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Abstract 
Intraseasonal Oscillation (ISO) which is the eastward-propagating disturb-
ance with a period of 10 - 60 days has been the topic of interest since its dis-
covery by Madden-Julian in 1972. Many researchers have published their 
work on ISO, yet they all agree that there is no clear understanding of this 
matter. By using daily observed surface temperature (T2m), this study reveals 
the presence of significant biweekly ISO over Tanzania, a period shorter than 
the anticipated Madden-Julian Oscillation (MJO) period of 30 to 60 days. It 
also reveals significant changes in wind direction when comparing the cold 
phase to the warm phase, highlighting a distinct atmospheric circulation pat-
tern associated with each phase. Furthermore, the analysis reveals the presence 
of MJO-like eastward movement of pressure systems in the Subtropical High 
region, which is associated with this variability. This study presents a new 
analysis by providing a detailed analysis of the intraseasonal variability (ISV) 
of temperature over Tanzania, focusing on understanding the 2020 spatial-
temporal patterns within the October-November-December (OND) season 
that may play a role in weather forecasting, agricultural planning, climate ad-
aptation, reducing heat-related illnesses and contributing to the international 
effort to refine climate models and predictability. 
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1. Introduction 

Climate variability characterizes the natural fluctuation of climatic variables such 
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as temperature, wind patterns, precipitation, geopotential height, sea surface tem-
perature and pressure systems which occur over different temporal and spatial 
scales. ISOs refers to periodic variations in the atmosphere that occur on time-
scales of 10 to 90 days associated with the variations in deep convection, which 
can lead to changes in precipitation, cloud cover, temperature and winds [1]-[3]. 
Since the publication of the MJO by Madden and Julian in 1972 [3], many papers 
have been published on ISO with further findings and new contributions analyz-
ing variability to the climate variables such as temperature and precipitation over 
different locations around the globe [4]-[10]. Related research has been conducted 
in other areas such as Mid-high latitudes [11]-[17]. In Tanzania, where a large 
portion of the population relies on rainfed agriculture, temperature fluctuations 
may affect crop yields, water availability, and food security [18]. It may also im-
pact energy demand and supply, ecosystem and biodiversity management as well 
as climate and resilience, underscoring the crucial importance of studying the ISV 
of temperature over Tanzania. 

Due to such effects, a number of studies have been carried out on the ISV of 
climate in East Africa and the world at large. In 2001, Mpeta & Jury observed that 
the most significant spectral energy for an area-averaged OLR index is concen-
trated in periods of 16 to 33 days, associating these Convective events over tropical 
East Africa with an influx of northeasterly Indian monsoon flow followed by in-
creased westerlies from the Guinea/Congo region [19]. Also suggested that spec-
tral peaks with periods greater than 30 days could be linked to the MJO and those 
in the 20 days range could be linked to tropical and mid-latitude waves. Also, Ki-
jazi and Reason’s analysis in 2005 revealed that spectral peaks of 10 - 20 days periods 
occurred 21% of the time, 20 to 30 day periods occurred 33% of the time, and >30 
days (the MJO) were most prevalent at 46% [5]. This suggests that 54% of the period 
between 10 to 30 days falls under biweekly oscillation which is analyzed in this study. 
The weather over East Africa is largely influenced by the four high pressure systems 
located in the Subtropical high; Mascarene (MH), St. Hellena (SH), Azores and 
Arabian Ridge [20]-[22]. The anticyclonic circulation in the MH and its associated 
cross-equatorial winds are observed to play an important role in climate variabil-
ity over the East African landmass [20] [22]-[24]. All these studies explained the 
link between MH and seasonal variability but not in the intraseasonal scale ob-
served in this study. In Tanzania, the OND season, characterized by short rains, 
high variability, and prolonged dry spells, is significantly influenced by tempera-
ture variations. As a result, the ISV of temperature in Tanzania may significantly 
impact crop yields. Furthermore, Heat waves in Tanzania largely occur from Oc-
tober to March, as observed by Ndetto and Matzarakis [25] and Gyilbag et al. [26] 
making the OND season a preferable focus of our study. 

