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Abstract 
This article constructs statistical selection procedures for exponential popula-
tions that may differ in only the threshold parameters. The scale parameters 
of the populations are assumed common and known. The independent sam-
ples drawn from the populations are taken to be of the same size. The best 
population is defined as the one associated with the largest threshold parame-
ter. In case more than one population share the largest threshold, one of these 
is tagged at random and denoted the best. Two procedures are developed for 
choosing a subset of the populations having the property that the chosen sub-
set contains the best population with a prescribed probability. One procedure 
is based on the sample minimum values drawn from the populations, and an-
other is based on the sample means from the populations. An “Indifference 
Zone” (IZ) selection procedure is also developed based on the sample mini-
mum values. The IZ procedure asserts that the population with the largest test 
statistic (e.g., the sample minimum) is the best population. With this ap-
proach, the sample size is chosen so as to guarantee that the probability of a 
correct selection is no less than a prescribed probability in the parameter re-
gion where the largest threshold is at least a prescribed amount larger than the 
remaining thresholds. Numerical examples are given, and the computer R-
codes for all calculations are given in the Appendices.  
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1. Introduction 

The Weibull distribution is one of the most widely utilized probability distributions 
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in applied reliability statistics. Its development spanned from 1922 to 1943, during 
which three separate groups worked independently toward different objectives. 
Among these researchers was Waloddi Weibull, whose name has since become 
synonymous with the distribution (see Rinne [1]). The distribution form that was 
introduced by Weibull in 1939, depends on three parameters. The cumulative dis-
tribution function, the density function and the hazard function or the failure rate 
of a three-parameter Weibull distribution for t γ≥  are given as: 

 ( )| , , 1 exp tF t
β

γγ η β
η

  −
= − −  

   
 (1.1) 

 ( )
1

| , , expt tf t
β β

β γ γγ η β
η η η

−     − −
= −    

     
 (1.2) 

 ( ); , , ,tH t
β

β γγ η β
η η
 −

=  
 

 (1.3) 

where: 
• γ  is the location parameter, also called the threshold or shift parameter. 
• 0η >  is the scale parameter. 
• 0β >  is the shape parameter. 

The mean and the variance of a Weibull random variable are respectively, 

 ( ) 1Γ 1E T η γ
β

 
= + + 

 
 (1.4) 

 ( ) 2 22 1Γ 1 Γ 1 ,V T η
β β

    
= + − +    

    
 (1.5) 

where ( )Γ z  is the gamma function defined as, 

 ( ) 1
0

Γ e d .z tz t t− −∞
= ∫  (1.6) 

Weibull percentiles are important in many applications, as they represent the 
time at which a certain percentage of the population is expected to fail. When γ
= 0 the scale parameter η  is the 63.2% percentile of the Weibull distribution, i.e., 
the time at which 63.2% of the population will fail. The percentile function is 

 ( ) 1
log 1 .pt p

β
γ η= + − −    (1.7) 

The most used Weibull model is the two-parameter model, when the threshold 
parameter is not present, i.e. 0γ = . So the functions that characterize this form 
of the distribution are, for 0t ≥ , 

 ( )| , 1 exp tF t
β

η β
η

  
= − −  

   
 (1.8) 
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1

| , , expt tf t
β β

βγ η β
η η η

−     
= −    
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 (1.9) 
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 ( ); , , .tH t
β

βγ η β
η η
 

=  
 

 (1.10) 

The mean in this case is ( ) 1Γ 1E T η
β

 
= + 

 
, and the variance remains the 

same as in the three-parameter case, since it does not depend on the threshold 
parameter. 

The practical significance of the Weibull distribution lies in its versatility to model 
failure patterns across various commonly observed shapes. When 0 1β< < , the 
Weibull distribution exhibits a decreasing hazard function. Such a model is ap-
plied in electronic testing for components that have a high chance of early failure. 
For example, testing microchips or circuit boards where early failure often occurs 
due to minor defects introduced in manufacturing (Meeker, et al. [2]). At 1β = , 
the hazard function remains constant, representing a failure rate that does not 
change over time. For this value of the shape parameter, Weibull reduces to the 
exponential distribution, for t γ≥ , 

 ( ) 1| , exp tf t γγ η
η η

  −
= −  

  
 (1.11) 

and when 0γ = , for 0t ≥  the more familiar form 

 ( ) 1| exp .tf t η
η η

 
= − 

 
 (1.12) 

This model is useful for items where the probability of failure does not depend 
on age (memoryless property). Some examples of such items are, light bulbs, elec-
tronic resistors, or other items where failure events are random and independent 
of how long they’ve been in use. 

