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Abstract 
This methodological article aims to present the type I Pareto distribution in a 
clear and illustrative manner for better understanding among social research-
ers. It also provides R scripts for practical application. This continuous distri-
bution, with its inverted J shape, skewness towards the right side, and heavy 
right tail, serves as an effective probability model for various social variables, 
such as wealth and income, as well as behaviors that are highly frequent in a 
few individuals and infrequent in the majority. The type I distribution, which 
has a scale parameter xm and a shape parameter α, is introduced, beginning 
with a brief historical overview. The density, cumulative distribution, tail, mo-
ment, and characteristic functions are presented. The article proceeds with de-
scriptive measures, estimators based on the method of moments and maximum 
likelihood, its relationship with other distributions, and goodness-of-fit tests. 
This material is applied through two examples: one involving probability and 
descriptive measure calculations, and the other focused on parameter estima-
tion and fit testing using the Kolmogorov-Smirnov and Anderson-Darling 
tests. Additionally, scripts were developed to perform the corresponding cal-
culations in R, a freely available software. Simulated data were used in two ex-
amples illustrating the application of the distribution. Finally, suggestions for 
its use are provided. 
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1. Introduction 

The Pareto distribution is a non-normal continuous distribution that has signifi-
cant applications in the social and behavioral sciences (Barnoy & Reich, 2022; 
Feng, Deng, Chen, Perc, & Kurths, 2020). However, its explanation is often theoretical 
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and confusing, primarily due to its presentation under varying parameterizations 
that are frequently interchanged (Sarabia, Jorda, & Prieto, 2019). These include 
the classic two-parameter form, which is the most widely used (type I: scale pa-
rameter xm and shape parameter α); the three-parameter forms (type II: location 
parameter μ, xm, and α; and type III: μ, xm, and shape parameter γ); and the four-
parameter form (type IV: μ, xm, α, and γ). Additionally, the distribution is pre-
dominantly developed with an economic focus (Barczy, Nedényi, & Sütő, 2023). 
The purpose of this article is, therefore, to present the type I Pareto distribution 
in a clear, comprehensible, and illustrative manner for social researchers, includ-
ing psychologists, sociologists, and social workers. 

The type I Pareto (1896; 1897) distribution was developed between 1896 and 
1897 by the Italian civil engineer, economist, and sociologist Vilfredo Federico 
Damaso Pareto (1848-1923) during his political economy course at the University 
of Lausanne (UNIL) in Switzerland. It was initially conceived to describe the dis-
tribution of land, wealth, and income within a society. From these studies, the 
80/20 principle was derived, positing that 80% of wealth is concentrated among 
20% of the population. Notably, both the distribution and the inequality principle 
are now applied as probabilistic models for similar variables (Charpentier & 
Flachaire, 2022; Feng et al., 2020), although contemporary inequality levels tend 
to be lower, with a maximum ratio of 70/30 (McCarthy & Winer, 2019). 

Furthermore, the Pareto distribution and inequality rule have found applica-
tions beyond economics, serving as models in fields such as psychology (Campbell 
& Brauer, 2021; Rajeev, 2022), virtual education (Valkanas & Diamandis, 2022), 
engineering (Chen, Zhang, Wang, Jiang, & Liu, 2019; Sudharson et al., 2022; 
Sudharson & Prabha, 2019), climatology (Le Gall, Favre, Naveau, & Prieur, 2022), 
and physics (Rácz et al., 2023; Cheng et al., 2023). For instance, claims to insurers 
for accidents and illnesses often follow a Pareto distribution, prompting these 
companies to impose disproportionately high premiums on certain sectors of the 
population, such as older adults (Diawara, Kane, Dembele, & Lo, 2021; Zhang, 
Wu, & Yao, 2022). 

2. Characterization of the Distribution 
2.1. Parameters and Support 

This continuous distribution, belonging to the family of power distributions, is 
defined by two parameters in its simplest or type I form (Ahmad & Almetwally, 
2020). The first parameter, a scale parameter often denoted as xm (though its no-
tation varies widely), represents both the peak or mode and the minimum value 
of the distribution (Chattamvelli & Shanmugam, 2021). The second parameter, a 
shape parameter denoted as α (Fedotenkov, 2020), is commonly referred to as the 
Pareto tail index (Andria, 2022). The parameter space for both spans the interval 
(0, ∞), while the support of the distribution is defined over the interval [xm, ∞). 

The profile of its density function depicts a curve that sharply decreases from 
its maximum value and becomes asymptotic to the horizontal axis, exhibiting 
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positive skewness and leptokurtosis with a long right tail (Figure 1). The value of 
α that precisely models the 80/20 law is log4(5) = ln(5)/ln(4) ≈ 1.161, which is 
considered too extreme for wealth distributions, where α is typically greater than 
1.5 (Yang & Zhou, 2022). 

( )~ Pareto ,mX x α  

( ) [ )and 0, and ,m mx x xα ∈ ∞ ∈ ∞  

 

 
Figure 1. Density function fX(x) and cumulative distribution function FX(x) of hourly in-
come modeled by a type I Pareto distribution with scale parameter xm = 40 and shape α = 
log4 (5). 

2.2. Functions 
2.2.1. Density Function 
The definite integral of the density function allows the calculation of the proba-
bility that a value x of the continuous random variable X falls within a given inte-
gration interval, which must lie within the domain of the distribution. It is de-
noted by fX(x). The analytical expression of this function for the type I Pareto dis-
tribution is shown in Equation 1. 

( ) 1 ,m
X m

x
f x x x

x

α

α
α

+
= ≥                      (1) 

2.2.2. Cumulative Distribution Function 
This function provides the probability that a continuous random variable X takes 
a value between the lower limit of the distribution and a specified value x, where 
x belongs to the domain of the distribution. it is denoted by FX(x). The analytical 
expression of this function for the type I Pareto distribution is presented in Equa-
tion 2. 

( ) ( ) ( )d 1 ,
m

x m
X X mx

x
F x P X x f x x x x

x

α
 

= ≤ = = − ≥ 
 ∫         (2) 

2.2.3. Complementary Cumulative Distribution Function 
Also known as the tail function, it is denoted by ( )XF x . This function provides 
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the probability that a continuous random variable X takes a value between a spec-
ified value x and the upper limit of the distribution, where x belongs to the domain 
of the distribution. The analytical expression for this function in the case of the 
type I Pareto distribution is presented in Equation 3. 

( ) ( ) ( )d ,
m

m
X X mx

x
F x P X x f x x x x

x

α
∞  

= > = = ≥ 
 

∫          (3) 

2.2.4. Quantile Function 
It is the inverse of the cumulative distribution function. It is denoted by QX(x) or 

( )1
XF x− . It provides the value of X that accumulates the probability corresponding 

to the given argument, where the argument takes values in the interval (0, 1). The 
analytical expression for this function in the case of the type I Pareto distribution 
is shown in Equation 4. 

( ) ( ) ( )
1 1 , 0,1

1
m

X m
x

Q p x p p
p

α
α

−= = − ∈
−

             (4) 

2.2.5. Moment Generating Function 
The k-th derivative of this function, evaluated at the point 0, gives the k-th order 
moments of the distribution, where the k-th order moment is the mathematical 
expectation of the variable raised to the k-th power. It is denoted by MX(t). The 
moment generating function of the type I Pareto distribution is not defined for a 
non-trivial interval of t around 0, but it is defined for values of t ≤ 0. Its analytical 
expression is shown in Equation 5. 

( ) ( ) ( )
( ) ( ), 0

e e d 1 0
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tx tx

X Xx

x t x t t
M t E f x x t

t

αα α
+∞

 − Γ − − <
= = = =
 >

∫    (5) 

Upper incomplete gamma function 
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∞ − − −

−
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2.2.6. Characteristic Function 
The characteristic function corresponds to the Fourier transform (with a sign in-
version) applied to the analytical expression of the density function. It allows for 
the analysis of the behavior of the moments of a distribution. It is denoted by 
CX(t). The analytical expression of this function for the type I Pareto distribution 
is shown in Equation 6, where 1i = −  and t ∊ R. 

( )

( ) ( ) ( ) ( ) ( )

: ;

e e d ,
m

X

itx itx
X X m mx

C t

C t E f x x ix t ix tαα α
∞

→

= = = − Γ − −∫

 
     (6) 

2.3. Descriptive Measures 
2.3.1. Measures of Central Tendency 
Mathematical expectation or arithmetic mean: This measure corresponds to the 
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first (non-central) moment. For the type I Pareto distribution, it can be calculated 
using its two parameters, as shown in Equation 7. Its computation requires the 
shape parameter α to be greater than 1. 

( ) ( ) ( )d , 1
1m

X mx
X E X xf x x xαµ α

α
∞

= = = >
−∫            (7) 

Geometric mean: It is the antilogarithm of the mathematical expectation of 
the logarithm of the values, typically using the natural base. For the type I Pareto 
distribution, it can be calculated from its two parameters, as shown in Equation 
8. 

( ) ( ) ( )( )ln 1e e eE X
g m mX G X x x ααµ = = = =              (8) 

Harmonic Mean: It is the reciprocal of the mathematical expectation of the re-
ciprocals of the values. For the type I Pareto distribution, it can be calculated using 
its two parameters, as shown in Equation 9. 

( ) ( ) ( )
1 11
1h mX H X x

E X
µ

α
 = = = + 
 

               (9) 

Median: It is the 0.5 quantile. For the type I Pareto distribution, it can be calcu-
lated using its two parameters, as shown in the Equation 10. 

( ) ( )0.5 2
1 2

m
X m

x
Mdn X Q p x α

α
= = = =               (10) 

Mode: It corresponds to the peak of the distribution. The type I Pareto distri-
bution is unimodal, with its single peak occurring at the scale parameter xm (Equa-
tion 11). 