Despite the extensive research on climate variability in East Africa and Tanza-
nia, yet no specific study has focused on the ISV of temperature over Tanzania. 
The absence of ISV in temperature-focused research on Tanzania leaves unre-
solved questions about the presence of such oscillation. The main objective of this 
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study is to reveal the presence of ISV of temperature over Tanzania, analyzing 
time evolution and its associated weather system(s) by using 2020 OND season. It 
also aims at identifying the influence of the anomalous variability of the subtrop-
ical high on the ISV of temperature over Tanzania. This study presents a new 
analysis by providing a detailed periodic fluctuation of temperature over Tanzania 
during the OND season that may play a role in weather forecasting, agricultural 
planning, climate adaptation, reducing heat-related illnesses and contributing to 
the international effort to refine climate models and predictability. This research 
is organized as follows: Data and methodology in Section 2 provides a detailed 
description of the study area, including its location, topography, and climate, as 
well as the data description. It also outlines the statistical techniques employed, 
such as Lanczos filtering, bandpass filtering, composite spatial-temporal evolu-
tion, and composite analysis. Section 3 presents the results and their interpreta-
tion. Section 4 discusses the findings in the context of existing literature, and Sec-
tion 5 concludes the study, highlighting key insights and implications. 

2. Data and Methods 
2.1. Study Area 

Tanzania is a tropical country in East Africa located just south of the equator be-
tween latitudes 0˚ and 12˚S and longitudes 28˚E and 42˚E. It also borders the In-
dian Ocean on its eastern side, and three great lakes: Lake Victoria in the North-
western part, Lake Tanganyika aligning in the West and lake Nyasa in the South. 
It is also home to many rivers, hills, Serengeti plains and Ngorongoro crater. It is 
located to the east of the Congo Basin and the Congo Rainforest (Figure 1). 

The country features complex topographical landscape including the highest 
point in Africa, Mount Kilimanjaro, which stands at 5895 meters.  

Tanzania experiences two distinct climatic seasons which are the dry and wet 
seasons. The wet is classified into two distinct seasons: the long rains (Masika) 
from March to May (MAM) and the short rains (Vuli) from October to December 
(OND). Other months feature lower rainfall and generally cooler temperatures, 
particularly in the highlands and are classified as dry seasons. January and Febru-
ary are often the hottest months partly because of rainfall shortage while receiving 
high solar insolation over large part of Tanzania [5] [27] [28]. The diverse geog-
raphy and topography shown in Figure 1, create distinct microclimates and cli-
mate patterns. Indian Ocean in the eastern part plays a crucial role in regulating 
the climate in the region. It is found that the warmer (cooler) than normal of East 
Africa-SST tend to influence the climate by suppressing (enhancing) OND rainfall 
in Tanzania [27]. Tanzania’s climate variability is significantly influenced by 
Southern Hemisphere subtropical high-pressure systems, particularly the MH and 
the SH. The variability in these systems, along with the Indian Ocean Monsoon, 
Equatorial Low-Pressure System, East African Low-Level Jet (EALLJ), and South 
Indian Ocean cyclones, also impacts the region’s westerly and easterly winds [20] 
[24] [28] [29]. 
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Figure 1. Map of Tanzania showing the elevation gradient with color shading, and the distribution 
of weather stations (marked by white dots with a gray background). The inset map shows Tanza-
nia’s location within Africa (red box). The elevation data illustrate topographical variations, rele-
vant for understanding regional climatic and temperature differences.  