For 1β >  the hazard function is increasing. When 1 2β< <  the failure rate 
is moderately increasing and such a model is applied to fatigue testing in mechan-
ical engineering. Components subject to moderate stress, like springs, bearings, 
or light-duty machinery parts, may experience a gradually increasing failure rate 
as minor wear gradually contributes to eventual failure (Meeker et al. [2]). 

When 2β = , a special case of the Weibull distribution, known as the Rayleigh 
distribution, has a linearly increasing failure rate. This model is applied in mete-
orology, for wind speed modeling. An application might be calculating probabil-
ities of extreme weather events like strong gusts, which are more likely with in-
creasing wind speed. 

For 2β >  the distribution has a rapidly increasing failure rate. It models ag-
ing or wear-out phase where failure rate accelerates as the item ages, indicating 
that the likelihood of failure increases significantly over time. This is common for 
high-stress mechanical systems that are subject to significant wear such as en-
gines, turbines, or heavy equipment (Meeker et al. [2]). For the case when β  is 
very large, the Weibull distribution models sudden wear out. It approximates a 
deterministic lifespan where failure occurs almost predictably after a certain 
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period. This is useful in setting maintenance schedules for parts that must be re-
placed after a defined usage time to avoid sudden failure. 

The extensive applicability of the Weibull distribution in reliability analysis un-
derscores its importance, often making it the preferred choice over other distri-
butions. A notable example is the study by McDonald, et al. [3], which demon-
strates the advantages of using the Weibull distribution over the lognormal distri-
bution in analyzing car emission data, highlighting its superior fit and interpreta-
tive value in that context. 

The goal of this paper is to derive selection rules for the special case of the 
Weibull distribution when 1β = . This is the exponential distribution with loca-
tion and scale parameters ( ),γ η . In an early paper, An Hsu [4] gives some pro-
cedures for Weibull populations. The author constructs optimal selection proce-
dures in order to select a subset of the k  populations containing the best popu-
lation. The procedures control the size of the selected subset and also maximize 
the minimum probability of a correct selection. The author considers the cases 
when the shape parameter β  is common and known among the k  popula-
tions and the sample sizes are not necessarily equal. The selection procedures are 
based on the scale parameter η , where a population is considered best if it has 
the largest scale parameter. Hence selecting the best population means selecting 
the population with the largest scale η . So, the main two problems of An Hsu’s 
paper are, to maximize the probability of correct selection and to minimize the 
subset size. 

Two excellent and comprehensive books on ranking and selection procedures 
are authored by Gupta and Panchapkesan [5] and Gibbons, et al. [6]. 

2. Selection Rules for the Exponential Threshold Model 
( 1β = , 1η = )  

Let 1 2, , , kΠ Π Π  be k  three-parameter Weibull populations with common, 
known, shape and scale parameters, ( 1β = , 1η = ) and threshold parameters iγ , 
for 1,2, ,i k=  . Let iT  be a random variable associated with population iΠ , 
for 1,2, ,i k=  , then iT  follows the distribution 

 ( ) ( )| 1 exp , .i i iF t t tγ γ γ = − − − ≥   (2.1) 

Two approaches to selection rules will be developed. The first approach consid-
ers subset selection, where the goal is to select a subset of the k  populations that 
contains the best population with a specified probability *P . The second, involves 
the indifference zone, which focuses on selecting the single best population among 
the k , again with a specified probability *P . In both these scenarios, the best 
population is the one having the largest(the smallest) threshold parameter, de-
pending on the context. In the exponential model considered here, the threshold 
parameter is additive in the expression for the mean and for any percentile. Thus, 
selection for the largest threshold is equivalent to selection for the largest mean or 
for any of the percentiles. 
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2.1. Subset Selection for Populations to Contain the One with the 
Largest Threshold 

The subset selection approaches developed herein follow the seminal work by 
Gupta [7]. Let ijT  be n  independent identically distributed(iid) random varia-
bles from population iΠ , for 1,2, ,i k=   and 1,2, ,j n=  . Let  

[ ] [ ] [ ]1 2 kγ γ γ≤ ≤ ≤  be the ordered thresholds, where [ ]kγ  corresponds to the 
best population. Since t γ≥ , then the minimum order statistic is a typical esti-
mator for γ . So, let ( )iY  be the minimum of the sample from the population 
with threshold parameter [ ]iγ , 

 ( ) ( )
1
min , 1, 2, , .iji j n

Y X i k
≤ ≤

= =   (2.2) 

The selection rule is then, 

 ( )1 1
: Select iff max , 0.i i jj k

R Y Y d d
≤ ≤

Π ≥ − ≥  (2.3) 

The distribution of the minimum order statistic for independent random vari-
ables , 1, 2, ,iX i n=   following (2.1) can easily be derived. 