( ) ( ){ }| max X mMo X x f x x= =                   (11) 

Non-central k-th moment: It is the mathematical expectation of the values 
raised to the k-th power. For the type I Pareto distribution, it can be calculated 
using its two parameters, as shown in Equation 12. For its calculation, the shape 
parameter α must be greater than the power k to which the values are raised. 

( ) ( )d ,
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−∫              (12) 

2.3.2. Measures of Variation 
Variance: It corresponds to the second central moment or the expected value of 
the squared differences from the arithmetic mean. For the type I Pareto distribu-
tion, it can be calculated using its two parameters, as shown in in Equation 13. Its 
computation requires the shape parameter α to be greater than 2. 
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∫
    (13) 

Standard deviation: It is the square root of the variance (Equation 14). 
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1 2
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         (14) 

Entropy: It corresponds to the mathematical expectation of the additive in-
verses of the logarithms of the densities, or the mathematical expectation of the 
information of the values. When the natural logarithm is used, entropy is ex-
pressed in natural units of information (nats), which is the most common. If base 
10 is used, it is expressed in decimal units of information (dits); whereas, if base 2 
is used, it is expressed in binary units of information (bits). For the type I Pareto 
distribution, it can be calculated using its two parameters, as shown in Equation 
15. 
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2.3.2. Measures of Shape 
Skewness: It corresponds to the third standardized central moment. Karl Pear-
son’s original notation is used: 1β  (Pearson, 1895). For the type I Pareto dis-
tribution, it can be calculated using the shape parameter α, as shown in Equation 
16. Its computation requires this parameter to be greater than 3. 

( )
( )( )

( )( )( )
( )

3
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3

E X E X
X

E X E X

α αβ α
α α

 − +  − = = >
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      (16) 

Excess Kurtosis: It corresponds to the standardized fourth central moment mi-
nus the kurtosis value of the normal distribution, which is 3. Karl Pearson’s orig-
inal notation is used: β2 − 3 (Pearson, 1905). For the type I Pareto distribution, it 
can be calculated using the shape parameter α, as shown in Equation 17. Its com-
putation requires this parameter to be greater than 4. 
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    (17) 

3. Parameter Estimation 

Let X be a random sample of size n from a continuous quantitative variable that 
follows a type I Pareto distribution with parameters xm and α. For example, the 
sample data could consist of records of the monthly salaries of randomly chosen 
workers in a large firm. Refer to Equation 18 for its notation. 

{ } ( )1 2, , , ~ Pareto ,n mx x x x X x α= ⊆               (18) 

3.1. Estimator of α by the Method of Moments 

The estimator of the shape parameter α by the method of moments is obtained from 
the mathematical expectation or arithmetic mean of X, if the value of the location 
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parameter xm, which is the peak and minimum value of the distribution, is known. 
This mathematical expectation corresponds to the quotient of the sample mean (nu-
merator) and the difference between the sample mean and the known parameter xm 
(denominator). It is valid when α > 2. For more details, refer to Equation 19. 
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The point estimator converges to a normal distribution, since X has a distribu-
tion with finite moments (Rao, 1973), which allows for the computation of an 
asymptotic interval estimator (Equation 20). 

( )
( )

( )
( )

( )
( )

2

2 2

1 1
2 2

1
,

2

1 1
2 2

ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ

n d
m

x N
x x n

P z z
n nα α

α α
α α

α

α α α α
α α α

α α− −

 −
 = →
 − − 

 − − − × ≤ ≤ + ×
 − −
 

        (20) 

3.2. Estimators of xm and α by the Maximum Likelihood Method 

The estimator by the maximum likelihood method of the scale parameter xm is the 
minimum sample value, and the estimator of the shape parameter α is the inverse 
of the arithmetic mean of the logarithms of the ratios between each value xi and 
the minimum sample value (Siudem, Nowak, & Gagolewski, 2022). See Equation 
21 and Equation 22 for these estimators, respectively. 
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The Fisher information for n data points for these two parameters is given by 
the 2 × 2 matrix in Equation 23. 
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2 2
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               (23) 

The variance of a parameter θ, Var(θ), is always greater than or equal to its 
Cramér-Rao lower bound CRLB(θ) or the inverse of its Fisher information for n 
data, 1/I(θ) (Xu, Sedory, & Singh, 2022). Refer to Equation 24. 

( ) ( ) ( )2
ˆ 1ˆ ˆVar CICR I
θ

θ σ θ θ= ≥ =                 (24) 

The estimators obtained by the maximum likelihood method have asymptotic 
properties of unbiasedness (Equation 25), consistency (Equation 26), efficiency 
(Equation 27), and normality (Equation 28), which make them very useful (Song, 
Roung-Park, & Yoon, 2022). 
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Based on these asymptotic properties, asymptotic standard errors (aes) can be 
defined for the maximum likelihood estimators of xm (Equation 29) and α (Equa-
tion 31), along with asymptotic confidence intervals (Equation 30 for the estima-
tor of xm and Equation 32 for the estimator of α). 
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The estimator of α by the maximum likelihood method is more efficient than 
that of the method of moments, but it is biased. Given this limitation, a bias-cor-
rected estimator can be defined that has a lower variance than the biased estimator 
(Rytgaard, 1990) and can be used to achieve more efficient asymptotic estimation 
(Equation 33). As with the previous definitions, the use of these asymptotic for-
mulas requires a large sample, specifically one larger than 30 and preferably at 
least 100 (Mateus & Caeiro, 2022). See the variance, standard error, and asymptotic 
confidence interval of the bias-corrected estimator in Equations 34, 35, and 36, respec-
tively. 
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3.3. Exact Distributions of the Parameters 

Let X be a random variable following a type I Pareto distribution with scale pa-
rameter xm and shape parameter α. The exact distribution of the sum of the loga-
rithms of each of the n sample data points of X, divided by the minimum sample 
value, follows an exponential distribution with a rate parameter equal to α 
(Rytgaard, 1990). See Equation 37. 
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i i
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=
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The exact distribution of the maximum likelihood estimator of the scale pa-
rameter xm is a type I Pareto distribution with a scale parameter xm and a shape 
parameter n × α, while the exact distribution of the maximum likelihood esti-
mator of the shape parameter α is an inverse gamma distribution with a shape 
parameter n - 1 and a scale parameter n × α (Qian, Chen, & He, 2021). See 
Equation 38. 
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4. Generalized Form of the Pareto Distribution 

There is a generalized form of the four-parameter Pareto distribution with loca-
tion parameter μ, scale parameter σ, and two shape parameters: the Pareto tail 
index α and the inequality index γ. Its cumulative distribution function is pro-
vided in Equation 39 (Arnold, 2015). 

Support: x µ≥  
Parameter space: ( ),µ ∈ −∞ ∞  and ,σ α  and ( )0,γ ∈ ∞ . 
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F X
x

α

γ µ
σ

= −
 −
+ 

  

                    (39) 

The location parameter μ is not the mathematical expectation or arithmetic 
mean of the distribution, and the scale parameter σ is not the standard deviation. 
The mean depends on the parameters σ, α, and γ, as well as certain gamma func-
tions, and requires that γ < α (Equation 40). 

( ) ( ) ( )
( )

1
,E X

σ α γ γ
γ α

α
×Γ − ×Γ +

= <
Γ

              (40) 

When μ = σ = xm (minimum and mode) and γ = 1, this generalized four-pa-
rameter form reduces to the type I Pareto distribution (Equation 41). 

( )

( )

1 1 1

1 11 1

1 1

11 1

1 1

m

m

m

m

F X
x x x

x

x x
x

x

α αγ

α

α

µ
σ

= − = −
   −   −+   +           

= − = −
 
+ − 

 

          (41) 

In the type II Pareto distribution, γ = 1 (Equation 42). When the parameter μ 
of the type II Pareto distribution is equal to 0, it is referred to as the Lomax (1954) 
distribution. 

( )
1 1 1

1 1 11 1 1
11 1

F X
xx x

α α αγ µµ µ
σσ σ

= − = − = −
−     − −    ++ +                   

  (42) 

In the type III Pareto distribution, α = 1 (Equation 43). 

( ) 11 1

1 11 1

1 1

F X
x x

αγ γµ µ
σ σ

= − = −
   − −   + +      
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1

1 11 1
11

xx γ
γ µµ

σσ

= − = −
−−  ++  

 

                 (43) 

5. Relationship between Type I Pareto Distribution and  
Other Distributions 

Let X be a random variable following a type I Pareto distribution with parameters 
xm and α. The product of the scale parameter xm and an exponential distribution 
based on the number e and exponent X (random variable Y) follows an exponen-
tial distribution with a rate parameter or inverse scale λ = α. Conversely, let Y be 
a random variable with an exponential distribution with rate parameter or inverse 
scale λ. The natural logarithm of the quotient of the random variable Y and the 
value xm (random variable X) follows a type I Pareto distribution with a scale pa-
rameter xm and a shape parameter α = λ. This implies that the cumulative distri-
bution functions of X and Y are equal and interchangeable when calculating cu-
mulative probabilities. Refer to Equation 44. 

( ) ( )
( ) ( ) ( )

( ) ( )

~ Pareto , ; e ~ Exponential

~ Exp ; ln ~ Pareto ,

, ln 1| | 1 e

X
m m

m m

ym
X m Y

m

X x x Y

Y Y x X x

xxP X x F x x F y
x x

α
α

α λ α

λ α λ

α λ α −

= =

= =

    
≤ = = = = = − = −    

     

 (44) 

It should be noted that there is a relationship between the exponential and Pa-
reto distributions that is analogous to the one between the normal and lognormal 
distributions. The Pareto and lognormal distributions can be applied to the same 
data, although one may provide a better fit than the other. Both are exponential 
transformations of a more widely known and used variable: the former from an 
exponential distribution and the latter from a normal distribution (Feng et al., 
2020). 

The zeta distribution is the discrete equivalent of the Pareto distribution. If the 
support of the zeta distribution is bounded within an interval of natural numbers, 
it becomes the so-called Zipf distribution (Arnold, 2015). 

