherent variability of the resource and far away to understand its un-
derlying characteristics meaning the timescale at which interactions between solar 
radiation and atmospheric particles occur for a region of interest. This also could 
be of great importance for modelling studies [11] [13]-[15] especially in regions 
where meteorological observations and dedicated solar radiation measurements 
are scarce.  

Because of the lack of in situ measurements, many solar radiation models have 
been developed using several methods based on meteorological data and includ-
ing among others, sunshine duration, relative humidity, cloud cover, minimum 
and maximum air temperature. With regard to this, their study done in Madrid 
[11] [16] showed that the model based on temperature provides better results if 
its parameters are correctly adjusted. Indeed, these authors developed a new em-
pirical model using the theoretical maximum possible value of radiation through 
daily maximum and minimum air temperature to estimate global solar radiation 
on a daily scale in Madrid. [17] exploited the inter-relationship between daily at-
mospheric transmission coefficients, air temperature and sunshine duration to 
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estimate solar radiation in various sites worldwide. In a tropical region of West 
Africa, [18] clearly emphasizes the importance of the maximum air temperature 
in solar radiation modelling in Nigeria. These authors showed that maximum air 
temperature and relative humidity can be used together to predict solar radiation 
with satisfactory accuracy. [19] proposed a simple model for determining solar 
radiation from extraterrestrial radiation and the measured temperature range. 
[20] assumed that solar radiation should be an exponential function of tempera-
ture difference at a daily time scale. In all these modelling studies, air temperature 
appears as a key variable, from which one can estimate or predict solar radiation 
due to the strong relationship between these two variables. Since the air tempera-
ture is the most common and available meteorological variable, understanding 
this relationship in a unified time-frequency scale could be therefore an interest-
ing mean or a prerequisite to understanding firstly the microclimate of this area 
but can be used to provide relevant knowledge for predicting and modelling radi-
ation processes for a given region.  

Recently [21] has shown that there is a lag between SWin and Tair across 
seven sites spanning from a wetter climate in southern Benin to drier in Mali, 
West Africa. In northern Benin in particular, characterized by a Sudanian cli-
mate (~1200 mm/y), these authors found that the air temperature leads the in-
coming shortwave radiation meaning that there is a delay in the atmospheric col-
umn heating which begins at the ground as suggested by [22]. However, the south 
of Benin is more humid (sub-equatorial climate with a relative humidity always 
higher than 50% all year long) [23] compared to the north. We thus hypothesize 
that surface processes or mechanisms leading or lagging them could be different. 
Let’s recall that there is a lack of research with regard to how these preceding pro-
cesses occur specifically in the south of Benin as highlighted recently by [24]. A 
solid understanding of the physical processes combined with the data of specific 
variables that represent them is a necessary first step from which forecasters may 
be able to provide better predictions about solar radiation availability and enable 
early actions.  

The objective of this study is therefore to analyze the co-oxillation between the 
SWin and Tair in both time and frequency domains. This relationship is examined 
utilizing the Continuous Wavelet Transform (CWT) framework, enabling to dis-
tinguish during the analyzed years both interconnections in time as well as short- 
and long term connections. The analysis is applied to the data acquired at the 
southeastern part of Bénin using daily average data spanning from November 
2020 to October 2023. We also provide annual cycles to emphasize the radiative 
characteristics of this area. In the remainder of this paper, the site and data used 
are presented in Section 2; different methodological approaches are described in 
Section 3. The temporal dynamics of SWin and Tair at seasonal timescale are pre-
sented in Section 4 .1. We then highlight the findings obtained using the spectral 
method in Sections 4.2 and 4.3, followed by a discussion. Finally, conclusions are 
drawn in Section 5. 
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2. Site and Data Acquisition  

The measurements of the air temperature and incoming shortwave radiation were 
conducted at the Dangbo Eddy Covariance (EC) site established in the “Institut 
de Mathématiques et de Sciences Physiques”, southeast Bénin (Figure 1). The ob-
servational station was set up in October 2020 within the framework of the 
ASEEW@ research project [23], funded by the OWSD Early Career Fellowship, 
and is currently part of the “DangboFLUX” initiative. In this study, we used me-
teorological data spanning from November 2020 to October 2023 thus three com-
plete years to investigate the co-oscillation in the spectral domain of the air tem-
perature and incoming shortwave radiation. The studied region is characterized 
by a typical subequatorial climate with two rainy seasons alternating with long 
and short dry seasons [23] [25]. Air temperature measurements were acquired 
utilizing an EE181 probe while the incoming shortwave radiation data were ob-
tained using a CNR4 Net radiometer. Data were recorded each 15 min and stored 
continuously in the datalogger.  