If ( )1 2min , , , nY X X X=  , then 
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  (2.4) 

From here, the pdf of Y  is ( ) ( )e n y
Yf y n γ− −= , y γ≥ . The probability of a (CS) 

now follows: 
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Now, let [ ]kx y γ= − , and so [ ]ky x γ= + . Then since [ ] [ ] 0k jγ γ− ≥ ,  
1,2, , 1j k= −  
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  (2.5) 
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The parameter configuration 1 2 kγ γ γ= = =  is referred to as the Least Fa-
vorable Configuration (LFC) since it yields the minimum value of ( )Pr CS . Set-
ting the expression in (2.5) equal to a specified value *P  ( 1 * 1k P− < < ), the value 
of d  can now be determined. Now the selection rule 1R  will ensure that 

( ) *Pr CS P≥  no matter the configuration of i sγ ′ . 

Common and Known Scale Parameter 1η ≠  
We assume that the scale parameter is common for all the populations iΠ  for 

1,2, ,i k=   and it is known, but it’s not 1. Does this change the selection rule  

for subset selection? Let ( )~ exp ,T η γ . The random variable T
η

 is still expo-

nentially distributed with scale parameter 1η = , 

 

( )

( )

Pr Pr

1 exp

1 exp

1 exp .

T t T t

t

t

t

η
η

η γ
η

γ
η

γ

 
≤ = ≤ 

 
 −

= − − 
 
  

= − − −  
  

= − − −  ′

  (2.6) 

Or otherwise, 

 ( )| 1 exp , , .tF t t γγ γ γ γ
η η
 

= − − − ′ ′ ′≥ =    
 

  (2.7) 

Hence, we get back to the previous case where scale parameter 1η =  and the 
same selection rule, 1R , can be applied. 

2.2. Selection Based on Sample Means 

If 1β = , then ( ) ( )Γ 2E T η γ η γ= + = +  and ( ) ( ) ( )2 2 2Γ 3 Γ 2V T η η = − =  . 
Suppose , 1, 2, ,i i kΠ =   are k  independent populations with iΠ  distrib-
uted as Weibull ( ), , 1iγ η β = , and η  is a common value known. Let ijX  be an 
independent random sample from iΠ , 1,2, ,j n=  . Our goal is to select a sub-
set of the populations such that the population having the largest γ  value is con-
tained in the subset with a specified probability *P  ( 1 * 1k P− < < ). Denote the 
ordered γ -values by 
 [ ] [ ] [ ]1 2 .kγ γ γ≤ ≤ ≤  

Since γ  is a threshold, as covered in Section 2 it is reasonable to consider a 
selection rule based on the minimum sample values from the population, such as 

1R  given in 0.15. 
Since the population means are ordered as the population γ -values, it is also 

reasonable to consider a selection rule based on the population sample means, 

iX . That is, 

 ( )2 1
: Choose iff max ,i i jj k

R X X b
≤ ≤

Π ≥ −  (2.8) 
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where ( )1i ijj
nX X n
=

= ∑  and ( )*, ,b b k n P=  is a nonnegative number chosen 
to satisfy the *P  condition, 

 ( ) *min Pr CS ,P
Ω

≥   (2.9) 

where ( )1 2, , , kγ γ γΩ =  . 
Let ( )iX  be the sample mean drawn from the population possessing the mean 

value [ ]kη γ+ . Using the Central Limit Theorem, the distribution of ( )iX  is approx-
imately normal with mean [ ]kη γ+  and variance ( ) 2V T n nη= . So for large n , 

 

( ) ( ) ( )( )
[ ] [ ]( ) ( )( )

( ) ( )

1 1

1

Pr CS Pr max

Pr , 1,2, , 1

 d ,

k jj k

k j j k

k

X X b

Z Z n b j k

x cb x x

γ γ η

φ

≤ ≤ −

−

−∞

∞

= ≥ −

= ≥ + − − = −

≥ Φ +∫

   (2.10) 

where iZ , 1,2, ,i k=  , are independent standardized normal random variables 
and c n η= . Thus, ( )*, ,b b k n P=  is determined by setting Equation (2.10) 
equal to *P  and solving for b . 

For small values of n , the selection procedure can be based on the sum of the 
random variables, inX , 1,2, ,i k=  , and utilizing the property that a sum of 
n  independent exponential random variables follows the gamma distribution 
with parameters ( ),n η  assuming the threshold parameter, γ , is equal to 0 (Ca-
sella and Berger [8]). 

