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Abstract 
This paper gives integer linear programming (ILP) models for scheduling the 
League Phase of one of the most popular professional club competitions in the 
world, UEFA Champion’s League. There are 36 teams in the competition, but 
each team plays only 8 other teams in the League Phase. Thus, the difficulty or 
ease of a team’s opponents, known as strength of schedule (SOS), compared 
to other teams will be different. Our main ILP model aims to minimize the 
maximum difference between SOS of any two teams, thus making the schedule 
as fair as possible. We also give a model for creating a timetable of all the match-
ups obtained by the first model. The models were implemented and tested us-
ing optimization software AMPL. Our main model obtained a schedule with 
a difference 0.4 between the highest and the lowest SOS, while that difference 
is 19 for the actual 2024-2025 competition. Thus, our model returns a schedule 
that is significantly fairer compared to the actual competition. 
 

Keywords 
Sport Scheduling, Optimization Modeling, Integer Linear Programming 

 

1. Introduction 

UEFA Champion’s League (CL) is one of the most popular club soccer competi-
tions in the world. In 2024, UEFA (Union of European Football Associations) 
made significant changes in the format of the competition [1]. The traditional 
group format was replaced by a single-league format. There are 36 teams partici-
pating in the League Phase of the competition. Those 36 teams are separated into 
four pots of 9 teams, based on their UEFA coefficients. Pot 1 includes the teams 
with the highest 9 coefficients, while Pot 4 includes the teams with the lowest 9 
coefficients. Each team plays against two teams from each of the four pots: one at 
home and one away. After the completion of the League Phase, the top 24 teams 
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advance to the Knockout Phase, with top 8 teams receiving a bye to the round of 
16. 

Each team plays against 8 other teams (out of 36) in the League Phase, and those 
teams are determined by a random draw. Since teams will get different opponents, 
the average coefficients of their opponents will be different. Thus, the teams will 
have different strength of schedule (SOS) in the League Phase. SOS measures the 
difficulty or ease of a team’s opponents compared to other teams and is often used 
in different professional or college sports leagues. Then for the CL League Phase, 
it is important to have a fair and balanced schedule of all matchups in a sense that 
the differences between SOS of the 36 teams are not too big. To achieve that, we 
develop an integer linear programming (ILP) model for finding a schedule that 
minimizes the difference between the highest and the lowest SOS. 

We present three ILP models in this paper. UEFA has requirements about hav-
ing a valid schedule for the League Phase and about the number of matches played 
against own and other associations. Our first model, called Basic model, creates a 
matchup schedule for the League Phase that has a valid format and satisfies all the 
UEFA requirements. The Basic model does not address yet the issue of fairness 
discussed above. It can be used as a prototype to build other models for the League 
Phase in case UEFA develops new requirements or if a user of the model wants to 
obtain a schedule satisfying other criteria (other than fairness). Our second model, 
called Fair model, builds on the Basic model and adds new features to find a valid 
schedule that minimizes the difference between the highest and the lowest 
strengths of schedule. The League Phase is played in eight match weeks, with each 
match week normally having two matchdays. Our third model, called Timetable 
model, takes the schedule of all matchups determined by the Fair (or Basic) model 
and finds a time schedule for playing all those matches. 

Our models were implemented using Optimization Modeling Language AMPL 
[2] and run on NEOS server using ILP solver Gurobi [3]. We obtained a schedule 
of all matchups for the League Phase by running the Fair model and a timetable 
for all the matchups by running the Timetable model. Our schedule significantly 
reduces the difference between the highest and the lowest SOS when compared to 
the actual 2024-25 Champion’s League competition [4]. That difference is 0.4 for 
our model, while the difference for the actual competition is 19. The standard de-
viation for SOS of all 36 teams is 0.13 for our model versus 4.58 for the actual 
competition. The Fair model returns a matchup schedule within a few minutes, 
while the Timetable model returns a timetable within a few seconds. 

The application of mathematical techniques for scheduling sporting events has 
been studied extensively. Several surveys of those techniques are given in [5]-[9]. 
[10] gives an overview of scheduling soccer competitions in Europe. Linear and 
integer programming have been used for scheduling different sports competi-
tions, including round robin tournaments [11], soccer leagues [12]-[14], National 
Hockey League (NHL) [15], baseball playoffs [16]. The issue of fairness has been 
addressed in different contexts, including travel distance fairness [17], fair referee 
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assignments [18] [19]. [20] gives optimization models for fair scheduling of rec-
reational doubles group competitions. This paper applies fair scheduling tech-
niques to a professional sports league, League Phase of UEFA Champion’s League. 
The new format for the League Phase was introduced by UEFA only in the Sum-
mer of 2024, and we are not aware of any other mathematical modeling results 
about creating a fair schedule for the league or for other competitions with a sim-
ilar format. 