 

 
Figure 2. Illustration of the study area climate: (a) Annual T2m climatology across Tanzania, showing the 
average temperatures throughout the year. (b) Time series of T2m across Tanzania, highlighting temporal 
variability for Tanzania field mean T2m. (c) T2m climatology, emphasizing the seasonal temperature pat-
terns during OND. (d) Time series of OND T2m climatology, illustrating the presence of periodic oscil-
lations in the mean OND seasonal T2m. 
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The climatology map of Tanzania in Figure 2(a) shows that distribution of 2020 
annual and OND T2m depends on the latitude, altitude, proximity to the Indian 
ocean and the presence of large water bodies such as lakes Victoria, Tanganyika 
and Nyasa. During OND season, the sun is on its way to the south, so southern 
parts gradually receive more solar insolation becoming warmer than the northern 
parts surrounding Lake Victoria (Figure 2(c)). Also, from the time series of the 
daily average T2m (Figure 2(b)), OND is relatively higher than other months. It 
can be observed that, Coastal areas are relatively warmer than the rest of the coun-
try due to the influence of Indian ocean temperature moderation. ISV of temper-
ature along the coast is expected to be moderated by the influence of the sea sur-
face temperature. Figure 2(d) shows the presence of oscillation in the OND sea-
son T2m climatic time series calculated from 40-year data (1979-2022). 

2.2. Data 

The station data consisting of daily Maximum and minimum temperature (˚C) 
from 18 stations from years 2018-2022 were collected from Tanzania Meteorolog-
ical Authority (TMA). For each station, the daily mean surface temperature (T2m) 
was calculated as the average of the maximum and minimum temperatures. The 
data were used as the primary data set for identification of temperature fluctuation 
period. The spatial distribution of the stations which are used in this study is il-
lustrated in Figure 1. For further spatial-temporal analysis, it utilizes data from 
the NCEP/DOE Reanalysis 2 (R2) Project [30]. The dataset is available in NetCDF 
format and has temporal Coverage daily values derived from years 1979/01 to 
2024/08, Spatial Coverage 2.5-degree latitude × 2.5-degree longitude global grid 
(144 × 73) 90N - 90S, 0E - 357.5E. It covers 17 pressure levels. Furthermore, this 
dataset has been applied by other researchers to examine intraseasonal variability 
of temperature over different regions hence it is appropriate for this study [5] [11] 
[19] [20] [22] [31]-[33]. 

2.3. Methodology 
2.3.1. Temporal Analysis 
Temporal analysis seeks to identify patterns such as trends, seasonality, and cyclic 
behavior in the observed data. This helps to describe the systematic components 
of the time series [34]. Cyclical components exist when data exhibit rises and falls 
that are not necessarily of fixed period. The average length of cycles is longer than 
the length of a seasonal pattern. In this study only one season during OND months 
is analyzed, which limits the influence of annual cycles in the time series. OND 
seasonal departures were calculated by subtracting the OND mean, highlighting 
fluctuations around the mean season which gives insight of the presence of ISV in 
the time series (e.g. biweekly, 30 to 60 days) [35]. The observed time series (sea-
sonal departures) is smoothed by using two-sided averaging technique (centered 
moving average) shown in Equation (1). This helps to clearly view the seasonal 
patterns by removing the noises of higher frequencies [36].  
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where: T̂  is the smoothed value at t. 

2tY − , 1tY − , 1Y , 1tY + , 2tY + , are values at times t − 2, t − 1, t, t + 1 and t + 2 
respectively.   

Long-term trends are removed by fitting a polynomial regression model to the 
smoothed data to capture the remaining and then subtracted this polynomial 
trend from the smoothed data as shown in Equation (2). 

 2 3
0 1 2 3 t tX a a t a t a t e+ + += +  (2)       

where: tX  is the climatic variable (temperature) t is time, 0 1 2a a a  and 3a  are 
coefficients to be estimated and e  is the error term. 

