

The Preparation of Sr(MoO₄)_x(WO₄)_{1-x} Microcrystallines and their Luminescent Properties

Yan-yan Wei¹, Xin Lai, Jian Bi, Dao-jiang Gao, Dun-min Lin , Yang Li, Yi Luo

¹College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China 610066 Email:daojianggao@126.com

Abstract: $Sr(MoO_4)_x(WO_4)_{1-x}$ microcrystallines(x = 0.0.5) were synthesized by solid-state method. The XRD of microcrystallines showed that the crystal structure were scheelite structure with tetragonal symmetry. The surface morphology was tetragonal taper grains and the grain size of the pure $SrWO_4$ was about 15µm. When Mo substituted for part of the W to synthesize the $Sr(MoO_4)_{0.5}(WO_4)_{0.5}$ microcrystalline, its grain size reduced to 10µm and its emission peek located at 493nm and its strength was also increased than the pure $SrWO_4$, which possesses high economic value.

Keywords: Sr(MoO₄)_x(WO₄)_{1-x} microcrystallines; solid-state method; scheelite structure; morphology

Sr(MoO₄)_x(WO₄)_{1-x} 微晶的制备及其发光性能

魏艳艳¹,赖 欣,毕 剑,高道江,赁敦敏,李 阳,罗 恰 ¹四川师范大学 化学与材料科学学院,成都,中国,610066 Email:daojianggao@126.com

摘 要: Sr(MoO₄)_x(WO₄)_{1-x} 固溶体微晶(x = 0-0.5)是利用高温固相法合成的。XRD 图谱表明这种新型 的固溶体微晶为白钨矿型四方晶相结构;微晶的电镜扫描图显示其形貌为四方锥状,绝 SrWO₄微晶晶 粒大小约为 15µm, Mo 取代部分 W 之后,即合成 Sr(MoO₄)_{0.5}(WO₄)_{0.5} 固溶体微晶,晶粒大小减至 10µm 左右,发射峰的位置移至 493nm,强度也有所增加,具有较好的经济价值。

关键词: Sr(MoO₄)_x(WO₄)_{1-x}固溶体; 固相法; 白钨矿; 形貌

1 引言

白钨矿结构 ABO₄(A = Ca, Sr, Ba 等二价金属; B = Mo, W)钨钼酸盐属四方晶系(点群对称性为 C_{4h}^{6}),发光 中心 BO₄²⁻基团相对稳定,非常适合做发光基质材料, 在激光基质材料、闪烁体媒介、固态光电器件、氧化物 离子导体和微波器件方面具有重要而广泛的应用。目前 的研究主要集中在稀土掺杂单元钨钼酸盐,像高温固相 法合成的 SrMoO₄:Tb³⁺、CaMoO₄:Tb³⁺、CaMoO₄:Tb³⁺, R(Li⁺,Na⁺,K⁺)、CaWO₄:Eu³⁺等类型^[1-3]; Pechini 法制备 的 Eu³⁺、Tb³⁺和 Na⁺共掺杂的钼酸盐粉体^[3];利用水热 法合成的 NaY(MoO₄)₂:Eu³⁺和 ABO₄: Tm³⁺(A = Ca, Sr、 Ba)微晶^[4, 5]及其它类型荧光粉等^[6~8]。对于这类荧光粉 它们或多或少都存在着荧光效率不高等缺陷,限制了它 们进一步的应用。因此,寻找更好的基质材料是目前研 究的当务之急。

由于钨钼酸盐具有相似的性质, Mo^{6+} (0.41Å)和 W⁶⁺ (0.42 Å)离子半径相近,它们可以形成很好的 A(WO₄)_{1-x}(MoO₄)_x (A = Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺等)复合钨钼 酸盐固溶体微晶。再者 Mo⁶⁺ 的半径(0.41Å)略低于 W⁶⁺ 的半径 (0.42 Å),在固溶体中,随着 Mo 取代 W 含量的 增加, B—O 键的平均键长会略微减小,固溶体的激发 带(谱)会发生红移(即向长波方向移动)。另一方面, Mo 元素的电负性(0.748)也略小于 W 元素(0.815), 对 Bⁿ⁺—O²⁻的电荷转移而言,由于共价效应,B和O元 素的电负性差异越小,从 O²⁻的 2p 轨道向 Bⁿ⁺的反键轨 道的电子转移就更容易,从而更有利于晶格中电子的离 域 化 和 激 发 能 量 的 降 低 。个 别 文 献 报 道 的 LiEu_{1-x}Y_x(WO₄)_{0.5}(MoO₄)_{1.5}和 LiEu(W, Mo)₂O₈:Bi³⁺红发