The paper is organized as follows. Sections 2, 3, and 4 give the Basic, Fair, and 
Timetable models correspondingly. Sections 5 gives a discussion of the computa-
tional results. Section 6 discusses some future directions. The AMPL implemen-
tations of our models along with some outputs are given in the Appendix. 

2. The Basic Model for Creating a Valid Schedule for the  
League Phase 

In this section, we present a model that creates a valid schedule for the League 
Phase, that is, a schedule of all matchups in the League Phase satisfying all the 
requirements of UEFA. The issue of fairness is not addressed in this model yet. 
The model does not also give a timetable for playing the matches. Recall that our 
main goal is to create and analyze the Fair model given in Section 3. But we still 
present the Basic model separately because one can use the Basic model as a pro-
totype to build other models if they want to explore and implement other ideas of 
creating a CL schedule. 

Input data. 
We have the following sets and parameters that form the input for the model. 
There are four pots P = {1, 2, 3, 4}, each with 9 teams. 
Let T1, T2, T3, T4 be the sets of teams in pots 1, 2, 3, 4 correspondingly. 
Let T be the set of all teams: 1 2 3 4T T T T T= ∪ ∪ ∪ . 
Let A be the set of associations whose teams participate in the League Phase. 
Let binary parameter b(t, a) be 1 if team t represents association a, and 0 oth-

erwise. 
Variables. 
We have the following set of binary variables. 
1) Let match[t, s] ( t T∈ , s T∈ , t s≠ ) be a binary variable that equals 1 team 

t plays with team s as a home game (and it is an away game for team s), and 0 
otherwise. 

Constraints. 
Constraints (C1)-(C3) provide that the selected matchups are consistent with 

the current format of the League Phase. 
(C1) One home game against each pot. For any team t T∈  and any pot 

p P∈ , 

[ ]
:

, 1
ps T s t

match t s
∈ ≠

=∑  

This constraint provides that each team t plays exactly one home game against 
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a team from each pot p. 
(C2) One away game against each pot. For any team t T∈  and any pot 

p P∈ , 

[ ]
:

, 1
ps T s t

match s t
∈ ≠

=∑  

This constraint provides that each team t plays exactly one away game against 
a team from each pot p. 

(C3) At most one game between two teams. For any team t T∈ , s T∈  
( t s≠ ), 

[ ] [ ], , 1match s t match t s+ ≤  

This constraint provides that any two teams play at most one game with each 
other. Note that constraints (C1) and (C2) would still allow two games between 
given two teams, one home game and one away game. 

Constraints (C4), (C5) provide that the selected matchups are consistent with 
the requirements of UEFA associations. 

(C4) No game against own association. For any team t T∈  and association 
a A∈  such that ( ), 1b t a =  (team t is from association a), 

[ ]
[ ]

: , , 1
, 0

s T s t b s a
match t s

∈ ≠ =

=∑  

This constraint provides that team t cannot play games against teams from its 
own association. 

(C5) At most two games against same association. For any team t T∈  and 
association a A∈  such that ( ), 0b t a =  (team t is not from association a), 

[ ]
[ ] [ ]( )

: , , 1
, , 2

s T s t b s a
match t s match t s

∈ ≠ =

+ ≤∑  

This constraint provides that team t can play at most two games against teams 
from the same association. 

No objective function is needed: the objective function can be an arbitrary con-
stant. The goal of this model is to find any feasible schedule satisfying all the UEFA 
requirements. 

The AMPL implementation of the full model is given in the Appendix section 
A.1. 

3. A Fair Model for Creating a League Phase Schedule 

In this model, we implement the idea of creating a fair schedule. We define fair-
ness in the following way. First, we compute the average UEFA coefficient of all 
36 teams participating in the League Phase. We define a strength of schedule 
(SOS) of any team t as the average coefficient of all 8 teams that team t plays in 
the League Phase. Note that SOS is a variable in our model. Then we require that 
the difference between the average coefficient and SOS of any team is minimized. 
It automatically implies that the difference between the highest and the lowest 
SOS is minimized, and thus makes the matchup schedule as fair as possible for all 
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36 teams. 
Input data. 
We still have all the data structures introduced for the Basic model and add the 

following new structures. 
Let parameter coef(t) be the UEFA club coefficient of team t just before the 

draw of the League Phase. 
Let parameter avg_coef be the average coefficient of all 36 teams playing in the 

League Phase. 