6. Relationship between Type I Pareto Distribution and Gini  
Concentration Index 

The Pareto (1897) tail index is related to the Gini concentration index (Safari, Mass-
eran, Ibrahim, & Hussain, 2019). Corrado Gini (1936), created this index to sum-
marize in a single number the information contained in the Lorenz curve (Mojiri & 
Ahmadi, 2022). The Lorenz (1905) curve is obtained from a two-dimensional dia-
gram that represents the number of people on the horizontal axis (x) and the accu-
mulated income or wealth on the vertical axis, FX(x). A straight line with a 45-degree 
slope, known as the line of equality, is included in this graph. As the curve, defined 
by the coordinate pairs (x, FX(x)), diverges from this line, inequality increases. The 
Gini index is the ratio of the area between the line of equality and the Lorenz curve 
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to the area of the lower right triangle. A value of 0 indicates total equality, which 
occurs when all individuals have the same income. A value of 1 reflects maximum 
inequality, occurring when one person receives all the income and the others have 
no income or are unpaid labor (Sitthiyot & Holasut, 2021). 

In countries with more income equality, such as the Scandinavian countries, the 
Gini index is less than 0.3. In countries with greater inequality, such as some African 
nations (South Africa, Namibia, Suriname, Zambia, Eswatini, Botswana, Angola, 
and Zimbabwe) and countries in the Americas (Belize, Brazil, Colombia, and Pan-
ama), the Gini index is higher than 0.5 (World Bank, 2022). It should be noted that 
countries with communist economic systems do not have low Gini indices, and so-
cial democratic policies involving increased public spending and debt tend to in-
crease rather than decrease inequality (Tokhirov, 2021). Thus, left-wing populist 
policies have been described as policies of poverty equalization, leading to the emer-
gence of a wealthy political oligarchy (Benczes, 2022; Landoni & Villegas, 2022). 

The value on the Lorenz curve at point x for a continuous random variable X 
with density function fX(x) is obtained by the following proportion given in Equa-
tion 45. 

( )( )
( )

( )

( )
( )

d d

d

x x
xf x x xf x x

L F x
E Xxf x x

−∞ −∞

−∞

∞
= =
∫ ∫
∫

              (45) 

When applied to the type I Pareto distribution, the above formula is trans-
formed into the expression shown in Equation 46. 

( ) ( ) ( )

( )( )
( )( )

111

~ Pareto , and 1

0 0 1

1 1 1 1

n m

m

X x F x x x

L F x x
F x

x

α

α

α

α

α

α
−

−

= −

< <
=   
− − = − ≥  

 

        (46) 

The Gini index can be expressed as one minus twice the integral from 0 to 1 of 
the Lorenz curve. When applied to the type I Pareto distribution, it is the inverse 
of twice the tail parameter minus one, 1/(2α − 1), whenever α > 1. When α < 1, 
the Gini index takes its minimum value, which is 1 (Equation 47). Table 1 shows 
the correspondence between values of the Pareto tail and Gini concentration in-
dices and their interpretation. 

( ) ( )( )

( )( )

1

0

1 0 1
11 2 d 1

2 1
0.5 1 1

G X
L F x x

G X

α

α
α

α

< <
= 
− = ≥ −

= +

∫           (47) 

 
Table 1. Correspondence between Gini and Pareto indexes and their interpretation. 

G α Interpretation 
0.05 10.5 Very little inequality 
0.1 5.5  
0.15 3.833 Little inequality 
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Continued  

0.2 3  
0.25 2.5  
0.3 2.167  
0.35 1.929 Moderate inequality 
0.4 1.75  
0.45 1.61 Fairly significant inequality 
0.5 1.5  
0.55 1.409 A lot of inequality 
0.6 1.333  
0.65 1.269  
0.7 1.214  
0.75 1.167 Very much inequality 
0.8 1.125  
0.85 1.088  
0.9 1.056  
0.95 1.026  

1 1  

Note. G = Gini concentration index and α = Pareto tail index. 

7. Generation of Type I Pareto Random Samples and  
Goodness-of-Fit Testing 

Let U be a random variable with a standard uniform distribution: U ⊆ U [0, 1]. 
The transformation xm(1 − U)−1/α follows a type I Pareto distribution with scale 
parameter xm and shape parameter α. This procedure allows for obtaining a ran-
dom sample with a type I Pareto distribution from a random sample of a standard 
uniform variable and is called inverse transform sampling (Ross, 2022). 

To test whether the sample data fit the type I Pareto distribution, Chu, Dickin 
and Nadarajah (2019) recommend the Kolmogorov-Smirnov test based on a sim-
ulation study. The simplest way to apply this inferential test is to transform the 
data, assuming a type I Pareto distribution, into values with an exponential distri-
bution by taking the natural logarithm of the ratio of each data point to the min-
imum sample value. Then, the Kolmogorov-Smirnov test, adapted for exponen-
tially distributed samples, is applied (Stephens, 1974). The inferential test can be 
supplemented with a graphical assessment using a quantile-quantile plot and a 
histogram with an overlaid density curve. In the former, an alignment of points 
along a straight line with a 45-degree slope is sought, and in the latter, an inverted 
J-shaped profile is expected (Bhoj & Chandra, 2021). 

Statistical hypotheses: H0: X ~ Pareto(xm, α) ≡ Y = ln[X/min(X)] ~ Exponen-
tial(λ = α) y H1: X ≁ Pareto(xm, α). 

Assumptions: Random sample of size n of a continuous quantitative variable X. 
Test statistic: The data are sorted in ascending order, assigned ranks or orders, 

and transformed to follow an exponential distribution under the assumption that 
the null hypothesis is true. 
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x(1) ≤ x(2) ≤ … ≤ x(i) ≤ … ≤ x(n-1) ≤ x(n) 
1 2 … i … n-1 n 

ln[x(1)/x(1)] ln[x(2)/x(1)] … ln[x(i)/x(1)] … ln[x(n-1)/x(1)] ln[x(n)/x(1)] 

 
The cumulative probability (theorical cumulative relative frequency) under the 

type I Pareto distribution model (Equation 48) and the (empirical) cumulative 
relative frequency (Equation 49) are calculated for each transformed value, along 
with the D+, D−, and D statistics (Equation 50). 

( ) ( )

( )( ) ( )

1

1

ˆ

ln ~ Exponetial
l

ˆ
n

1 e i

i i n
ii

y
Y i

ny x x Y
x

F y λ

λ
=

−

 
  = ∈ =   
 

= −

∑          (48) 

( )( ) ( )n iF x i n=                         (49) 

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )
1

max max

max max 1

max ,

n Y Yi i i

Y n Yi i i

D F x F y i n F y

D F y F x i n F y

D D D

+

−
−

+ −

   = − = −   
   = − = − −   

=

     (50) 

The sample estimation correction to the D statistic, as given by Stephens (1974), 
is applied. See Equation 51. 

( ) ( )0.2 0.26 0.5cD D n n n= − + +               (51) 

The decision is based on the transformed D statistic (Equation 48). If Dc ≤ Dα, 
H0 holds, and if Dc > Dα, H0 is rejected at a significance level of α. The critical Dα 
values depend on the significance level α (Stephens, 1974), which is typically set 
at .05 (D0.05 = 1.094). For small samples (n < 20), it may be increased to .10 (D.10 
= .990), and for large samples (n > 500), it may be reduced to .01 (D.01 = 1.308). 

Another option for inferential testing is the Anderson & Darling (1952) test. 
The formula for its test statistic is shown in Equation 52. Similar to the Kolmogo-
rov-Smirnov test, the data are transformed to follow an exponential distribution 
(Equation 48), and Stephens’ (1986) correction is applied to the test statistic when 
the parameters are estimated from the sample data (Equation 53). 

( )( ) ( )( )2
1

1

2 1 ln ln 1
n

Y i Y n i
i

iA n F y F y
n + −

=

−  = − − + − ∑           (52) 

2 0.61cA A
n

 = + 
 

                        (53) 

As in the Kolmogorov-Smirnov test, the decision is based on the corrected A2 
statistic, denoted as 2

cA . If 2 2
cA Aα≤  (critical value), H0 is retained; if 2 2

cA Aα> , 
H0 is rejected at a significance level of α. The critical values Aα

2 depend on the type 
of distribution (in this case, exponential), the estimation method (in this case, 
maximum likelihood estimator), and the significance level α, which is typically set 
at .05 (A.05 = 1.321). For small samples (n < 20), the significance level α can be 
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increased to .10 (A.1 = 1.062), while for large samples (n > 500), it can be reduced 
to .01 (A.01 = 1.959). Refer to Stephens (1986). 

A modification of the Anderson-Darling test was developed by Sinclair, Spurr 
and Ahmad (1990) for distributions with positive skewness and highly atypical 
cases in the right tail. The type I Pareto distribution falls into this category; hence, 
this modification can be applied. The Sinclair-Spurr-Ahmad statistic is calculated 
directly from the original sample data, without transformation (Equation 54), and 
is denoted as 2

nAU . 

( )( ) ( )( )( )
( )( ) ( ) ( )( )

2

1 1

2 12 2 ln 1
2

1 1 minˆ

n n

n X Xi i
i i

X i m ii

n iAU F x F x
n

F x x x x x
αα

= =

− = − − − − 
 

= − = −

∑ ∑
       (54) 

The critical value for decision making is calculated with the formula shown in 
Equation 55. 

( )

( )

2

2 4

11
1 e

0.1170 0.03791 0.06318 0.09878

0.009184 0.00009742
1ln ,

1 1 0.3

p n G p
AU

G p t u t u

t u t u
pt u

p n

= −
+

= − × + × + × ×

+ × × − × ×

= =
− +

      (55) 

If 2 2
n p nAU AU≤ , H₀ holds: X ~ Pareto (xm, α) at a significance level of p. If 

2 2
n p nAU AU> , H₀ is rejected. As the sample size approaches infinity, the value of 

u becomes unitary, and the critical value 2
p nAU  reaches its asymptotic value: 

2
p nAU  = 0.356 for p = .1, 2

p nAU  = 0.432 for p = .05, and 2
p nAU  = 0.610 for p 

= .01. 