 

 
Figure 1. Location of (a) Ouémé in Bénin, (b) the Dangbo municipality in the Ouémé department; (c) google earth view of the study 
area. The star indicates the location of the study site. (d) altitude of the area and (f) land cover in the Dangbo municipality from [23].  

3. Wavelet Transform Analysis  

Data acquired with these sensors were used to investigate changes in solar 
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radiation, and in air temperature as well their lead-lag relationship using the wave-
let transforms since they are suitable to analyzing non-stationary processes [26]. 
The wavelet analysis is a transformation of time and frequency which is used to 
extract relevant information from a signal or a sequence of observation and ana-
lyze it at multiscale through dilatation and translation [27] [28]. It decomposes 
the variance of signal into series of coefficients which represents the distribution 
of the variance across different frequencies (scales) and time (location) [26] [29]. 
It is able to highlight, as a spectral method, a specific behavior in the signals and 
therefore useful to understanding time-frequency variation of the two signals as 
well revealing their singularities. The Wavelet Transform of a signal ( )x t  noted 

( ),xWT sτ  for a given scale “s” is defined as: 

 ( ) ( )*
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where τ is the translation parameter indicating of the position of the wavelet; δt is 
the temporal scale; β = (δt/s)1/2 is the normalization factor necessary to ensure the 
variance unity of the wavelet coefficients; *ψ  is the conjugate of the mother 
function satisfying the wavelet admissibility criterion. In this work, the commonly 
complex mother function widely used in atmospheric time series analysis, that is 
the Morlet mother function, has been chosen because of its complex form given 
by:  
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By dilating (or contracting) the scale (s) and translating within time (τ), one 
can calculate the wavelet coefficients ( ( ),xWT sτ ), which characterize how differ-
ent scales (s) contribute to the time series tx  at various time positions (τ). The 
wavelet power spectrum xWPS  which represents indeed the variance of the sig-
nal x(t) is computed from ( ),xWT sτ  as:  

 ( ) ( ) 2
  , 2 , .s

x xWPS s WT sτ τ=  (3) 

WPS gives the local repartition of the energy in time and describes how much each 
period or frequency band contributed to the energy of the signal over that time 
interval. The higher the WPS is, the larger is the variance of the signal and vice 
versa.  

3.1. Wavelet Coherence  

The wavelet coherence of two signals ( )x t  and ( )y t , analogous to the correla-
tion in a standard statistical analysis, is used to explore the localized linear rela-
tionship between incoming shortwave radiation and air temperature at different 
scales (frequencies) over the time. It is expressed as:  
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where   in Equation (4) is the time and frequency smoothing operator for 
the Morlet wavelet. ( ),xyWT sτ  the cross-wavelet transform of ( )x t  and ( )y t
given by:  

 ( ) ( ) ( )*  , , , ,xy x yWT s WT s WT sτ τ τ=  (5) 

where ( )* ,yWT sτ  is the complex conjugate of ( ),yWT sτ .  
2
xyR  ranges from 0 to 1; the larger the value, the higher the coherence means 

greater linear correlation between variables. By transforming incoming shortwave 
radiation and air temperature data into scales via Equations (1)-(3), the amplitude 
spectra provides clear spatial variability while the phase indicates their disconti-
nuities.  

3.2. Phase Difference  

The cross-wavelet transform also provides the lead and lag relationship in oscilla-
tions between two time series. They are known as a phase difference [27] and can 
be used to extract information about the nature of correlation processes between 
signals under the assumption that they are causal [30]. The phase difference    xy∅  
is given by:  
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where   xy∅  represents phase difference varying in the interval [−π; π];  
( )( )Re ,xyW sτ  and ( )( )Im ,xyW sτ  are the real and imaginary parts of ( ),xyW sτ . 

When    xy∅  ∈ [0, π/2], x , y move in phase meaning they are positively corre-
lated and x  leads y ;   xy∅  ∈ ]−π/2, 0], x , y  move in phase and y  leads 
x . If    xy∅  ∈ ] π/2; π], the two time series are negatively correlated (anti-phase) 

and x is out of phase and leads y  and finally for the last quadrant y  is out of 
phase and leads x .   