[ ]
_

36
t T

coef t
avg coef ∈= ∑  

Variables. 
Let str_of_sch[t] be the strength of schedule of team t in the League Phase 

schedule. It is the average coefficient of the teams that will playing with team t and 
is determined by the model. 

Let max_dev be the maximum deviation of str_of_sch[t] from avg_coef for any 
team t. 

[ ]max_dev max _ _ _
t T

str of sch t avg coef
∈

= −            (1) 

Note that ideally, we would like to have the strength of schedule of any team 
close to avg_coef. Then our goal is to create a fair schedule by minimizing 
max_dev. 

Objective function. 
The objective function minimizes max_dev, the maximum deviation of 

str_of_sch[t] from avg_coef for any team t. 
Minimize max_dev 
The expression for max_dev given in (1) is nonlinear. To linearize it, the objec-

tive function is set to minimize just variable max_dev while constraint (C7) below 
provides that max_dev is equal to the right-hand side expression of (1) in any 
optimal solution. 

Constraints. 
The Fair model still has constraints (C1)-(C5) of the Basic model. But there are 

also new constraints which provide that the team schedules are more balanced 
and fair. 

(C6) Strength of schedule. For any team t, 

[ ] [ ] [ ] [ ] [ ]( )
:

_ _ , , 8
s T s t

str of sch t coef s match t s coef s match t s
∈ ≠

= ∗ + ∗∑  

Strength of schedule of each team t is equal to the average coefficient of the 8 
teams that team t plays in the League Phase. 

(C7) Linearizing the expression for max_dev. We have the following two con-
straints for every team t, 

[ ]max_dev _ _ _str of sch t avg coef≥ −  

[ ]max_dev _ _ _avg coef str of sch t≥ −  
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These two constraints together imply that 
[ ]max_dev max _ _ _

t T
str of sch t avg coef

∈
≥ − . But in any optimal solution we will 

have [ ]max_dev max _ _ _
t T

str of sch t avg coef
∈

= −  since the objective function  

minimizes max_dev, and max_dev is not in any other constraint. 
The AMPL implementation of the full model is given in the Appendix section 

A.2. 

4. Model for Creating a Timetable for the League Phase 

The Basic and Fair models create a schedule of all possible matchups in the League 
Phase. Next, we create a specific timetable for playing all the matches. There are 8 
match weeks, and there are two matchdays, normally Tuesday and Wednesday, in 
each match week. Each team plays exactly one game in each match week. UEFA 
also has extra requirements for creating a timetable. All these requirements are 
reflected in our model. 

Input data. 
We still have the input data structures introduced in the Basic and Fair models 

and add the following new structures. 
A main difference from the Basic and Fair models is that all the matchups are 

known, since they were determined by the output of the Fair model. Thus, the 
matchups are defined as binary parameters for the Timetable model. 

Let match[t,s] ( t T∈ , s T∈ , t s≠ ) be a binary parameter that equals 1 if team 
t plays with team s as a home game (and it is an away game for team s), and 0 
otherwise. 

Let W be the set of game weeks of the League Phase. In the current Champion’s 
League format, there are eight game weeks: 1, 2, 3, 4, 5, 6, 7, 8. 

Let D be the set of gamedays in each game week. In the current format, there 
are two gamedays in each game week: 1 (Tuesday) and 2 (Wednesday). 

Variables. 
We have the following set of binary variables. 
Let time[t, s, w, d] ( t T∈ , s T∈  such that t s≠ , [ ], 1match t s = , w W∈ , 

d D∈ ) be a binary variable that equals 1 if the match between team t (home team) 
and team s (away team) is played on gameday d of game week w, and 0 otherwise. 

Constraints. 
We do not need any of the constraints from the Basic or Fair models to be in-

cluded in this new model. The Timetable model has the following sets of con-
straints. 