8. Example Calculations Using the Type I Pareto Distribution 

Next, simulated data are used in two examples illustrating the application of the 
distribution. In the first example, probabilities, descriptive statistics, and the rep-
resentation of the distribution are calculated for a variable 𝑋𝑋 that follows a type I 
Pareto distribution, characterized by the parameters xm = 500 and α = 4.1, repre-
senting the biweekly salary (in dollars) within a company. In the second example, 
the data are generated using the inverse sampling transform in Excel to follow a 
type I Pareto distribution (xm =500, α = 4.1). Based on these generated data, the 
distribution parameters are estimated both pointwise and using confidence inter-
vals. Additionally, the goodness of fit is assessed using statistical tests and graph-
ical methods. 

8.1 Calculation of Probabilities and Descriptive Measures 

Let X be a variable with a type I Pareto distribution characterized by parameters 
xm = 500 and α = 4.1, representing the biweekly salary in dollars within a company. 
The task is to calculate the probability of having an income less than or equal to 
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592, less than 1000, between 800 and 1400, greater than or equal to 600, and 
greater than 1500. Additionally, the following measures of central tendency are 
required: the mathematical expectation or arithmetic mean μ(X), geometric mean 
μg(X), harmonic mean μh(X), median Mdn(X), and mode Mo(X); measures of var-
iation such as variance σ2(X), standard deviation σ(X), and entropy H(X); as well 
as shape measures based on standardized central moments, including skewness 

( )1 Xβ  and excess kurtosis β2(X). Furthermore, the Gini concentration index 
G(X) is to be calculated. Finally, it is considered illustrative to plot its density func-
tion fX(x) and cumulative distribution FX(x). 

( )~ Pareto 500, 4.1nX x = α =  

Equation 2 is applied for the calculation of the probability of having an income 
less than or equal to 592. 

( ) ( ) ( ) ( )592 4.1

500
592 d 1 1 500 592 0.4997X mP X f x x x x α≤ = = − = − =∫  

Equation 2 is also used to calculate the probability of having an income less than 
1000. Since it is a continuous distribution, including or excluding the specific 
point does not affect the value of the cumulative probability. 

( ) ( ) ( )1000 4.1

500
1000 d 1 500 1000 0.9417XP X f x x< = = − =∫  

Equation 2 is used to calculate the probability of having an income between 800 
and 1400 by taking the difference between two cumulative probabilities. 

( ) ( ) ( )800 1400 1400 800 0.9853 0.8544 1309P X P X P X≤ ≤ = ≤ − ≤ = − =  

( ) ( )4.11400 1 500 1400 0.9853P X ≤ = − =  

( ) ( )4.1800 1 500 800 0.8544P X ≤ = − =  

Equation 3 is used to calculate the probability of having an income greater than 
or equal to 600. 

( ) ( )4.1600 500 600 0.4735P X ≥ = =  

Equation 3 is also used to calculate the probability of having an income greater 
than 1500. Since it is a continuous distribution, including or excluding the specific 
point does not affect the complementary or right-tailed probability. 

( ) ( )4.11500 500 1500 0.0111P X > = =  

Measures of central tendency. The arithmetic mean is calculated using Equation 
7, the geometric mean using Equation 8, the harmonic mean using Equation 9, 
the median using Equation 10, and the mode using Equation 11. 

( ) ( ) 4.1 500 661.29
1 3.1mX E X xα

µ = = = × =
α −

 

( ) ( )( )ln 1 1 4.1e e 500 e 638.11E X
g mX x αµ = = = × =  

( ) ( ) ( )
1 1 11 1 500 621.95
1 4.1h mX H X x

E X
   µ = = = + = + × =   α   

 

https://doi.org/10.4236/jss.2025.131007


J. Moral de la Rubia 
 

 

DOI: 10.4236/jss.2025.131007 102 Open Journal of Social Sciences 
 

( ) ( ) 1 4.10.5 2 2 500 592.10X mMdn X Q p xα= = = × = × =  

( ) ( )( ){ }| max 500X mMo X x f x x= = =  

Measures of variation. Variance is calculated using Equation 13, standard devi-
ation using Equation 14, and entropy using Equation 15. 

( ) ( ) ( )( )
( ) ( )

22 2
2 2

2
2

1 2
4.1500 50790.35

3.1 2.1

mX X E X E X x α σ = µ = − =   α − α −

= =
×

 

( ) ( ) ( )( )21 2
2

500 4.1 225.37
1 2 3.1 2.1

mxX X E X E X α σ = µ = − = = =   α − α −
 

( ) ( )( )
1 11 1

4.1500ln ln e ln e 6.05 nats
4.1

m
X

xH X E f x
+ +
α

   
 = − = = =     α   

 

Skewness and Excess Kurtosis Based on Central Moments. These two shape sta-
tistics are calculated using Equations 16 and 17, respectively. 

( ) ( )
( )

( )3
1 3 2

2

2 1 2 2 5.1 2.1 6.64
3 1.1 4.1

X
X

X
µ α + α − ×

β = = = =
α − αµ

 

( ) ( )
( )

( )
( )( )

( )3 2 3 2
4

2 2
2

6 6 2 6 4.1 4.1 6 4.1 2
3 3 786.67

3 4 4.1 1.1 0.1
X

X
X

α +α − α − + − × −µ
β − = − = = =

α α − α − × ×µ
 

The Gini Index is obtained using Equation 47. 

( ) ( ) ( )1 2 1 1 2 4.1 1 0.14G X = α − = × − =  

The Gini index is close to 0, indicating fairly equal wages within the firm. Figure 
2 displays the density function fX(x) and the cumulative distribution FX(x) of the 
random variable X, representing biweekly wages (in dollars). The wages follow a 
type I Pareto distribution with parameters xm = 500 and α = 4.1. 

 

 
Figure 2. Density function fX(x) and cumulative distribution function FX(x) for X ~ Pa-
reto(xm = 500, α = 4.1). 

 
The R script to calculate these probabilities, descriptive statistics, and the plot 
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of the density and cumulative distribution functions of the type I Pareto distribu-
tion (xm = 500 and α = 4.1) is shown below: 

# Load required libraries (packages) 
library(cascsim) 
library(modeest) 
cat ("Probability calculations (rounding to four decimal places)", "\n") 
cat ("Cumulative probability less than or equal to 592 =", round(ppareto(592, xm 
= 500, alpha = 4.1), 4), "\n") 
cat ("Cumulative probability less than 1000 =", round(ppareto(1000, xm = 500, 
alpha = 4.1), 4), "\n") 
cat ("Probability in the interval [800, 1400] =", round(ppareto(1400, xm = 500, 
alpha = 4.1) - ppareto(800, xm = 500, alpha = 4.1), 4), "\n") 
cat ("Probability greater than or equal to 600 =", round(1 - ppareto(600, xm = 500, 
alpha = 4.1), 4), "\n") 
cat ("Probability greater than 1500 =", round(1 - ppareto(1500, xm = 500, alpha = 
4.1), 4), "\n") 
# Descriptive measures for type I Pareto distribution (rounding to three decimal 
places). 
x_m <- 500 # Scale parameter 
alpha <- 4.1 # Shape parameter 
cat ("Measures of central tendency", "\n") 
cat ("Mathematical expectation of X: μ(X) =", round(alpha / (alpha - 1) * x_m, 3), 
"\n") 
cat ("Geometric mean of X: μg(X) =", round(x_m * exp(1 / alpha), 3), "\n") 
cat ("Harmonic mean of X: μh(X) =", round((1 + 1 / alpha) * x_m, 3), "\n") 
cat ("Median de X: Mdn(X) =", round(qpareto(0.5, xm = 500, alpha = 4.1), 3), "\n") 
cat ("Mode of X: Mdn(X) =", round(qpareto(0.5, xm = 500, alpha = 4.1), 3), "\n") 
cat ("Measures of variation ", "\n") 
cat ("Variance of X: σ^2(X) =", round(x_m^2 * alpha /(( alpha -1)^2 * (alpha - 
2)), 3), "\n") 
cat ("Measures of variation ", "\n") 
cat ("Standard deviation of X: σ(X) =", round(sqrt(x_m^2 * alpha /(( alpha -1)^2 
* (alpha - 2))), 3), "\n") 
cat ("Entropy of X: Η(X) =", round(log(x_m / alpha * exp(1+ 1/ alpha)), 3), "nats", 
"\n") 
cat ("Shape measures", "\n") 
cat("Skewness of X: √b1(X) =", round(2 * (alpha + 1) / (alpha - 3) * sqrt((alpha 
- 2) / alpha), 3), "\n") 
cat ("Kurtosis of X: b2(X) =", round(6* (alpha^3 + alpha^2 - 6 * alpha - 2) / (alpha 
* (alpha - 3) * (alpha - 4)), 3), "\n") 
cat ("Gini Index of X: G(X) =", round(1 / (2 * alpha - 1), 3), "\n") 
# Plot of density and cumulative distribution functions. 
x <- seq(0, 2000, length.out = 2000) 

https://doi.org/10.4236/jss.2025.131007


J. Moral de la Rubia 
 

 

DOI: 10.4236/jss.2025.131007 104 Open Journal of Social Sciences 
 

dpareto <- function (x, x_m, alpha) { 
ifelse (x < x_m, 0, alpha * x_m^alpha / (x^(alpha + 1)))} 
ppareto2 <- function (x, x_m, alpha) {ifelse(x < x_m, 0, 1 - (x_m / x)^alpha)} 
density <- dpareto(x, x_m, alpha) 
cumulative <- ppareto(x, x_m, alpha) 
par (mar = c(4, 4, 1, 2) + 0.1) 
plot (x, density, type = "l", col = "blue", lwd = 2, xlab = "Biweekly wages (in dol-
lars)", 
ylab = "Density", ylim = c(0, max(density))) 
par (new = TRUE) 
plot (x, cumulative, type = "l", col = "red", lwd = 2, axes = FALSE, xlab = "", ylab = 
"") 
axis (4) 
mtext ("Cumulative Probability", side = 4, line = 3, col = "red") 
legend ("right", legend = c("Density", "Cumulative"), 
col = c ("darkblue", "red"), lwd = 2, bty = "n", y.intersp = 1.5) 

8.2. Random Sample Generation, Parameter Estimation, and  
Goodness of Fit 

In this second example, the aim is to generate a random sample of 40 observations 
from the variable X ~ Pareto (500, 4.1). Based on this sample, the goal is to esti-
mate the parameters xm and α using maximum likelihood estimators, and to con-
struct 95% confidence intervals for these parameters based on their asymptotic 
distributions and errors. Finally, the goodness-of-fit will be assessed through a 
plot of theoretical versus empirical quantiles, a histogram with an overlaid density 
curve, and the Kolmogorov-Smirnov and Anderson-Darling tests. 