2.3.2. Power Spectrum Analysis 
The power spectrum method was used to transform time series discussed in pre-
vious section to a Period Domain. In this method, Fourier Transform was used to 
convert the time series data to a frequency (period) domain and compute the 
power spectrum. Dominant frequency (period) is identified by assessing the level 
of significance for different cycle periods and selecting the pattern which passes 
95% confidence interval. Most studies of ISV of climate in Tanzania use pre-de-
termined ISO indices such as MJO missing fast moving atmospheric patterns such 
as biweekly patterns. Power spectrum is a powerful method successfully used in 
many ISVs of climate researches [7] [12] [36] [37]. Unlike other techniques, such 
as simple trend analysis or autocorrelation, the power spectrum reveals how much 
variance in the data is associated with different frequency components. This is 
particularly useful for analyzing periodic or oscillatory behaviors, like intrasea-
sonal climate variations, as it allows us to pinpoint specific periods of variability 
(e.g., biweekly or monthly cycles). Additionally, the power spectrum method is 
robust to noise, especially when combined with smoothing and confidence inter-
val estimation, making it well-suited for detecting underlying patterns in complex, 
noisy climate data [38]. 

2.3.3. Band-Pass Filtering 
Based on the results of the power spectrum analysis, a 10 - 25-day band-filtering 
was applied to the time series data using the Lanczos filtering method, as described 
by Yang and Li [11] to extract the biweekly component. Lanczos filtering is a dig-
ital signal processing technique that utilizes a mathematical approach based on 
the Lanczos kernel to reduce noise and extract meaningful signals from data. This 
method is particularly effective in mitigating Gibbs oscillations, which can distort 
the representation of signals when using traditional Fourier methods. The 
Lanczos filter is characterized by its ability to maintain a balance between low-
frequency preservation and high-frequency rejection, making it a preferred choice 
for various applications in signal processing and data analysis [39]. 

This method is useful for isolating the dominant periodicity of interest from the 
spectral analysis results. It has been used successfully in many other studies, 
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including those by Yang and Li [40], Wen et al. [41] [42], Wang et al. [43], and 
Krishnamurti and Ardanuy [6]. It uses a linear relationship to transform the raw 
data sequence tx  into a filtered data sequence ty  as shown in Equation (3) and 
Equation (4). 

    
n

t k t k
k n

y w x +
=−

= ∑  (3) 

where;  ty  is the bandpass filtered output at time t,  t kx +  is the input time series 
at time t + k and kw  are smoothed weights which for bandpass filtering, is writ-
ten as  

 2 1sin 2π sin 2π sin π   
π π π

c c
k

f k f k k nw
k k k n

 = − 
 

 (4) 

 , ,0,K n= −     

2.3.4. Composite Analysis 
This method involved processing a gridded T2m dataset from NCEP/DOE Rea-
nalysis 2 (R2) by using Python data analysis tool. A shapefile of Tanzania’s ad-
ministrative boundaries was used to clip the data to the study area. Lag phases 
were defined based on key dates (Table 1), and mean temperatures for each phase 
were calculated by averaging T2m data from selected dates. Warm events are con-
sidered as days with larger or equal to one standard deviation (> or = 1std) and 
the average of the days with peak values are considered as day 0 (lag 0). Table 1 
shows the peak days dates and their corresponding observed positive peak values. 
The results were visualized in a 3 × 3 grid of subplots with contour plots and a 
diverging colormap to highlight the seasonal departures. By combining spatial 
and temporal dimensions, this methodology offers a powerful tool for under-
standing complex ISV of T2m in Tanzania, as demonstrated in the study by 
Bantzer and Wallace [44].  

 
Table 1. Positive peak days and the corresponding peak values.  

Date Warm Peak Value 

10 Oct 2020 1.53 

25 Oct 2020 1.50 

8 Nov 2020 1.38 

25 Nov 2020 2.37 

 
Filtered OND T2m, wind and geopotential height (hgt) maps are plotted in the 

interval of 2 days before and after day 0. Day –n and day n refer to n days before 
and after the peak temperature days (day 0), respectively. In the total 92 days dur-
ing the OND, 2020, several peaks are chosen as the day 0 of the warm phase of 
ISV temperature cases in this study (Table 1). 