(T1) Each team one game each week. For any team t T∈  and any game week 
w W∈ , 

[ ]

[ ]
[ ]

[ ]
, : , :

and , 1 and , 1

, , , , , , 1
s T d D s T d D

s t match t s s t match s t

time t s w d time s t w d
∈ ∈ ∈ ∈

≠ = ≠ =

+ =∑ ∑  

This constraint provides that each team t plays exactly one game in each game 
week w. The first summation gives the number of home games of team t in any 
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matchday of game week w, and second summation gives the number of away 
games of team t in any matchday of game week w. 

(T2) Each matchup exactly once. For any teams t T∈ , s T∈  such that t s≠  
and [ ], 1match t s = , 

[ ]
,

, , , 1
w W d D

time t s w d
∈ ∈

=∑  

This constraint provides that each matchup between teams t and s, as deter-
mined by the Fair model, is played exactly in one game week and gameday. 

(T3) Nine matches in each gameday. For any w W∈ , d D∈ , 

[ ]

[ ]
, :

and , 1

, , , 9
t T s T

s t match t s

time t s w d
∈ ∈

≠ =

=∑  

There are 36 teams, and 18 matches are played in each match week. This con-
straint provides that those 18 matches are equally distributed between the two 
matchdays of the match week: exactly 9 matches are played on each matchday. 

UEFA regulations require that each team should not play more than two home 
matches or two away matches in a row, and should play one home match and one 
away match across both the first and last two matchdays. Constraints (T4)-(T7) 
below achieve that these requirements are satisfied. 

(T4) One home game in first two match weeks. For any team t T∈ , 

[ ]

[ ] [ ]( )
, :

and , 1

, ,1, , ,2, 1
s T d D

s t match t s

time t s d time t s d
∈ ∈

≠ =

+ =∑  

This constraint provides that each team t plays exactly one home game in any 
gameday of the first two match weeks. It also implies that the other game played 
by team t in the first two match weeks is an away game. 

(T5) One home game in last two match weeks. For any team t T∈ , 

[ ]

[ ] [ ]( )
, :

and , 1

, ,7, , ,8, 1
s T d D

s t match t s

time t s d time t s d
∈ ∈

≠ =

+ =∑  

This constraint provides that each team t plays exactly one home game in any 
gameday of the last two match weeks. It also implies that the other game played 
by team t in the last two match weeks is an away game. 

(T6) No more than two home games in a row. For any team t T∈  and w W∈  
such that 7w < , 

[ ]

[ ] [ ] [ ]( )
, :

and , 1

, , , , , 1, , , 2, 2
s T d D

s t match t s

time t s w d time t s w d time t s w d
∈ ∈

≠ =

+ + + + ≤∑  

This constraint provides that each team t plays no more than two home games 
in any three consecutive match weeks. It automatically implies that team t cannot 
play more than two home games in a row. 

(T7) No more than two away games in a row. For any team t T∈  and w W∈  
such that 7w < , 
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[ ]

[ ] [ ] [ ]( )
, :

and , 1

, , , , , 1, , , 2, 2
s T d D

s t match s t

time s t w d time s t w d time s t w d
∈ ∈

≠ =

+ + + + ≤∑  

This constraint provides that each team t plays no more than two away games 
in any three consecutive match weeks. It automatically implies that team t cannot 
play more than two away games in a row. 

There are also regulations concerning the teams that are based in the same city. 
Those teams cannot play home games on the same gameday. In 2024-25 tourna-
ment, there are two pairs of teams representing the same city: Milan and Inter are 
based in Milan, Italy, while Real and Atletico are based in Madrid, Spain. Con-
straints (T8)-(T11) below achieve the requirements for those teams. 

(T8) Milan and Inter cannot both host games same gameday. For any w W∈  
and d D∈ , 

[ ]

[ ]
[ ]

[ ]
: :

' ', 1 ' , 1

' ', , , ' ', , , 1
s T s T

match Milan s match Inter s

time Milan s w d time Inter s w d
∈ ∈

= =′

+ ≤∑ ∑  

This constraint provides that on any given gameday, at most one of the teams 
Milan and Inter can have a home game. 

(T9) Real and Atletico cannot both host games same gameday. For any w W∈  
and d D∈ , 

[ ]

[ ]
[ ]

[ ]
: :

' ', 1 ' ', 1

' ', , , ' ', , , 1
s T s T

match Real s match Atlet s

time Real s w d time Atlet s w d
∈ ∈

= =

+ ≤∑ ∑  

This constraint provides that on any given gameday, at most one of the teams 
Real and Atletico can have a home game. 