To assess the sensitivity of the subsets selected using selection rules 1R  and 

2R  to the assumption of a common known scale parameter, η , set a bound on 
possible values of the parameter. That is, say the assessment of the analyst is 
L Uη< < . Now discretize the interval ( ),L U  into m  discrete values, i.e., 

1 2 mL v v v U= < < < = . Follow the procedures in Sections (2.1.1) and (2.2) with 
η  assumed to be equal to iv  to obtain the selected subsets. Repeat the process 
using the remaining values of ( )1, , mv v= v . Compare the m  selected subsets 
and assess the sensitivity to the selections based on the uncertainty of the scale 
parameter. To assess the sensitivity to the assumption that the shape parameter, 
β , is equal to one is not possible since the LFC has not been determined for values 
of β  not equal to one. 

2.3. Application of the Two Selection Rules  

In this section, an example for each of the selection rules that were developed pre-
viously, rules (2.3) and (2.8) are given. The R-code for these rules is given in the 
Appendix section. 

2.3.1. Application of the Minimum Order Statistics Selection Rule 
Using the selection rule for the largest threshold based on minimum order statis-
tics from the k  populations, the d -values for different levels of the probability 

*P  are computed. 
The example will be for 10k =  populations. From each population, a sample 
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of size 25n =  is drawn, with an equi-spaced configuration for the threshold pa-
rameters, i.e., 1 10i sγ ′ = → , by 1. Simulations are set for 10000N = . The d -
values obtained are given in Table 1. The R-code for generating the d -values is 
found in Appendix A. The *P  values based on simulations can be checked using 
the R-code in Appendix D. 

 
Table 1. *P  and d -values. 

*P  0.75 0.90 0.95 0.975 0.99 

d  0.1083 0.1501 0.1785 0.2077 0.2449 

 
Using the R-code in Appendix B random samples of size 25 are generated from 

10 exponential populations having γ -values equal to 1 up to 10 with step size 1. 
Table 2 gives the minimum and mean values of these samples, respectively. The 
populations selected using rule 1R  are given in Table 4 for the five values of *P  
given in Table 1. 

 
Table 2. Minimums and means for each of the k populations. 

Population Minimum Mean 

1 0.0100 0.8842 

2 0.1626 2.3289 

3 0.4438 3.2933 

4 0.3080 4.1323 

5 0.0774 4.5331 

6 0.0683 5.5062 

7 0.2490 6.2474 

8 0.5265 9.1137 

9 0.2727 6.7970 

10 0.3481 9.6343 

2.3.2. Application of the Sample Means Rule 
For the selection rule based on the sample means, the b -value is calculated using 
the R-code in Appendix C, which for 10k = , 25n =  is given in Table 3: 

 
Table 3. *P  and b -values. 

*P  0.75 0.90 0.95 0.975 0.99 

b  0.4528 0.5970 0.6836 0.7598 0.8500 

 
The selected populations using 2R  with the example simulated exponential 

dataset, 1 10γ = → , step size 1, are given in Table 4. The sample means proce-
dure yields subsets with smaller size in most of the *P  values. For this particular 
simulation 2R  would be preferred over 1R  since the selected subset size is 
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favorable. Another similarly simulated data set could well result in 1R  being pre-
ferred over 2R . Simulation studies, yet to be published, show that the expected 
subset size of the selected populations is smaller for 1R  than for 2R  with equi-
spaced threshold parameters (or slippage parameter) greater than 0. 

 
Table 4. *P  and the selected populations using rules 1R  and 2R . 

*P  Min Procedure, 1R  Means Procedure, 2R  

0.75 3, 8 10 

0.90 3, 8 8, 10 

0.95 3, 8, 10 8, 10 

0.975 3, 8, 10 8, 10 

0.99 3, 4, 8, 10 8, 10 

2.4. Indifference Zone Approach 

Following the Indifference Zone approach formulated by Bechhofer [9], the pop-
ulation yielding the largest minimum order statistics, [ ]kY  would be asserted to 
be the “best” population. The statistical goal is to have the probability of this as-
sertion to be correct with a specified probability, *P , over the parameter space 

[ ] [ ]
*

1k k dγ γ −− ≥ , where *d  is a user specified meaningful difference between the 
best population and all the remainder ones. The minimum of the sample size 

( )* *, ,n n k P d=  needs to be determined so that the ( ) *Pr CS P≥  for the param-
eter configuration [ ] [ ]

*
1k k dγ γ −− ≥ . Other parameter configurations comprise the 

“indifference zone” in the sense that the ( )Pr CS  is not necessarily applicable. 
For this decision rule, 