资助信息:国家自然科学基金(50472103);四川省青年科技基金 (08ZQ026-054);四川师范大学科研基金(08KYL02);四川省教育厅 重点项目(09ZA092)。

射荧光体也间接证实了这一点^[9.10],所以复合钨钼酸盐 固溶体微晶的研究具有很好的经济价值。

本文采用了高温固相法制备这种新型基质——复 合钨钼酸 Sr(MoO₄)_x(WO₄)_{1-x}固溶体微晶。高温固相法所 用原料易得、操作过程简便,最为重要的优点是此种方 法可以保证反应物中各元素的量和样品中各元素的量 的一致性,对复合钨钼酸盐 Sr(MoO₄)_x(WO₄)_{1-x}固溶体微 晶的研究具有重要作用。

2 试验

2.1 Sr(MoO₄)_x(WO₄)_{1-x}固溶体微晶的制备

采用传统工艺高温固相法制备 Sr(MoO₄)_x(WO₄)_{1-x} 固溶体微晶。将分析纯的 WO₃、MoO₃、SrCO₃ 原料按 化学计量摩尔比进行配料,放入球磨罐中,然后依次 加入质量约为反应物 3 倍的玛瑙球和 20ml 无水乙醇, 进行 10h 球磨之后,蒸干无水乙醇。之后在 750℃马 弗炉中高温反应 2h 后,自然降温至室温。最后将产物 研磨至一定细度,即得到 Sr(MoO₄)_x(WO₄)_(1-x)固溶体发 光微晶。具体流程如下:

称量→球磨→ 干燥→ 烧结→研磨→ 表征

2.2 固溶体微晶的性能及表征

采用 X 射线衍射仪(XD-2 型,北京普析。辐射源 为 CuKα,管压为 40kV,管电流为 30mA,扫描速度 为 4°/min)、扫描电子显微镜(JSM-5900, JEOL, 日 本。加速电压 20kV)、荧光分析仪(F-7000, Hitachi, 日本)分别对微晶的晶相结构、形貌、光学性能进行分 析表征。

3 结果与讨论

图 1 是 Sr(MoO₄)_x(WO₄)_{1-x}固溶体微晶的 XRD 衍 射图。

可以看出: 750℃制备的Sr(MoO₄)_x(WO₄)_{1-x}固溶体 微晶均结晶良好,与JCPDS标准PDF卡片(SrWO₄, No.85-0587)对照,特征衍射峰(101)、(112)、(200)、 (211)、、(114)、(204)、(224)等均明显显露,属于典 型的白钨矿结构,微晶衍射峰峰形和位置基本一致。 这是因为不管是钨酸锶还是钼酸锶均属四方晶相结构 ^[11~16],且Mo⁶⁺和W⁶⁺的离子半径非常接近,Mo⁶⁺取代 部分W⁶⁺并不会引起衍射峰形和位置的明显变化,制 备的固溶体微晶仍然呈现较好的四方晶相结构。

图 1.Sr(MoO₄)_x(WO₄)_{1-x}固溶体微晶的 XRD 图谱 (a)SrWO₄; (b)Sr(MoO₄)_{0.1}(WO₄)_{0.9}; (c)Sr(MoO₄)_{0.3}(WO₄)_{0.7}; (d)Sr(MoO₄)_{0.5}(WO₄)_{0.5}

图 2 是 Sr(MoO₄)_x(WO₄)_{1-x} 固溶体微晶的 SEM 图。

Figure2. SEM images of Sr(MoO₄)_x(WO₄)_{1-x} microcrystallines. (I)SrWO₄; (II)Sr(MoO₄)_{0.5}(WO₄)_{0.5} 图 2 .Sr(MoO₄)_x(WO₄)_{1-x} 固溶体微晶的 SEM 图谱 (I)SrWO₄; (II)Sr(MoO₄)_{0.5}(WO₄)_{0.5}