(T10) Milan and Inter cannot both host games in last match week. 

[ ]

[ ]
[ ]

[ ]
, : , :

' ', 1 ' , 1

' ', ,8, ' ', ,8, 1
s T d D s T d D

match Milan s match Inter s

time Milan s d time Inter s d
∈ ∈ ∈

= =′
∈

+ ≤∑ ∑  

All the games in the last match week are played at the same time. Thus, this 
constraint provides that in the last match week, at most one of the teams Milan 
and Inter can have a home game. 

(T11) Real and Atletico cannot both host games in last match week. 

[ ]

[ ]
[ ]

[ ]
, : , :

' ', 1 ' ', 1

' ', ,8, ' ', ,8, 1
s T d D s T d D

match Real s match Atlet s

time Real s d time Atlet s d
∈ ∈ ∈ ∈

= =

+ ≤∑ ∑  

All the games in the last match week are played at the same time. Thus, this 
constraint provides that in the last match week, at most one of the teams Real and 
Atletico can have a home game. 

The AMPL implementation of the full model is given in the Appendix section 
A.3. 

5. Computational Results 

In this section, we present our computational results for the Fair and Timetable 
models presented in Sections 3 and 4. No computations were run for the Basic 
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model. Recall that the Basic model is a prototype for building the Fair model (and 
possibly other models in the future). Our main goal is to obtain a schedule of all 
matchups as an output and to compare it to the actual CL schedule in terms of 
fairness. 

The models were implemented and tested using optimization software AMPL. 
The AMPL models for the integer linear programs were run on the NEOS server 
using the solver Gurobi. 

The section is organized as follows. Subsection 5.1 discusses the computational 
results for the Fair model, including a complete schedule of all matchups. Subsec-
tion 5.2 compares our schedule with the actual CL schedule in terms of fairness. 
Subsection 5.3 discusses the computational results for the Timetable model, in-
cluding a timetable of all matchups. 

5.1. Computational Results and Analysis for the Fair Model 

In this subsection, we present our computational results for the Fair model given 
in Section 3. The model was implemented and tested using optimization soft-
ware AMPL. The AMPL model was run on the NEOS server using the ILP solver 
Gurobi. 

Discussion and analysis of the solution process. 
The solver could not return an optimal solution for the model after several 

hours since it exceeded the maximum allotted time for a job. Then we tried to get 
good feasible solutions using the following approach. The objective function was 
changed from minimize max-dev to minimize 1. By minimizing a constant func-
tion, the model just tries to find a feasible solution. But to get a fair schedule with 
relatively small value for max_dev, we added a new constraint max_dev ≤ k where 
k was chosen to be a relatively small but safe value for getting a good feasible so-
lution. 

We ran the model for different values of k, starting from 0.5 (that value is 10.4 
for the actual 2024-25 CL League Phase). We were able to obtain feasible solutions 
for k = 0.5, k = 0.25, k = 0.2. The results of those computations are summarized 
in Table 1. 

 
Table 1. Highest and lowest SOS for different values for k. 

k min{t ∈ T} 
str_of_sch[t] 

max{t ∈ T} 
str_of_sch[t] 

max{t ∈ T} str_of_sch[t] − 
min{t ∈ T} str_of_sch[t] 

Solve times  
(seconds) 

0.5 63.92 64.9155 0.9955 18.2 

0.25 64.17 64.6526 0.4826 377.9 

0.2 64.228 64.6153 0.38725 1785.96 

 
As we can see from the table, for k = 0.2 the model returned a fairly good sched-

ule with the difference between the highest and lowest SOS only 0.38725. But the 
running time also increased quickly when moving to lower values of k. Next, we 
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ran the model for k = 0.15. Gurobi did not return an output after several hours 
and was terminated because it exceeded the maximum allotted time for a job. 

In an attempt to obtain a better solution, we tried the following approach. The 
solution for k = 0.2 (namely, the values of matchup variables match[t,s]) was given 
to the model as default values for match[t,s] when the model was run for smaller 
values of k. Having an initial solution with already a small value for max_dev sig-
nificantly accelerates the process of finding a new, even better solution. The model 
was run for k = 0.18, k = 0.19, k = 0.195 in that order. In all three cases, the time 
limit was set to 3600 seconds. But no feasible solution was found in that time pe-
riod, while the final values of variables match[t,s] after 3600 seconds were the 
same as the initial default values. We also ran the model by having the k = 0.2 
solution as input and going back to the original objective function minimize 
max_dev (without any extra constraints on max_dev); after 3600 seconds and mil-
lions of simplex iterations, the solver was not able to obtain a better solution than 
the input. 