Based on peak days average shown on Table 1, the composite time evolution of 
observed T2m (Figure 3) is used as the basis for the analysis of the composite time 
evolution maps using the gridded data. First T2m gridded data is filtered using a 
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band-pass filter to capture oscillations with a 10 to 25-day period for plotting a 
spatial maps time evolution then plots are analyzed to confirm whether the ISV of 
temperature prevails and link it with the atmospheric circulation patterns associ-
ated with it. The method has been used by several researchers to study ISV of 
climate [11] [15] [36] [37] [45]. 
 

 
Figure 3. Evolutions of standardized composite 10 - 25-day filtered T2m (˚C) (solid line) around 
average warm peak days in Tanzania, covering a period from 9 days before to 12 days after each 
peak. Dashed line at y = 0 indicates the baseline. Phases are marked along the timeline, showing 
key stages in temperature evolution: Phase 1 (blue, −4 days), Phase 2 (red, peak day), Phase 3 
(green, +4 days), and Phase 4 (purple, +8 days).  

 
Negative peak events (Table 2) are also used to confirm the oscillation observed 

by using cold peak events. Overall, composite analysis is an effective tool for stud-
ying intraseasonal variability because it focuses on event-based analysis, enhances 
signal clarity, and provides insights into recurrent climate dynamics that may oth-
erwise be obscured in raw, unaveraged data. 

 
Table 2. Negative peak days and the corresponding peak values.  

Date Warm Peak Value 

18 Oct 2020 −1.83 

31 Nov 2020 −1.18 

16 Nov 2020 −1.93 

2 Nov 2020 −1.18 

2.3.5. Statistical Significance Testing 
To test the significance level of variability, Student’s t-test method implemented 
by python analysis software is used to assess the statistical significance at 95% 
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confidence level (α = 0.05) according to the Equation (5). 

 
( ) ( )

1 2
2 2

1 1 2 2

1 2 1 2

   
1 1 1 1    

2

x xt
n S n S

n n n n

−
=

− + −  
+ + −  

 (5) 

where, 1n  and 2n  are sample sizes of the two groups, 2
1S  and 2

2S  are the 
sample variances of the two groups. This is used to test the significance of climate 
variability of the 10 - 25-day period filtered mean peak seasonal departures. The 
method has been successfully used by several researchers such as [24] [37] [45] 
[46]. 

3. Results 
3.1. Temporal Analysis of OND Season T2m  

Analysis of the Time series of the Tanzania field mean shown in Figure 4(a) and 
the separate stations in Figure 4(c) shows a similar pattern of periodic oscillation. 
This implies that the field mean data is a good representation of individual T2m 
station data. This visualization highlights temperature deviations from the sea-
sonal norm, providing insights into intraseasonal temperature changes across the 
OND season. 
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Figure 4. (a) Time series of daily T2m anomalies (˚C) over Tanzania, showing seasonal 
deviations capturing day-to-day variability (blue bars) and a 5-day moving average to 
smooth short-term fluctuations (red line). (b) Power Spectrum of T2m anomalies during 
the OND Season over Tanzania to illustrate the power spectral density as a function of 
period (days) on a reverse x-axis, highlighting variance contributions across different time-
scales. The blue line represents the power spectrum, while the green and gray lines indicate 
the 5% confidence interval boundaries, and the red line denotes the 95% upper confidence 
limit (UCL). Dashed vertical reference lines at 10-, 18-, and 25-day mark key intraseasonal 
periods, relevant to the study of oscillatory patterns in temperature variability. (c) as in (a) 
but for separate stations. (d) as in (b) but for each station in (c). 
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Through the power spectrum method, time series patterns observed in Figure 
4(a) transformed into period domain as shown in Figure 4(b) and Figure 4(d). 
The plot reveals that the power spectral density is concentrated within the 10- to 
25-day period, which surpasses the 95% confidence interval, indicating significant 
variance contributions at these intraseasonal timescales 

3.2. The Component of ISV of T2m  

Based on the results of power spectrum analysis, the 10 - 25 days period compo-
nent of the observation data is filtered and plotted as shown in Figure 5. Fre-
quence band pass filtering with 95% confidence interval applied on temperature 
anomaly data based on lanczos filtering method shows the periodic patterns 
shown in Figure 5.  
 