 

( ) ( ) ( )( )
( ) ( )( )
( ) [ ] ( ) [ ] [ ] [ ]( )
( ) [ ] ( ) [ ]( )

( )*

*

1

0

Pr CS Pr max , 1,2, , 1

Pr , 1, 2, , 1

Pr , 1, 2, , 1

Pr , 1, 2, , 1

1 e e d .

k j

j k

j kj k k j

j kj k

k
n x d nx

Y Y j k

Y Y j k

Y Y j k

Y Y d j k

n x

γ γ γ γ

γ γ
−

−∞ + −

= ≥ = −

= ≤ = −

= − ≤ − + − = −

≥ − ≤ − + = −

 = −  ∫









  (2.11) 

The LFC is [ ] [ ] [ ]
*

1 1k k dγ γ γ−= = = − . The above integral expression is calcu-
lated with the R-code found in Appendix 5 and through iteration we can deter-
mine the minimum sample size required to meet the ( )Pr CS  requirement. 

For example, for 5k =  populations and requirement * 0.90P =  with  
* 0.25d = , Table 5 gives evaluations of (2.11). Thus, a sample size of 12 would be 

the minimum size requirement to meet the experimental goal. 

3. Summary and Conclusions 

The importance of the Weibull distribution sparked our interest to investigate  
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Table 5. Sample size n  and the *P  requirement. 

n  *P  

10 0.8488 

11 0.8801 

12 0.9053 

13 0.9254 

14 0.9414 

 
procedures for selecting the best among several Weibull populations. In this paper, 
the case when the shape parameter is common, known and 1β =  is considered. 
Under this consideration, the distribution reduces to the exponential distribution 
with scale and threshold parameters ( ),η γ . Further, the scale parameter η  is 
assumed common and known. 

Two different approaches, subset selection and indifference zone, are devel-
oped. For the subset selection approach, two different procedures, one based on 
the minimum order statistic and the other based on the sample means are consid-
ered. The two selection rules are given by Equations (2.3) and (2.8). Using the R-
codes provided in the appendices, there is little difference in the computational 
requirements for implementation of the selection rules 1R  and 2R . 

In the work presented here, the sample sizes for the k  populations are equal. 
As is often the case in practice, samples are not equal. In these cases, Gibbons, et 
al. [6], Section (4), suggest using a generalized average sample size for each of the 
populations. In particular, they recommend using the square-mean-root, 0N , 
given by 

 ( )( )2

0 1 .ii
kN n k
=

= ∑  (3.1) 

Note that the square root of 0N  is the arithmetic mean of the square root of 
the actual sample sizes. Gibbons, et al. [6] remark that 0N  is always greater than 
the geometric mean of the actual sample sizes, and always smaller than the arith-
metic mean. In practice, 0N  is rarely very different from the arithmetic mean; 
however (3.1) gives more accurate results most of the time and is therefore pref-
erable to the arithmetic mean. 

These theoretical results are illustrated with simulated data to demonstrate the 
selection procedures. Using the R-codes in Appendices A-C, the values of d  and 
b  given the number of populations k , the sample size n  and the probability of 
a correct selection *P , can be determined. Once these values were determined, 
selection rules (2.3) and (2.8) determined the subset that contains the best popu-
lation. The size of the selected subset is a nondecreasing function of ( )Pr CS . For 
our example, the sample means procedure 2R , seems to be superior to the mini-
mum order statistic procedure, 1R , because it selected a subset of smaller size, for 
almost all the values of *P . However, this is just one illustrative example. The 
conditions under which one of the two procedures is guaranteed better, in the 
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sense of yielding a subset size no larger than the other, have yet to be determined. 
For the indifference zone approach formulated by Bechhofer [9], our procedure 

was based on the minimum order statistics. In this case, the probability of a correct 
selection is specified over the parameter space determined by [ ] [ ]

*
1k k dγ γ −− ≥ , 

where *d  is user specified. Here the minimum sample size n  is determined so 
that the probability of a correct selection is at least *P . This is given by Equation 
(2.11). An example is provided for this approach. The R-code for its implementa-
tion can be found in Appendix D. For a given number of populations 5k = , 

* 0.25d =  and * 0.90P =  a minimum sample size of 12n =  is required in or-
der to achieve the experimental goal. 

This article naturally leads to further investigations about selection procedures. 
What are the conditions under which 1R  is preferred to 2R ? One can also be in-
terested in developing procedures when the shape parameter is common and 
known, but not equal to 1, or when the scale parameter is common and unknown 
and the sample sizes are not necessarily equal. 
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