Based on the discussion above, our conjecture is that the solution found for k = 
0.2 is either the optimal solution (most likely scenario) or very close to the opti-
mal. It is possible that the ILP model is highly degenerate with multiple optimal 
(or near optimal) basic solutions which causes cycling problems when the solution 
with k = 0.2 is given as an input. 

Thus, the solution for k = 0.2 is the best possible solution found by our compu-
tations. It is presented below and is given as input to the Timetable model of Sec-
tion 5. 

The description of the best solution found. 
The schedule of all matchups for the League Phase is given in Table 2. The last 

two columns give SOS for all 36 teams for (i) the output of our model, (ii) the 
actual 2024-25 CL League Phase. In our schedule, club Salzburg has the highest 
SOS, 64.62, and club Brest has the lowest SOS, 64.23. In the actual competition, 
club Feyenoord has the highest SOS, 74.8, and club Young Boys has the lowest 
SOS, 55.8. 

 
Table 2. League Phase opponents and SOS for each club. 

Club 
Pot 1 opponents Pot 2 opponents Pot 3 opponents Pot 4 opponents Strength of schedule 

Home Away Home Away Home Away Home Away our model actual 

Real MC Dortm Lever Milan Young Lille Sturm Monac 64.25 59.8 

MC Leipz Real Atlet Juv Celti Salzb Brest Stutt 64.34 65.7 

Bayer Barc Liver Benf Atal Salzb DinZ Slova Aston 64.55 63.4 

PSG Liver Inter Arsen Atlet DinZ Sport Bolog Giron 64.56 74 

Liver Bayer PSG Milan Shakh PSV Crven Stutt Spart 64.48 64.9 

Inter PSG Leipz Brugg Lever Lille PSV Giron Slova 64.55 66 

Dortm Real Barc Atal Arsen Crven Feyen Spart Sturm 64.25 58.6 

Leipz Inter MC Juv Brugg Sport Young Aston Brest 64.53 63.2 
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Continued 