 
Figure 5. Standardized 10 - 25-day bandpass filtered signal of the OND season T2m (˚C) depar-
ture series (red dashed line) alongside the raw 5-day moving average of T2m departures (blue 
bars). Warm peaks, identified as points where the bandpass-filtered signal exceeds +1 standard 
deviation, are marked with green circles. The dashed black lines at +1 and −1 standard deviations 
denote the threshold for significant peaks, showing short-term temperature fluctuations within 
the 10 - 25-day period. 

3.3. Spatial-Temporal Composite T2m Analysis over Tanzania 

To analyze the T2m composite spatial-temporal evolution maps, Figure 6 is plot-
ted the same way as in Figure 3 by using 10 - 25 days filtered NCEP II reanalysis 
gridded data. The aim is to analyze the T2m time evolution over the study area 
after every 2 days starting from 8 days before the peak, named as lag negative 8 
(−8 day) to 8 days after peak day, termed as lag positive 8 (+8 day) to complete a 
cycle of 16 days. Figure 6(a) shows the composite time evolution plotted by using 
day 0 (lag 0) as the average warm peak date while other lag days are plotted at an 
interval of 2 days before and after peak day (lag 0). Likewise, Figure 6(b) illustrates 
the composite time evolution of the cold peak days. To test the significance of the 

https://doi.org/10.4236/acs.2025.151006


G. T. Assenga et al. 
 

 

DOI: 10.4236/acs.2025.151006 137 Atmospheric and Climate Sciences 
 

variability of the T2m over Tanzania, t-test analysis for warm and cold peaks are 
as illustrated in Figure 6(c) and Figure 6(d) respectively.  
 

 
Figure 6. (a) Composite maps of 10 - 25-days filtered T2m anomalies (˚C) over Tanzania, illustrating the spatial pattern of T2m 
variations across different lag days during the 2020 OND season. Each panel stands for lag days starting from 8 days before peak 
day (Lag 0) to 8 days after at an interval of 2 days, with lags displayed as days preceding (−) or following (+) lag 0. (b) as in (a) but 
plotted by using cold peaks. (c) Tanzania map highlighting deviations of warm peak days from the climatological mean T2m 
anomalies with hatching showing statistically significant areas (p < 0.05). (d) as in (c) but for cold peak days. 

3.4. The Evolution of Wind Circulation 

To observe the atmospheric circulations associated with the illustrated T2m pat-
terns over Tanzania, broader area composite time evolution is shown in Figure 7. 
The wind circulation is plotted from 10 - 25 days period of filtered wind data. The 
background shaded region represents filtered T2m over the broader area. 

The region encircled in green shows the anomalous cyclonic flow while pur-
ple encircles the anomalous anticyclonic flow (Figure 7). Figure 8 shows the 
two distinct phases which are the cold phase in Figure 8(a) and the warm phase 
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in Figure 8(b). Figure 8(c) is the illustration of the significance test of the wind 
variability. 

 

 
Figure 7. Temporal evolution of T2m (˚C) and wind vectors (m/s) at 500 hPa from −8 to +8 lag days, shown at 2-
day intervals during the OND season. Both T2m and wind vectors are values within the 10 - 25-day intraseasonal 
bandpass filter, averaged over the OND season. Lag -8 days highlights a region of anomalous cyclonic circulation 
(encircled in green), while lag 0 days shows anomalous anticyclonic circulation (encircled in purple) during peak 
phases. 