In the first column of Table 2, a random sample of 40 ui values is drawn from 
a standard uniform distribution U ~ U [0, 1], generated by means of the 2021 
version of the Excel random number generator. Using the quantile function, the 
ui values are transformed into a random sample of size 40 for a variable X that 
follows a type I Pareto distribution with population parameters: xm = 500 (scale) 
and α = 4.1 (shape). This data generation process is known as inverse transform 
sampling, as illustrated in Equation 56. The first value of X obtained by applying 
Equation 56, starting at u1 = 0.226, is 532.239. 

( ) ( )

( )

1 1
4.1

1
4.11

1 500 1

500 1 0.226 532.239

i m i ix x u u

x

α
− −

−

= − = −

= − =
                 (56) 

 
Table 2. Random sample generation and fit testing to the generating distribution. 

Generation of X Kolmogorov-Smirnov test Q-Q plot 
ui xi (i) x(i) y(i) FY(y(i)) D+ D− p(i) xt(i) 

0.226 532.239 1 502.595 0 0 0.025 0 0.017 504.716 
0.678 659.182 2 506.685 0.008 0.032 0.018 0.007 0.041 507.983 
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Continued  

0.754 703.919 3 509.868 0.014 0.055 0.020 0.005 0.066 511.358 
0.791 732.467 4 513.713 0.022 0.083 0.017 0.008 0.091 514.847 
0.427 572.739 5 516.552 0.027 0.103 0.022 0.003 0.116 518.457 
0.989 1502.032 6 519.474 0.033 0.123 0.027 −0.002 0.140 522.196 
0.956 1071.113 7 524.641 0.043 0.156 0.019 0.006 0.165 526.073 
0.356 556.651 8 529.753 0.053 0.188 0.012 0.013 0.190 530.097 
0.651 646.362 9 532.239 0.057 0.203 0.022 0.003 0.215 534.278 
0.592 622.201 10 540.797 0.073 0.252 −0.002 0.027 0.240 538.628 
0.275 540.797 11 540.979 0.074 0.253 0.022 0.003 0.264 543.159 
0.885 847.360 12 550.305 0.091 0.302 −0.002 0.027 0.289 547.886 
0.921 928.627 13 551.504 0.093 0.308 0.017 0.008 0.314 552.824 
0.524 599.242 14 556.651 0.102 0.333 0.017 0.008 0.339 557.991 
0.145 519.474 15 560.951 0.110 0.353 0.022 0.003 0.364 563.406 
0.726 685.652 16 569.140 0.124 0.389 0.011 0.014 0.388 569.093 
0.053 506.685 17 571.286 0.128 0.398 0.027 −0.002 0.413 575.075 
0.325 550.305 18 572.739 0.131 0.404 0.046 −0.021 0.438 581.384 
0.421 571.286 19 588.961 0.159 0.466 0.009 0.016 0.463 588.050 
0.578 617.102 20 598.325 0.174 0.498 0.002 0.023 0.488 595.114 
0.489 588.961 21 599.242 0.176 0.501 0.024 0.001 0.512 602.620 
0.021 502.595 22 609.166 0.192 0.533 0.017 0.008 0.537 610.619 
0.924 937.437 23 617.102 0.205 0.556 0.019 0.006 0.562 619.175 
0.331 551.504 24 622.201 0.213 0.570 0.030 −0.005 0.587 628.359 
0.622 633.900 25 633.900 0.232 0.601 0.024 0.001 0.612 638.261 
0.723 683.834 26 646.362 0.252 0.630 0.020 0.005 0.636 648.989 
0.211 529.753 27 659.182 0.271 0.658 0.017 0.008 0.661 660.674 
0.412 569.140 28 683.834 0.308 0.704 −0.004 0.029 0.686 673.482 
0.077 509.868 29 685.652 0.311 0.707 0.018 0.007 0.711 687.625 
0.276 540.979 30 703.919 0.337 0.736 0.014 0.011 0.736 703.373 
0.521 598.325 31 721.765 0.362 0.761 0.014 0.011 0.760 721.090 
0.822 761.718 32 732.467 0.377 0.775 0.025 0.000 0.785 741.265 
0.125 516.552 33 761.718 0.416 0.807 0.018 0.007 0.810 764.590 
0.971 1185.755 34 804.876 0.471 0.845 0.005 0.020 0.835 792.076 
0.858 804.876 35 847.360 0.522 0.873 0.002 0.023 0.860 825.283 
0.105 513.713 36 928.627 0.614 0.912 −0.012 0.037 0.884 866.783 
0.376 560.951 37 937.437 0.623 0.915 0.010 0.015 0.909 921.249 
0.555 609.166 38 1071.113 0.757 0.950 0.000 0.025 0.934 998.449 
0.179 524.641 39 1185.755 0.858 0.967 0.008 0.017 0.959 1124.364 
0.778 721.765 40 1502.032 1.095 0.987 0.013 0.012 0.983 1417.313 

Σ    10.108      
max      0.046 0.037   

Note. Generation of X: ui = sample data in its random order (i = 1, 2, …, 40) drawn from a standard uniform distribution 
U [0, 1] and xi = 500(1 - ui)-1/4.1 = data transformed to follow a type I Pareto distribution (with scale parameter xm = 500 
and shape parameter α = 4.1) via inverse transform sampling. Logarithmic transformation of X and Kolmogorov- Smirnov 
test: (i) = the order of data xi within the 40-item sample, x(i) = data xi sorted in ascending order (empirical quantiles), y(i) = 
ln(x(i)/502.595) = the logarithmic transformation of xi normalized by the sample minimum, FY(y(i)) = the cumulative distri-
bution function of the Y variable following an exponential distribution with rate parameter λ = 3.957, D+ = (i)/40 - FY(y(i)) 
= the difference between the empirical and theoretical cumulative distribution functions and D- = FY(y(i)) - ((i)-1)/40 = the 
difference between the theoretical distribution function and empirical cumulative distribution function with lap of 1. Quan-
tile-Quantile plot: p(i) = ((i)-1/3)/(n+1/3) = the order of the theoretical quantile and xt(i) = QX[p(i)] = theoretical quantiles 
calculated using the quantile function of a type I Pareto distribution with estimated parameters. Σ = sum per column, max 
= maximum value per column. 
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Next, the two parameters are estimated pointwise using maximum likelihood 
estimation (Equation 21 for thse estimate of xm and Equation 22 for the estimate 
of α), and their corresponding standard errors (Equation 29 for ˆmx  and Equation 
31 for α̂ ) and 95% asymptotic confidence intervals (Equation 30 for ˆmx  and 
Equation 32 for α̂ ) are computed. 

Estimation of the scale parameter (xm): 

{ }( )40

1
min 502.59ˆ 5m i i

x x
=

= =  

( ) ( ) 502.595 39.948
40 3.95

ˆˆ ˆ ˆ
7ˆ

m
m m

xase x x
n

= σ = = =
×α ×

 

1 1

ˆ ˆˆ ˆ
ˆ ˆ

1m m
m m m

n n

x xP x z x x z
n nα α

− −

 
− ≤ ≤ + = −α  ×α ×α 

 

( )502.595 1.96 39.948 502.595 1.96 39.948 0.95mP x− × ≤ ≤ + × =  

[ ]( )424.299,580.891 0.95mP x ∈ =  

Estimation of the shape parameter (α): 

{ }( )
1

1

1
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10.108ln

ˆ

502.595

ˆ
n i n ii

nim
i i

i
i

n n
x x
x

x

x

=
=

=

=

α = =
   
   
    

 

= = =
 
 
 

∑ ∑

∑

 

( ) ( ) 3.957 40 0.626ˆ ˆ ˆˆase nα = σ α = α = =  
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P z z
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− −
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( )3.957 1.96 0.626 3.957 1.96 0.626 0.95P − × ≤ α ≤ + × =  

[ ]( )2.731,5.184 0.95P α∈ =  

The bias-corrected formula is also used to estimate the shape parameter α. 
(Equation 33). Initially, the point estimate of α appears less accurate than the un-
biased one; however, the confidence interval is more efficient and appropriate. 
The standard error is calculated using Equation 35, and the asymptotic confidence 
interval is determined using Equation 36. 

40
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ˆ 2 38 38 3.759
10.108lnln 502.595ˆ

c
n ii

ii
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n
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( )3.759 1.96 0.610 3.759 1.96 0.610 0.95P − × ≤ α ≤ + × =  

[ ]( )2.564,4.955 0.95P α∈ =  

The following is the R script for point estimates and 95% asymptotic confidence 
intervals for the two parameters of the type I Pareto distribution. 