4. Results and Discussion 
4.1. Thermal Conditions  

Figure 2 shows the three-year time series data of the incoming shortwave radia-
tion (SWin) and air temperature (Tair), respectively, observed at Dangbo from 01 
November 2020 (01 November corresponds to Day of Year (DOY) 1) to 31 Octo-
ber 2023 (DOY 365).  

The solar radiation (SWin) reaching the ground at Dangbo exhibited a certain 
variability which is more pronounced during the wet season (from March to June 
and September to October). Its evolution also showed a sizeable influence of 
cloudiness and other factors, limiting the amount of radiation arriving at the sur-
face. In addition, the pattern of SWin reveals the presence of nonlinearities and 
multiple time scales of variations, which are higher in wet seasons (March to June 
and September to October) and lower in dry seasons (July to August and Novem-
ber to February respectively).  
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The distinct SWin and Tair annual patterns in the studied area illustrated in 
Figure 2 are pieces of evidence that contrast the three years studied but also within 
the annual cycle. The annual daily average air temperature was about 26.8˚C ± 
1.4˚C and the incoming shortwave radiation was 180 ± 50 W·m−2 (mean ± s.d.) 
over the studied period. 

 

 
Figure 2. Daily average of: (a) the incoming shortwave radiation and (b) air temperature 
for the three years analyzed: November 2020 to October 2021 (green); November 2021 to 
October 2022 (blue) and November 2022 to October 2023 (orange). Day of year (DOY) 
represents the number of day within the year.  

 
On average, SWin increases from DOY 100 (around January) to reach its first 

maxima around DOY 150 (March) but then weakens slowly until July/August 
where the annual minimum value is observed. The following increase is sharp and 
lasts until the end of the year (October 31st). The annual evolution of Tair follows 
a little that of SWin. It is interesting to note that the daily maximum is roughly 
the same during the three years (~29.0˚C - 30.0˚C), occurring between DOY 100 
(during the long dry season) and DOY 150 (March) at the beginning of the wet 
season. The minimum values (~24.0˚C - 25.0˚C) were however found, depending 
the year in July/August/September which coincides with the high cloudiness pe-
riod in West Africa [31]-[33].  

4.2. Continuous Wavelet Transform Analysis of SWin and Tair 

Figure 3 presents the daily wavelet power spectrum of the incoming shortwave 
radiation (SWin) and air temperature (Tair) at the Dangbo site. Herein, we quan-
tified the variability of these signals with the wavelet coefficient at different time 
scales and periods. Two major peaks of variability (2 - 8 and 64 - 128 bands) were 
emphasized with the wavelet power spectrum (WPS) of SWin. The highest value 
of the WPS was obtained within the 2 - 8 band period and was more concentrated 
suggesting that there is a higher variance in the signal from daily to almost decadal 
time period. The second peak is less higher, with some abrupt and localized 
changes in the variance of SWin revealing rather the difference between months 
(thus seasons) corresponding to the seasonal variability of SWin. This evidences 
also the presence of nonlinearities at these scales already emphasized in previous 
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section (Figure 2). When looking at Figure 3, annual pattern of SWin is clearly 
depicted with higher power during wet seasons (March to June and September to 
October) and slight to almost inexistent power during dry season especially be-
tween January and February and within the 2 - 8 band period.  

 

 
Figure 3. Continuous wavelet transform of the daily incoming shortwave radiation (SWin) and air temperature (Tair) (left) and 
their respective global spectra (right) according to the period from November 2020 to October 2023. Areas of statistical significance 
are circled in black; the area outside the cone of influence has no statistical significance.  
 

The highest wavelet power in SWin coincides almost with that of Tair indicat-
ing that these two variables are interconnected especially in the 2 - 8 band period. 
Beyond this band, there is relatively continuous and lower power of variability 
compared to the 2 - 8 band. Wavelet coefficients acutely vary form the highest to 
the lowest suggesting a potential unstable variability of Tair between 16 and 256 
band period. 