 
The use of streamlines in plotting wind patterns shown in Figure 8 facilitates 

the clear view of the link between the wind patterns over Tanzania and the atmos-
pheric circulation systems based on the broader area specifically the subtropical 
high systems in the southern hemisphere.  
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Figure 8. Composites of 10 - 25-day filtered spatial distribution of T2m anomalies and wind flow during 
peak phases over Tanzania, with the green boundary and red rectangle marking the study area. (a) Cold 
phase peaks of T2m anomalies, with contours indicating T2m (˚C). Black streamlines depict the 500 hPa 
mean wind flow, while a green-encircled region highlights an anomalous cyclonic circulation. (b) Similar 
to (a) but for warm phase peaks, with purple-encircled regions indicating areas of anomalous anticyclonic 
flow. (c) Wind anomalies (m/s) at 500 hPa during peak phases, with grey shading highlighting areas where 
wind anomalies are statistically significant (p < 0.05). 

3.5. The Evolution of Geopotential Height  

After analyzing wind systems, the link between the ISV of T2m over Tanzania and 
the variability of subtropical high-pressure systems in the Southern Hemisphere 
was established. The composite evolution of the 10 - 20 days period geopotential 
height, as shown in Figure 9, further illustrates this relationship.  

The straight line with arrows shown in Figure 9 illustrates the shifting of the 
geopotential height systems in the composite time evolution lag days. The red ar-
rowed line represents the shifting of anomalous higher geopotential height, while 
the green line represents the shifting of low geopotential systems every 2 days. 

4. Discussion 

The temporal analysis (Figure 4) reveals a periodic oscillation in unfiltered T2m 
patterns, with Figure 4(a) and Figure 4(c) showing regular negative and positive 
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peaks corresponding to anomalous colder and warmer days. The power spectrum 
analysis confirms that, under the 95% confidence interval, spectral power peaks 
occur within a 10 - 25-day range, suggesting the presence of intraseasonal varia-
bility (ISV), particularly biweekly oscillations (ISO), in Tanzania. Tchinda [47] ob-
served that ISV in Central Africa has two dominant frequency bands: the 10 - 25-
day band and the 25 - 70-day band. The 10 - 25-day band aligns with the results 
of this study. These findings are significant for identifying dominant ISOs, which 
are essential for improving T2m forecasting in Tanzania and enhancing prepar-
edness for temperature-related anomalies. 
 

 
Figure 9. Composite time evolution of 10 - 25-days filtered geopotential height (m) shaded region overlaid by wind 
streamlines at 500 mb pressure level. The eastward movement of the high and low geopotential height (crossed by 
red and green arrows respectively) over the subtropical high, aligns with the classical intraseasonal oscillations 
discovered earlier such as MJO. The shift of this system appears to influence the wind system at 500 mb over Tan-
zania significantly during the cold and warm phases. 
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The bandpass filter analysis reveals four warm event peaks and four cold event 
peaks between October 1 and December 5, after which values fall below the de-
fined threshold of one standard deviation, indicating an absence of discernible 
periodic temperature patterns. Among these, the two highest deviations from the 
seasonal mean occur on November 16 (negative) and November 25 (positive). The 
10 - 25-day filtered T2m composite time evolution maps over Tanzania (Figure 
6) reveal significant intraseasonal variability (ISV), marked by a warm anomaly 
peak at lag 0 and cold anomaly peaks at lags −8 and +8. These findings suggest an 
intraseasonal oscillation (ISO) with a period of approximately 16 days, may sig-
nificantly influence T2m distribution during the OND season of 2020. These os-
cillation patterns demonstrate significant predictive potential for identifying 
high-temperature days during the OND season, which is crucial for sectors like 
healthcare, agriculture, and communities exposed to direct sunlight. Kim et al. 
[48] highlights that understanding these oscillations enables improved predictions 
of heatwaves, informing public health strategies. By addressing this gap in sea-
sonal temperature dynamics, the study underscores the importance of integrating 
predictive insights by adaptive strategies to enhance resilience, benefiting diverse 
sectors and vulnerable populations. 