# Vector of scores. 
x <- c(532.2385845, 659.1817235, 703.9185616, 732.4668655, 572.7389011, 
1502.031724, 1071.11279, 556.6512741, 646.3622704, 622.2013372, 540.796541, 
847.3602594, 928.6272967, 599.2422898, 519.4737837, 685.6524203, 506.685297, 
550.3047107, 571.2856056, 617.1023659, 588.9614346, 502.594959, 937.4374491, 
551.5044233, 633.9000483, 683.8337772, 529.7526944, 569.1404291, 509.8675755, 
540.9786305, 598.3247283, 761.718308, 516.5523976, 1185.754777, 804.8759389, 
513.7129142, 560.9510722, 609.1662801, 524.6406256, 721.7654816) 
# Calculation of statistics. 
n <- length(x) 
x_m_hat <- min(x) 
y <- log(x / x_m_hat) 
alpha_hat <- n / sum(y) 
ase_x_m_hat <- x_m_hat /sqrt(n * alpha_hat) 
LL_x_m <- x_m_hat - qnorm(0.975) * ase_x_m_hat 
UL_x_m <- x_m_hat + qnorm(0.975) * ase_x_m_hat 
ase_alpha_hat <- alpha_hat / sqrt(n) 
LL_alpha_hat <- alpha_hat - qnorm(0.975) * ase_alpha_hat 
UL_alpha_hat <- alpha_hat + qnorm(0.975) * ase_alpha_hat 
alpha_c <- (n - 2) / sum(y) 
ase_alpha_c <- alpha_c / sqrt(n - 2) 
LL_alpha_c <- alpha_c - qnorm(0.975) * ase_alpha_c 
UL_alpha_c <- alpha_c + qnorm(0.975) * ase_alpha_c 
# Display results (rounding to three decimal places). 
cat("sample size: n =", n, "\n") 
cat("Estimate of the scale parameter: x_m_hat =", round(x_m_hat, 3), "\n") 
cat("Asymptotic standard error for x_m_hat: ase(x_m_hat) =", 
round(ase_x_m_hat, 3), "\n") 
cat("95% asymptotic confidence interval for x_m: 95% CI", "[", round(LL_x_m, 
3), ",", round(UL_x_m, 3), "]", "\n") 
cat("Estimate of shape parameter: alpha_hat =", round(alpha_hat, 3), "\n") 
cat("Asymptotic standard error for alpha_hat: ase(alpha_hat) =", round(ase_al-
pha_hat, 3), "\n") 
cat("95% asymptotic confidence interval for alpha: 95% CI", "[", round(LL_al-
pha_hat, 3), ",", round(UL_alpha_hat, 3), "]", "\n") 
cat("Biased-corrected estimate of shape parameter: alpha_bc =", round(alpha_c, 
3), "\n") 
cat("Asymptotic standard error for alpha_bc: ase(alpha_bc) =", 
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round(ase_alpha_c, 3), "\n") 
cat("95% asymptotic confidence interval for alpha_bc: 95% CI", "[", round(LL_al-
pha_c, 3), ",", round(UL_alpha_c, 3), "]", "\n") 

The goodness-of-fit test begins with inferential tests. The 40 data points, xi, fol-
lowing a type I Pareto distribution, are transformed using Equation 48 to follow 
an exponential distribution, yi. The Kolmogorov-Smirnov test statistic is then cal-
culated by applying Equation 50 to the transformed sample. Subsequently, Ste-
phens’ correction is applied (Equation 51). Table 2 presents the data transfor-
mation and the calculations to derive the statistics D+ (the maximum difference 
between the empirical and theoretical cumulative distribution functions), D− (the 
maximum difference between the theoretical cumulative distribution function 
and the empirical cumulative distribution function with a lag of 1), and D (the 
maximum of D+ and D−). After correcting D, it is found to be less than the critical 
value at a 5% significance level, supporting the null hypothesis of goodness-of-fit. 
Thus, the transformed sample data, yi, follow an exponential distribution, and the 
original data, xi, follow a type I Pareto distribution. 

Statistical hypothesis 

( ) ( ) ( ) ( )0 1: ~ Pareto , ln ~ Exp : ~ Pareto ,
minm m

XH X x Y H X x
X

 
α ≡ = λ = α ∧ α/  

 
 

Data transformation 

[ ] ( )( )40
1ln 502.595 ~ Exponetial ln 3.95ˆ 7i i iiy x Y n x
=

= ∈ λ = =∑  

( )( ) ( ) ( )3.957ˆ
1 e 1 ei iy y

Y iF y −λ× − ×
= − = −  

Test statistic 

( ) ( )( )max 0.046Y iD i n F y+  = − =   

( )( ) ( )( )max 1 0.037Y iD F y i n−  = − − =   

( ) ( )max , max 0.046,0.037 0.046D D D+ −= = =  

Test statistic with Stephens’ correction 

0.2 0.5 0.2 0.50.26 0.046 40 0.26 0.275
40 40cD D n

n n
      = − + + = − + + =            

 

Decision on the null statistical hypothesis of the type I Pareto distribution 

0.05 00.275 1.094, is not rejected.cD D Hα== < =  

( ) ( )0 : ~ Exp 502.595e ~ Pareto ,Y
mH Y X xλ ⇒ = α  

The yi data are also used in the application of the Anderson-Darling test. These 
data are arranged in ascending order. For the calculation of the statistic A2 (Equation 
52), the first value, which is 0, must be excluded because it corresponds to a cumu-
lative probability of 0, and the logarithm of this probability is undefined. To com-
pute the cumulative probabilities, the rate parameter λ is required, and it is 
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estimated using its maximum likelihood estimator, which is the reciprocal of the 
sample mean of the remaining 39 data points (Table 3). The corrected A2 statistic, 
calculated using Equation 53, is less than the critical value at a 5% significance level 
(Stephens, 1986). Consequently, the null hypothesis holds, indicating that the trans-
formed data yi = ln(xi/502.595) follow an exponential distribution and, therefore, 
the original data 502.595 e iy

ix = ×  follow a type I Pareto distribution. 
Rate parameter estimate 

( )
39

1

39 39 3.858
10.108

ˆ
ii

y
=

λ = = =
∑

 

Expected cumulative probability following an exponential distribution with a 
rate parameter of 3.858. 
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2 39in i
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= − − = − + =′ ∑  

Anderson-Darling test statistic with Stephens’ correction 

2 2 0.6 0.61 0.080 1 0.081
39cA A

n
   = + = + =   
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Table 3. Calculations for deriving the Anderson-Darling A2 statistic from the yi values. 

i y(i) (2i − 1)/39 FY (y(i)) Ln [FY (y(i))] y(n + 1 − i) FY[y(n + 1 − i)] Ln [1 − FY(y(n + 1 − i))] Ai 
1 0 0 0      
2 0.008 0.026 0.031 −3.481 1.095 0.985 −4.224 −0.198 
3 0.014 0.077 0.054 −2.920 0.858 0.964 −3.312 −0.479 
4 0.022 0.128 0.081 −2.514 0.757 0.946 −2.919 −0.697 
5 0.027 0.179 0.100 −2.300 0.623 0.910 −2.405 −0.844 
6 0.033 0.231 0.120 −2.123 0.614 0.906 −2.369 −1.037 
7 0.043 0.282 0.153 −1.880 0.522 0.867 −2.015 −1.099 
8 0.053 0.333 0.184 −1.694 0.471 0.837 −1.817 −1.170 
9 0.057 0.385 0.198 −1.618 0.416 0.799 −1.604 −1.239 
10 0.073 0.436 0.246 −1.402 0.377 0.766 −1.453 −1.244 
11 0.074 0.487 0.247 −1.398 0.362 0.753 −1.396 −1.361 
12 0.091 0.538 0.295 −1.220 0.337 0.727 −1.300 −1.357 
13 0.093 0.590 0.301 −1.200 0.311 0.698 −1.198 −1.415 
14 0.102 0.641 0.326 −1.122 0.308 0.695 −1.188 −1.481 
15 0.110 0.692 0.345 −1.063 0.271 0.649 −1.046 −1.460 
16 0.124 0.744 0.381 −0.965 0.252 0.621 −0.971 −1.439 
17 0.128 0.795 0.390 −0.942 0.232 0.592 −0.896 −1.460 
18 0.131 0.846 0.396 −0.927 0.213 0.561 −0.824 −1.481 
19 0.159 0.897 0.458 −0.782 0.205 0.547 −0.792 −1.412 
20 0.174 0.949 0.490 −0.714 0.192 0.524 −0.742 −1.381 
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Continued  

21 0.176 1.000 0.493 −0.708 0.176 0.493 −0.679 −1.387 
22 0.192 1.051 0.524 −0.647 0.174 0.490 −0.673 −1.387 
23 0.205 1.103 0.547 −0.603 0.159 0.458 −0.612 −1.340 
24 0.213 1.154 0.561 −0.578 0.131 0.396 −0.504 −1.248 
25 0.232 1.205 0.592 −0.525 0.128 0.390 −0.494 −1.228 
26 0.252 1.256 0.621 −0.476 0.124 0.381 −0.480 −1.201 
27 0.271 1.308 0.649 −0.433 0.110 0.345 −0.424 −1.120 
28 0.308 1.359 0.695 −0.364 0.102 0.326 −0.394 −1.030 
29 0.311 1.410 0.698 −0.359 0.093 0.301 −0.358 −1.012 
30 0.337 1.462 0.727 −0.318 0.091 0.295 −0.350 −0.977 
31 0.362 1.513 0.753 −0.284 0.074 0.247 −0.284 −0.860 
32 0.377 1.564 0.766 −0.266 0.073 0.246 −0.283 −0.859 
33 0.416 1.615 0.799 −0.224 0.057 0.198 −0.221 −0.720 
34 0.471 1.667 0.837 −0.177 0.053 0.184 −0.203 −0.634 
35 0.522 1.718 0.867 −0.143 0.043 0.153 −0.166 −0.530 
36 0.614 1.769 0.906 −0.098 0.033 0.120 −0.127 −0.399 
37 0.623 1.821 0.910 −0.095 0.027 0.100 −0.106 −0.365 
38 0.757 1.872 0.946 −0.055 0.022 0.081 −0.084 −0.262 
39 0.858 1.923 0.964 −0.037 0.014 0.054 −0.055 −0.178 
40 1.095 1.974 0.985 −0.015 0.008 0.031 −0.031 −0.091 
Σ 10.108        

Note. i = order or rank of the data y = ln[xi/min(x)] where the data are ordered in ascending order, y(i) = y-value at order i, 
(2i − 1)/39 = first factor of Ai, FY(y(i)) = cumulative probability for the y(i) value, assuming an exponential distribution with 
a rate parameter λ = 3.858, ln[FY(y(i))] = natural logarithm of the cumulative probability for the value y(i), y(n + 1 − i) = y-value 
at order n + 1 − i, FY[y(n + 1 − i)] = cumulative probability for the value y(n+1-i), following the same probability distribution; ln[1 
− FY(y(n + 1 − i))] = natural logarithm of the complement of the cumulative probability for the value y(n+1-i), Ai = ((2i − 1)/39) 
× (ln[FY(y(i))]+ln[1-FY(y(n + 1 − i))]), Σ = sum by column. 