4.3. Coherence and Lead-Lag Analyses 

In respect of each band of time, and period, color gradation indicates the level of 
co-oscillation (weak or strong). The arrow directions indicate however the causa-
tion (leading of lagging) and the nature of the relationship. The degree of co-os-
cillation was reflected through the plots in the time frequency domain. The color 
ranged from light blue to red, each representing low and high degree of correla-
tion. The red region indicates a stronger co-oscillation while the blue area indi-
cated a weaker co-oscillation. We can see from (Figure 4) that there is a significant 
co-movement as expected between SWin and Tair across frequencies (periods).  
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There are some irregular and discontinuous high and low power oscillations for 
the period below 4 days. For the three years investigated, there is a quasi-inexist-
ence of significant correlation between SWin and Tair during the long dry season 
for the period lower than 8 days suggesting that there is another possible mecha-
nism that happens at this site and at daily time scale. [23] showed for example that 
at this site, a lower RH is not accompanied by a high air temperature at daily time 
scale, suggesting that air mass has changed, a drier air mass with the same tem-
perature has arrived over the site. During other periods of the year, both signals 
depicted some similarity toward a large significant band of variability, sometimes 
discontinuous, and mostly positive correlation in 2022 and 2023. Based on the 
daily data analyzed, we found that SWin and Tair move in phase meaning there 
are positively correlated (arrows directed to the right on the Figure 4), except be-
tween December 2022 and February 2023 (long dry season), where arrows are ori-
ented into the left suggesting rather a negative correlation. A clear distinction of 
the nature of co-oscillation during the long dry season is therefore obtained.  

 

 
Figure 4. Wavelet coherence between the daily average of SWin and Tair time series spanning from November 2020 to October 
2023. Areas of statistical significance are circled in black; the area outside the cone of influence has no statistical significance.  
 

The mean values of coherence ( 2
xyR ), phase ( )xy∅  (where x  refers to SWin 

and y  to Tair) and time lags per band period and for the all three years are given 
in (Table 1) to quantify nature of the co-oscillation within this unified time-fre-
quency domain. On average for the all band periods, 0 < xy∅  < π/2, except 
within the 32 - 64 and 128 - 256 band period where xy∅  equaled to 333.84˚ and 
347˚ respectively. The former indicates that SWin leads Tair by ~23.5˚ when (0 < 

xy∅  < π/2) whereas when (−π/2 < xy∅  < 0), Tair leads SWin. 
These results suggest at least that at the short time scale (i.e. periods ≤ 32 days), 

Tair increases with an increasing SWin. The lag of these two signals ranges between 

https://doi.org/10.4236/acs.2025.151009


O. Mamadou et al. 
 

 

DOI: 10.4236/acs.2025.151009 196 Atmospheric and Climate Sciences 
 

0.09 and 2.30 days thus suggesting that the air column heats up almost instanta-
neously as radiation increases. However, when looking at the interdependence of 
radiation and air temperature at a larger temporal scale (>32 days), Tair lags SWin 
meaning that an increase in SWin may not directly imply an increasing Tair. The 
lags between SWin and Tair within 32 - 64 and 128 - 256 band period are negative 
and were −3.37 and −6.26 days respectively. Surprisingly, in the 64-128 band pe-
riod, ( 2

xyR ) was the smallest (0.76) and xy∅  = 30 with a lag of 7.72 days between 
SWin and Tair. This suggests that Tair follows the dynamics of SWin but with a 
higher delay compared to that of the period ≤ 32 days. All these results together 
reveals complex dynamics of radiation and air temperature within the annual cy-
cle.  

 
Table 1. The estimates per periods of the local coherence ( 2

xyR ) and the lead-lag relation-

ship ( xy∅ ) for the incoming shortwave radiation and air temperature based on the phase 

angle difference of the wavelet coherence.  

Periods (days) 2
xyR  xy∅  Lags (days) 

2 - 4 0.85 12.07 0.09 

4 - 8 0.82 21.71 0.34 

8 - 16 0.81 20.03 0.64 

16 - 32 0.82 35.76 2.30 

32 - 64 0.78 333.84 −3.36 

64 - 128 0.76 30.0 7.72 

128 - 256 0.83 347 −6.26 

5. Conclusion 

The data acquired at Dangbo in the years 2020-2023 made it possible to investigate 
the spectral behavior of the incoming shortwave radiation and air temperature 
and how these signals vary with respect to time. The SWin and Tair patterns were 
found to depend considerably on atmospheric state, and on cloudiness in partic-
ular. It was possible to determine within a unified time interval-frequency band 
space where the relationship was present (absent), strong (weak) and positive 
(negative) and as well as the lag between the two signals involved in the analysis. 
In addition to the scientific interest, the results obtained in this work may benefit 
engineers and practicians, as well as those who are interested in knowing how far 
this natural resource is affected by weather characteristics in the southeastern re-
gion of Benin. In a country where energy availability is of critical relevance, the 
availability of useful and usable weather information is paramount to support its 
industry and socioeconomic growth.  
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