Wind analyses (Figure 7) further highlight the alternating high- and low-pres-
sure systems, modulated by the Mascarene High (MH), which drive opposing 
wind patterns during warm and cold phases, underscoring the MH’s role in Tan-
zania’s seasonal climate dynamics. The analysis of the 10 - 25 days period geopo-
tential height, shown in Figure 9, reveals an eastward movement of geopotential 
height with a biweekly scale in the subtropical high region, resembling MJO pat-
terns. This movement, characterized by anomalous high- and low-pressure sys-
tems, may contribute to the intraseasonal variability (ISV) of temperature over 
Tanzania. During the cold phase, an anomalous cyclonic flow over the Mascarene 
High (MH) region is linked to northwesterly wind patterns across Tanzania. Con-
versely, during the warm phase, an anomalous anticyclonic flow over the MH 
drives southeasterly winds originating from the Indian Ocean, influencing Tan-
zania's temperature. Since the sun is in the Southern Hemisphere during this pe-
riod, winds from the south are warmer compared to the cooler winds from the 
north. This has practical applications in agriculture, particularly in regions like 
Tanzania, where predicting rainfall and temperature fluctuations is crucial for op-
timizing crop yields. For instance, the study by Kumar and Sarthi [49] highlights 
how the ISV of climate influences tropical cyclones and rainfall patterns, under-
scoring the importance of understanding these oscillations to enhance climate 
prediction and agricultural planning. This highlights the need for further investi-
gation into these dynamics to enhance climate resilience and disaster prepared-
ness. By uncovering the significant role of subtropical pressure systems, such as 
the Mascarene High (MH), in Tanzania’s ISV of climate, this study offers a fresh 
perspective on how southern hemisphere subtropical high systems influence re-
gional weather patterns. These insights could play a crucial role in improving 
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climate adaptation strategies and forecasting models. 

5. Conclusions 

This research has provided valuable insights into the intraseasonal variability of 
temperature over Tanzania, revealing distinct patterns and fluctuations that are 
crucial for understanding the region’s climate dynamics. Results from the power 
spectrum highlighted a dominant ISV of T2m for a 10 - 25 days period over Tan-
zania. Through a band-pass filter, four warm and cold peaks were identified and 
used in the composite time evolution.  

The study revealed the presence of MJO-like anomalous high- and low-pressure 
systems propagating eastward within the subtropical high region of the Southern 
Hemisphere. It also demonstrated the connection between these oscillations and 
climate variability over Tanzania, particularly the ISV of T2m. Specifically, the 
findings highlight the role of the Mascarene High (MH) in regulating temperature 
patterns in Tanzania. Anomalous cyclonic flow over the MH region during the 
cold phase is associated with northwesterly wind patterns across Tanzania, while 
anomalous anticyclonic flow during the warm phase drives southeasterly winds 
from the Indian Ocean. These southeasterlies, occurring when the sun is in the 
Southern Hemisphere, bring warmer air compared to the cooler northwesterlies, 
thereby influencing Tanzania’s temperature variability. 

This suggests that the subtropical high region, especially the MH, contains val-
uable signals that can explain climate variability over Tanzania and contribute to 
weather prediction in the region. The findings establish a foundation for further 
research on the intraseasonal oscillation (ISO) in the subtropical high region of 
the Southern Hemisphere and its influence on climate variability across southern 
Africa, including East Africa. 

Additionally, this study contributes to the growing body of knowledge on cli-
mate variability in East Africa and emphasizes the need for continued investiga-
tion into the Southern Hemisphere’s complex climate systems. Future research 
could further enhance the understanding of temperature variability over Tanzania 
by examining how these variations manifest across multiple seasons and years to 
better understand the consistency and mechanisms linked to the observed east-
ward movement of the subtropical high system. 
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