 
The Anderson-Darling test, modified by Sinclair et al. (1990) for distributions 

with positive skewness, is applied to the original data sorted in ascending order 
x(i). Refer to Equation 54. The cumulative distribution function of the type I Pareto 
distribution, FX(x(i)) = 1 − (x(i)/502.595)3.957, is used for these calculations; however, 
the probabilities are identical to those given by the cumulative distribution func-
tion of an exponential distribution with rate parameter λ = 3.858. The test statistic 

2
nAU  is less than the critical value for a sample size of 40 and a significance level 

of 5%, so the null hypothesis of fit to a type I Pareto distribution is not rejected. 
The detailed calculations are provided below, with part of the results summarized 
in Table 4. 

Test statistic 

( )( ) ( )( )( )2

1 1

2 12 2 ln 1
2

n n

n X Xi i
i i

n iAU F x F x
n= =

− = − − − − 
 

∑ ∑  

( ) ( )1

ˆ

2

1

ˆ
ˆ ˆ2 12 2 ln 1

2

n n
m m

n
i ii i

x xn iAU
x n x

α α

= =

    −      = − − − −             
∑ ∑  

( )2
40

40 2 19.885 19.802 20 19.969 0.031
2

AU = − × − − = − =  

https://doi.org/10.4236/jss.2025.131007


J. Moral de la Rubia 
 

 

DOI: 10.4236/jss.2025.131007 111 Open Journal of Social Sciences 
 

Critical value: 
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Table 4. Calculations for deriving the test statistic of the Anderson-Darling test modified 
by Sinclair et al. (1990). 

i x(i) FX(x(i)) 2 − [(2i − 1)/40] ln[1 − FX(x(i))] AUi 
1 502.595 0 1.975 0 0 
2 506.685 0.032 1.925 −0.032 −0.062 
3 509.868 0.055 1.875 −0.057 −0.107 
4 513.713 0.083 1.825 −0.087 −0.158 
5 516.552 0.103 1.775 −0.108 −0.192 
6 519.474 0.123 1.725 −0.131 −0.225 
7 524.641 0.156 1.675 −0.170 −0.285 
8 529.753 0.188 1.625 −0.208 −0.338 
9 532.239 0.203 1.575 −0.227 −0.357 
10 540.797 0.252 1.525 −0.290 −0.442 
11 540.979 0.253 1.475 −0.291 −0.430 
12 550.305 0.302 1.425 −0.359 −0.511 
13 551.504 0.308 1.375 −0.367 −0.505 
14 556.651 0.333 1.325 −0.404 −0.536 
15 560.951 0.353 1.275 −0.435 −0.554 
16 569.140 0.389 1.225 −0.492 −0.603 
17 571.286 0.398 1.175 −0.507 −0.596 
18 572.739 0.404 1.125 −0.517 −0.582 
19 588.961 0.466 1.075 −0.628 −0.675 
20 598.325 0.498 1.025 −0.690 −0.707 
21 599.242 0.501 0.975 −0.696 −0.679 
22 609.166 0.533 0.925 −0.761 −0.704 
23 617.102 0.556 0.875 −0.812 −0.711 
24 622.201 0.570 0.825 −0.845 −0.697 
25 633.900 0.601 0.775 −0.919 −0.712 
26 646.362 0.630 0.725 −0.996 −0.722 
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Continued  

27 659.182 0.658 0.675 −1.073 −0.724 
28 683.834 0.704 0.625 −1.219 −0.762 
29 685.652 0.707 0.575 −1.229 −0.707 
30 703.919 0.736 0.525 −1.333 −0.700 
31 721.765 0.761 0.475 −1.432 −0.680 
32 732.467 0.775 0.425 −1.490 −0.633 
33 761.718 0.807 0.375 −1.645 −0.617 
34 804.876 0.845 0.325 −1.863 −0.606 
35 847.360 0.873 0.275 −2.067 −0.568 
36 928.627 0.912 0.225 −2.429 −0.547 
37 937.437 0.915 0.175 −2.467 −0.432 
38 1071.113 0.950 0.125 −2.994 −0.374 
39 1185.755 0.967 0.075 −3.397 −0.255 
40 1502.032 0.987 0.025 −4.332 −0.108 
Σ  19.885   −19.802 

Note. i = order or rank of the sample data of X, where the 40 data points are sorted in 
ascending order, x(i) = sample data of X at order or rank i, FX(x(i)) = cumulative probability 
of x(i) under a Pareto distribution(xm = 502.595, α = 3.957), 2 − [(2i − 1)/40] = first factor 
of AUi, ln[1 − FX(x(i))] = natural logarithm of the probability to the right tail of x(i) or second 
factor of AUi, AUi = (2 − [(2i − 1)/40]) × ln[1 − FX(x(i))], Σ = sum per column. 

 
To obtain the quantile-quantile plot, the data xi (i = 1, 2, …, 40) are sorted in 

ascending order and each value is assigned its corresponding order (i), represent-
ing the empirical quantiles: x(i). Using the orders (i), the theoretical quantiles are 
computed based on the median of the sampling distribution of the i-th order sta-
tistic from a standard uniform continuous distribution: Mdn = (α − 1/3)/(α + β − 
2/3). This distribution corresponds to a beta distribution with parameters α = (i) 
and β = n + 1 – (i). Consequently, the theoretical quantile’s cumulative probability 
(order of quantile) is given by p(i) = ((i) + 1/3)/(n + 1/3). The theoretical quantiles 
are then obtained by evaluating the quantile function of a type I Pareto distribu-
tion at p(i). The values for its two parameters are taken from the estimates previ-
ously calculated using the maximum likelihood estimators (Table 2). 

First coordinate pair of the theoretical quantile (on the abscissa axis) and the 
empirical quantile (on the ordinate axis) plot. 

( )1   502.595x =  

( )
( )

1

1 3 1 1 3 0.017
1 3 40 1 3

i
p

n
− −

= = =
+ +

 

( ) ( )( ) ( )
1
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3.9571 502.595 1 0.017 504 6ˆ .71t m ix x p

− −α= − = − =  
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Figure 3 illustrates the coordinate pairs of theoretical quantiles xt(i) and empir-
ical quantiles x(i). The theoretical quantiles are plotted on the horizontal (abscissa) 
axis as they predict the empirical quantiles, which are positioned on the vertical 
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(ordinate) axis. In the plot, the coordinate points align closely along a 45-degree 
line, indicating that the empirical data closely adhere to the theoretical model. 
This alignment can be quantified using the linear correlation coefficient; the 
square of this coefficient represents the proportion of shared variance. In this ex-
ample, the linear correlation is 0.999, corresponding to a shared variance of 99.7%. 
Furthermore, the histogram with an overlaid density curve (Figure 4) exhibits the 
characteristic inverted J-shaped profile of a sample drawn from a type I Pareto 
distribution, supporting the conclusion that the sample data follow a type I Pareto 
distribution pattern. 

 

 
Figure 3. Quabtile-Quantile plot. 

 

 
Figure 4. Histogram with an overlaid density curve. 

 
The R script for testing the fit of sample data to a type I Pareto distribution 

using the Kolmogorov-Smirnov and Anderson-Darling tests, and for displaying 
the q-q plot and histogram with an overlaid density curve, is shown. 

 
# Sample data. 
x <- c(532.2385845, 659.1817235, 703.9185616, 732.4668655, 572.7389011, 
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1502.031724, 1071.11279, 556.6512741, 646.3622704, 622.2013372, 540.796541, 
847.3602594, 928.6272967, 599.2422898, 519.4737837, 685.6524203, 506.685297, 
550.3047107, 571.2856056, 617.1023659, 588.9614346, 502.594959, 937.4374491, 
551.5044233, 633.9000483, 683.8337772, 529.7526944, 569.1404291, 509.8675755, 
540.9786305, 598.3247283, 761.718308, 516.5523976, 1185.754777, 804.8759389, 
513.7129142, 560.9510722, 609.1662801, 524.6406256, 721.7654816) 
 