图 2 为制备的 Sr(MoO₄)_x(WO₄)_{1-x} 固溶体微晶中选出的 具有代表性的固溶体微晶的 SEM 图,其中(I)是 SrWO₄ 的 SEM 图,(II)是 Sr(MoO₄)_{0.5}(WO₄)_{0.5} 的 SEM 图。从 图中可以看出,微晶的形貌均为规则的四方双锥状, 其中纯 SrWO₄ 微晶生成四方锥状晶粒尺寸稍大,约为 15µm,如图 2(I);随着 Mo⁶⁺取代微晶中部分 W⁶⁺,形 成 Sr(MoO₄)_{0.5}(WO₄)_{0.5} 固溶体微晶,晶粒大小减至 10µm 左右。这是因为 Mo⁶⁺ 的半径略低于 W⁶⁺的半径, 当 Mo⁶⁺取代 W⁶⁺之后,化学键的平均键长会减小,造 成晶粒变小,更有利于微晶在实际光学材料中的应用。 图 3 是 Sr(MoO₄)_x(WO₄)_{1-x} 固溶体微晶的荧光图。

978-1-935068-41-9 © 2010 SciRes.

The 7th National Conference on Functional Materials and Applications

Figure3.Emissions pectra of the Sr(MoO₄)_x(WO₄)_{1.x}microcrystallines excited by 250nm ultraviolet light at room temperature. (1)SrWO₄; (2)Sr(MoO₄)_{0.1}(WO₄)_{0.9}; (3)Sr(MoO₄)_{0.3}(WO₄)_{0.7};

(4)Sr(MoO₄)_{0.5}(WO₄)_{0.5} 图3.250nm 紫外光激发下的Sr(MoO₄)_x(WO₄)_{1.5}固溶体微晶室温 光致发光图

$(1) SrWO_4; (2) Sr(MoO_4)_{0.1} (WO_4)_{0.9}; (3) Sr(MoO_4)_{0.3} (WO_4)_{0.7};$ $(4) Sr(MoO_4)_{0.5} (WO_4)_{0.5}$

从图可以看出:在 250nm 紫外光激发下,所有微 晶 均 呈 现 一 组 宽 发 射 峰,其中纯 SrWO₄、 Sr(MoO₄)_{0.1}(WO₄)_{0.9}、Sr(MoO₄)_{0.3}(WO₄)_{0.7} 三类微晶的 最强发射峰均位于 469nm 处,强度值随 x 增加而增强, 如图 3 中(1)、(2)、(3)谱线;对于 Sr(MoO₄)_{0.5}(WO₄)_{0.5} 固溶体微晶,最强峰发生了红移,至 493nm 处,强度 略高于纯 SrWO₄ 微晶的发射峰强度。这是由于 Mo 元 素的电负性(0.748)小于 W 元素(0.815),当 Mo⁶⁺ 取代部分 W⁶⁺之后,可降低 O²⁻向 Bⁿ⁺的电子转移所需 能量,使晶格中电子的离域化和激发能量降低,所以 在同一激发波长下,掺 Mo 的固溶体微晶更易受激发, 发射峰强度也更高,这也正是复合钨钼酸盐固溶体微 晶的优点所在。

4 结论

纯 SrW04微晶晶粒大小约为 15μm, Mo 取代部分 W 之后,晶粒减小。当 x 为 0.5 时,即合成 Sr(MoO₄)_{0.5}(WO₄)_{0.5}固溶体微晶,晶粒大小减至 10μm 左右,发射峰的位置发生红移,由SrWO₄微晶的469nm 移至 493nm,强度增加。说明制备的复合钨钼酸锶固 溶体微晶降低了所需的激发能量,具有较好的经济价 值。

References (参考文献)