# Load library 
Library (EnvStats) 
 
# Kolmogorov-Smirnov test. 
x_sorted <- sort(x) 
n <- length(x_sorted) # Sample size 
i <- 1:n 
F_empirical <- i / n 
x_m <- min(x_sorted) 
y <- log(x_sorted / x_m) 
lambda_hat <- n / sum(y) 
F_theoretical <- 1 - exp(-lambda_hat * y) 
D_plus <- max(F_empirical - F_theoretical) 
F_empirical_prev <- c(0, F_empirical[-n]) # Add 0 at the beginning for F_n(x_(i-
1)) 
D_minus <- max(F_theoretical - F_empirical_prev) 
D <- max(D_plus, D_minus) 
# Stephens’ correction for D (D_c). 
Dc <- (D - 0.2 / n) * (sqrt(n) + 0.26 + 0.5 / sqrt(n)) 
alpha <- 0.05 # Significance level 
D_alpha <- 1.094 # Critical value for α = 0.05 (Stephens, 1974) 
if (Dc <= D_alpha) {decision <- "H_0 holds: The data follow the theoretical 
distribution." 
} else {decision <- "H_0 is rejected: The data do not follow the theoretical 
distribution."} 
# Display results (rounding to three decimal places). 
cat("D⁺:", round(D_plus, 3), "\n") 
cat("D⁻:", round(D_minus, 3), "\n") 
cat("D:", round(D, 3), "\n") 
cat("D_c:", round(Dc, 3), "\n") 
cat("Significance level: α =", alpha, "\n") 
cat("Decision:", decision, "\n") 
 
# Anderson-Darling test. 
y_prime <- y[-1] 
n_prime <- length(y_prime) 
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i_prime <- 1: n_prime 
lambda_hat_prime <- n_prime / sum(y_prime) 
FY_i <- 1 - exp(-lambda_hat_prime * y_prime) 
log_FY_i <- log(FY_i) 
FY_complement_log <- log(1 - FY_i[n_prime:i_prime]) 
A <- -n_prime - sum((2 * i_prime - 1) / n * (log_FY_i + FY_complement_log)) 
# Apply Stephens’ correction. 
Ac <- A * (1 + 0.6 / n_prime) 
alpha <- 0.05 # Significance level 
A_alpha <- 1.321 # Critical value for α = 0.05 (Stephens, 1974) 
if (Ac <= A_alpha) { 
decision <- "H_0 holds: The data follow the theoretical distribution." 
} else {decision <- "H_0 is rejected: The data do not follow the theoretical 
distribution."} 
# Display results. 
cat("A:", A, "\n") 
cat("Ac:", Ac, "\n") 
cat("Significance level: α =", alpha, "\n") 
cat("Decision:", decision, "\n") 
 
# Anderson-Darling test modified by Sinclair et al. (1990). 
alpha_hat <- lambda_hat 
FX <- 1 - (x_m / x_sorted)^alpha_hat 
sum(FX) 
sum((2 - (2 * i - 1) / n) * log(1 - FX)) 
AU <- n / 2 - 2 * sum(FX) - sum((2 - (2 * i - 1) / n) * log(1 - FX)) 
p <- 0.05 # Significance level 
t <- log(p / (1 - p)) 
u <- 1 / (1 + 0.3 / sqrt(n)) 
G_p <- 0.1170 - 0.03791 * t + 0.06318 * u + 0.09878 * t * u + 0.009184 * t^2 * u - 
0.00009742 * t^4 * u 
AU_np <- 1 - 1 / (1 + exp(G_p)) 
if (AU <= AU_np) { 
decision <- "H_0 holds: The data follow the theoretical distribution." 
} else {decision <- "H_0 is rejected: The data do not follow the theoretical 
distribution."} 
# Display results (rounding to three decimal places). 
cat("Estimate of scale parameter: x_m =", round(x_m, 3), "\n") 
cat("Estimate of shape parameter: α = :", round(alpha_hat, 3), "\n") 
cat("Test statistic: AU =:", round(AU, 3), "\n") 
cat("Significance level: p =:", p, "\n") 
cat("Critical value (AU_n,p):", round(AU_np, 3), "\n") 
cat("Decision:", decision, "\n") 
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# Q-Q plot. 
u <- (i - 1/3) / (n + 1/3) 
q <- eqpareto(x, p = u, method = "mle", plot.pos.con = 1/3) 
plot(q$quantiles, x_sorted, pch = 1, xlab = " Theoretical quantiles ", ylab = 
"Empirical quantiles") 
abline(0, 1, col = "darkblue", lwd = 2) 
 
# Histogram with an overlaid density curve. 
hist(x, breaks = "fd", col = "lightyellow", border = "black", freq = FALSE, xlab = 
"Values of X", ylab = "Density", main = "") 
lines(density(x), col="darkblue", lwd=4) 

 
R provides a command to generate random samples that follow a Type I Pareto 

distribution. The EnvStats package must be loaded, and a seed can be set to ensure 
the results are stable (e.g., 123). It is only necessary to specify the sample size (n), 
the value of the scale parameter (xm) in “location” (since in the Type I Pareto 
distribution, the scale and location parameters coincide), and the value of the 
shape parameter (α) in “shape”. 
Library (EnvStats) 
set.seed (123) 
rpareto (n = 40, location = 500, shape = log (5)/log(4)) 

9. Strengths and Weaknesses of Type I Pareto Distribution 

The Pareto distribution is a valuable tool in social research for analyzing extreme 
inequality, but its simplicity and specific focus make it less versatile than other 
models for more balanced or nuanced distributions (Charpentier & Flachaire, 
2022). The following are some of its most distinctive features: 

Flexibility with inequality measures: The Pareto model is directly linked to 
measures of inequality, such as the Gini coefficient. It can succinctly model dis-
parities, making it a preferred choice over less interpretable models like the expo-
nential distribution. 

Simplicity in application: With only two parameters, the type I Pareto distribu-
tion is relatively simple compared to multi-parameter models such as generalized 
Pareto or Weibull distributions. This simplicity can be advantageous for inter-
pretability but might limit its ability to model more complex phenomena. 

Fit for empirical data: While the type I Pareto distribution fits well for data with 
pronounced inequality, it might not perform as effectively for datasets with mod-
erate or low inequality. In such cases, models like the log-normal or gamma dis-
tributions might provide better fits. 

Possible combination with other distributions: The type I Pareto distribution 
typically focuses on the upper tail of a distribution (e.g., the wealthiest individu-
als). For comprehensive population modeling, hybrid models (e.g., combining Pa-
reto for the tail and log-normal or beta for the body distribution) may be more 
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accurate (Akinsete, Famoye, & Lee, 2008; Martins, Liska, Beijo, Menezes, & Ci-
rillo, 2020). However, this feature can be seen as a limitation of the Pareto distri-
bution that needs to be combined. 

Specifically, the Type I Pareto distribution has several limitations that should 
be considered when applying it to real world data. First, it is primarily suited to 
modelling the upper tails of distributions and may not accurately represent the 
entire data set, especially for moderate or low values. Second, its reliance on a 
power-law relationship imposes strict assumptions about the proportion of large 
values, which may oversimplify complex phenomena. In addition, the distribution 
assumes that the scale parameter (xm) represents a minimum threshold, which 
may not always match the data structure. The Type I Pareto distribution also 
struggles to capture multimodal distributions or data sets with varying degrees of 
inequality across different ranges. Finally, while its simplicity makes it attractive 
in terms of interpretability, this can limit its flexibility in capturing more nuanced 
patterns, necessitating the use of hybrid or alternative models in certain contexts. 

The type I Pareto distribution fails in contexts where the data are light-tailed, 
multimodal, highly dynamic or dominated by intermediate values, or where struc-
tural factors introduce complexity that cannot be accounted for by a simple 
power-law relationship. For example, in a society with a large and stable middle 
class, income distributions often peak around the median, which the Pareto model 
cannot effectively capture due to its emphasis on extremes. 

10. Conclusion 

The illustrated presentation of the type I Pareto distribution with scale parameter 
xm and shape parameter α demonstrates that calculating probabilities is straightfor-
ward, as is computing descriptive statistics. As with other distributions, the most 
effective estimators for its parameters are those derived using the maximum likeli-
hood method (Martín, Parra, Pizarro, & Sanjuán, 2022), which are both simple and 
computationally efficient. The estimator for xm is the sample minimum, while the 
estimator for α is the inverse of the mean of the log-transformed sample data 
(Siudem et al., 2022). Naturally, it is necessary to assess the fit of the empirical data 
to the probability model by employing both a graphical approach—using a histo-
gram with an overlaid density curve (characterized by an inverted J-shape) and a 
quantile-quantile plot (showing a 45-degree alignment)—and an inferential ap-
proach, involving the Kolmogorov-Smirnov (Chu et al., 2019), Anderson-Darling 
(Stephens, 1986), or modified Anderson-Darling (Sinclair et al., 1990) tests. In the 
first two tests, the data are transformed to follow an exponential distribution, 
whereas the third test does not require such a transformation. 

All these calculations can be performed using the scripts developed and pre-
sented in this article, which can be adapted to other score vectors. Additionally, 
Excel is also a valuable tool for this purpose. It should be noted that R is not only 
a free-access program, but it is currently the most comprehensive among statisti-
cal software, and it is gaining popularity among researchers in psychology and 

https://doi.org/10.4236/jss.2025.131007


J. Moral de la Rubia 
 

 

DOI: 10.4236/jss.2025.131007 118 Open Journal of Social Sciences 
 

social sciences (Navarro, 2024). 
Within the social sciences, this distribution serves as an effective probability 

model for various phenomena, including the distribution of income, rent, accu-
mulated resources within a company, region, or country, and insurance claims 
(Feng et al., 2020). It is also applicable to the average frequency of behaviors that 
are rare among most individuals but highly prevalent in a few, such as compulsive 
behaviors, behavioral or substance addictions, and paraphilias (Rajeev, 2022). No-
tably, it can be applied to the same continuous variables as the lognormal distri-
bution, such as epidemiological data (Beare & Toda, 2020), necessitating an eval-
uation to determine which probability model provides the best fit (Charpentier & 
Flachaire, 2022; Feng et al., 2020). For discrete data defined on a bounded set of 
natural numbers, the Zipf distribution—a variant of the zeta distribution—is the 
appropriate choice. From a social perspective, a good fit to a Paretian probability 
model highlights the presence of well-defined funnel rules and inequality in re-
source allocation. This, in turn, may inspire policies of segregation targeting spe-
cific social sectors deemed responsible for disproportionate expenditure or debt, 
such as health insurance for the elderly (Rodríguez-Abreu, 2021). 
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