- Xu Li, Zhiping Yang, Li Guan, et al. Synthesis and luminescent properties of CaMoO₄:Tb³⁺,R⁺(LI⁺,Na⁺,K⁺)[J].Journal of Alloys and Compounds, 2009, 478: 684–686.
- [2] Xu Li, Zhiping Yang, Li Guan, et al. A new yellowwish green luminescent material SrMoO₄:Tb³⁺[J]. Materials Letters, 2009, 63:1096-1098.
- [3] Zhengliang Wang, Hongbin Liang, Liya Zhou, et al. NaEu_{0.96}Sm_{0.04}(MoO₄)₂ as a promising red-emitting phorsphor for LED solid-state lighting prepared by the Pechini process[J].Journal of Luminescence, 2008, 128: 147-154.
- [4] Bing Yan, Jianhua Wu. NaY(MoO₄)₂:Eu³⁺and NaY_{0.9}Bi_{0.1}(MoO₄)₂:Eu³⁺submicrometer phosphors:Hydrothermal synthesis assisted by room temperature-solid state reaction, microstructure and photoluminescence[J].Materials Chemistry and Physics. 2009, 116: 67-71.
- [5] Jinsheng Liao, Bao Qiu, Herui Wen, et al. Synthesis process and luminesscence properties of Tm³⁺ in AWO₄ (A=Ca,Sr,Ba) blue phosphors[J]. Journal of Alloys and Compounds, 2009, 487: 758-762.
- [6] Kyu Seog Hwang, Seung Hwangbo, Jin Tae Kim. Sol-gel synthesis of red-emitting LiEuW₂O₈ powder as a near-ultraviolet convertible phosphor[J]. Ceramics International., 2009, 35: 2517-2519.
- [7] Jinsheng Liao, Bao Qiu, Herui Wen, et al. Photoluminescence green in microspheres of CaWO₄:Tb³⁺ processed in conventional hydrothermal[J]. Optical Materials, 2009, 31: 1513-1516.
- [8] Qiyue Shao, Huijuan Li, Kewei Wu, et al. Photoluminescence studies of red-emitting NaEu(WO₄)₂ as a near-UV or blue convertible phosphor[J.]Journal of Luminescence, 2009, 129: 879-883.
- [9] X.H.He,M.Y.J.H.Sun et al. Synthesis and photoluminescence properties of LiEu(W,Mo)₂O₈:Bi³⁺ red-emitting phosphor for white-LEDs[J]. Journal Materials Science, doi:10.1007/s10853-009-3900-2
- [10] Md.Masuqul Haque, Hong-In Lee,Dong-KuK Kim.Luminescent properties of Eu³⁺-activated molybdate-based novel red-emitting phosphors for LEDs[J]. Journal of Alloys and Compounds.2009, 481:792-796.
- [11] Geun-Kyu Choi, Jeong-Ryeol Kim, Sung Hun Yoon, et al. Microwave dielectric properties of scheelite (A=Ca,Sr,Ba) and wolframite (A=Mg,Zn,Mn) AMoO₄ compounds[J]. Journal of European Ceramic Society, 2007, 27: 3063-3067.
- [12] Yoon Sung Hun, Kim Dong-Wan, Cho Seo-Yong, et al.Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. Journal of European Ceramic Society, 2006, 26: 2051-2054.
- [13] Xiaohui Jiang, Junfeng Ma, Yan Yao, et al. Low-temperature synthesis of SrWO4 nano-particles by a molten salt method[J]. Ceramics International, 2009, 35: 3525-3528.
- [14] Titipun Thongtem, Sulawan Kaowphong, Somchai Thongtem. Influence of cetyltrimethylammonium bromide on the morphology of AWO₄ (A=Ca,Sr) prepared by cyclic microwave irradiation[J]. Applied Surface Science, 2008, 254: 7765-7769.
- [15] Jun Kubo, Wataru Ueda. Catalytic behavior of AMoO_x (A=Ba,Sr) in oxidation of 2-propand[J]. Materials Research Bulletin, 2009, 44(4): 906-912.
- [16] Titipun Thongtem, Anukorn Phuruangrat, Somchai Thongtem. Characterization of MMoO₄(M=Ba,Sr and Ca) with different morphologies prepared using a cyclic microwave radiation[J]. Materials Letters, 2008, 62: 454-457.