Barc Dortm Bayer Shakh Benf Feyen Celti Monac Bolog 64.26 64.1 

Lever Inter Real Benf Arsen Celti PSV Bolog Spart 64.32 63.2 

Atlet PSG MC Brugg Milan Crven Feyen Sturm Bolog 64.57 66.5 

Atal Bayer Dortm Shakh Brugg Feyen Lille Spart Aston 64.42 57.5 

Juv MC Leipz Arsen Shakh DinZ Sport Brest Giron 64.47 65.9 

Benf Barc Bayer Milan Lever PSV Young Giron Monac 64.3 67.9 

Arsen Dortm PSG Lever Juv Sport Crven Monac Sturm 64.5 63.4 

Brugg Leipz Inter Atal Atlet Lille Salzb Aston Slova 64.55 63.2 

Shakh Liver Barc Juv Atal Salzb DinZ Slova Stutt 64.23 64.2 

Milan Real Liver Atlet Benf Young Celti Stutt Brest 64.4 67.8 

Feyen Dortm Barc Atlet Atal Sport Lille Slova Monac 64.25 74.8 

Sport PSG Leipz Juv Arsen PSV Feyen Spart Giron 64.55 64.3 

PSV Inter Liver Lever Benf Crven Sport Stutt Aston 64.59 62.3 

DinZ Bayer PSG Shakh Juv Celtic Young Sturm Slova 64.31 63.6 

Salzb MC Bayer Brugg Shakh Young Celti Bolog Brest 64.62 71.7 

Lille Real Inter Atal Brugg Feyen Crven Giron Stutt 64.28 70.4 

Crven Liver Dortm Arsen Atlet Lille PSV Monac Bolog 64.38 57.5 

Young Leipz Real Benf Milan DinZ Salzb Aston Spart 64.3 55.8 

Celtic Barc MC Milan Lever Salzb DinZ Brest Sturm 64.49 59.4 

Slova Inter Bayer Brugg Shakh DinZ Feyen Spart Brest 64.36 69.7 

Monac Real Barc Benf Arsen Feyen Crven Aston Bolog 64.24 59 

Spart Liver Dortm Lever Atal Young Sport Sturm Slova 64.5 70.7 

Aston Bayer Leipz Atal Brugg PSV Young Giron Monac 64.55 61.7 

Bolog Barc PSG Atlet Lever Crven Salzb Monac Sturm 64.31 62.4 

Giron PSG Inter Juv Benf Sport Lille Stutt Aston 64.46 64.6 

Stutt MC Liver Shakh Milan Lille PSV Brest Giron 64.53 67.6 

Sturm Dortm Real Arsen Atlet Celti DinZ Bolog Spart 64.57 59 

Brest Leipz MC Milan Juv Salzb Celti Slova Stutt 64.23 65.1 

 
The model has 1215 variables, 1178 of them binary, and 1834 constraints. The 

Gurobi solve time to find the solution was 1785.96 seconds. The actual time of 
getting the output from NEOS server was about 8 minutes. The solution was 
found after 307801 branching nodes and more than 33 million simplex iterations. 

The full output from the solver is given in the Appendix section A.4. 

5.2. Comparison of Our Solution with the Actual CL Schedule 

Table 3 gives a comparison of our schedule with the actual schedule of 2024-25 
CL League Phase. We give different statistics about strengths of schedules. The 
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lowest and highest SOS of actual CL schedule are 55.8 (Young Boys) and 74.8 
(Feyenoord), with a range 74.8 - 55.8 = 19. Thus, the opponents of Feyenoord on 
average are significantly stronger than the opponents of Young Boys. On the other 
hand, the lowest and highest SOS of our schedule are 64.2 (Brest) and 64.6 (Salz-
burg), with a range 64.6 - 64.2 = 0.4. Thus, the difference between SOS is much 
smaller in our schedule. The standard deviation of all SOS for actual competition 
is 4.58, while it is only 0.13 for our schedule. Based on all those numbers, our 
schedule is significantly more balanced and fairer (in terms of SOS) than the ac-
tual CL schedule. 

 
Table 3. Comparison of strengths of schedules 

 Actual CL competition Output of our model 

Minimum 64.2 55.8 

Maximum 64.6 74.8 

Range 0.4 19 

Standard deviation 0.13 4.58 

Coefficient of variance 0.002 0.071 

5.3. Computational Results for the Timetable Model 

In this subsection, we give the timetable of playing all the matches as returned by 
our Timetable model of Section 4. The schedule of all matchups of Table 2 was 
given as an input to the Timetable model. The model has 2304 binary variables 
and 986 constraints. The ILP solver needed 1741 branching nodes and 193708 
simplex iterations to obtain the solution. The Gurobi solve time was 31.11 sec-
onds. 

The timetable found by the solver is given in Table 4. 
 

Table 4. The timetable found by our model. 

(a) 

Matchweek 1 

Matchday 1 Matchday 2 

Bayer Benf Real Young 

Barc Monac MC Leipz 

Brugg Atal PSG DinZ 

Shakh Slova Inter Lille 

Milan Atlet Lever Bolog 

Sport Juv Feyen Dortm 

Aston PSV Crven Arsen 

Giron Stutt Spart Liver 

Brest Salzb Sturm Celti 
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Continued 

(b) 

Matchweek 2 

Matchday 1 Matchday 2 

Arsen Lever Liver Bayer 

PSV Inter Dortm Real 

DinZ Sturm Leipz Sport 

Salzb Brugg Atlet PSG 

Lille Giron Atal Shakh 

Celtic Barc Juv Brest 

Slova Spart Benf Milan 

Bolog Crven Young Aston 

Stutt MC Monac Feyen 

(c) 

Matchweek 3 

Matchday 1 Matchday 2 

Real Sturm PSG Arsen 

MC Celti Benf PSV 

Bayer Salzb Crven Lille 

Liver Milan Young DinZ 

Inter Brugg Monac Aston 

Dortm Atal Spart Lever 

Leipz Juv Bolog Barc 

Feyen Atlet Giron Sport 

Brest Slova Stutt Shakh 

(d) 

Matchweek 4 

Matchday 1 Matchday 2 

Barc Dortm Inter PSG 

Atal Bayer Lever Benf 

Arsen Monac Atlet Crven 

Brugg Leipz Juv MC 

Shakh Liver Sport Spart 

Milan Real PSV Stutt 

Salzb Young Lille Feyen 

Aston Giron Celti Brest 

Sturm Bolog Slova DinZ 

https://doi.org/10.4236/ajcm.2024.144021


V. Melkonian 
 

 

DOI: 10.4236/ajcm.2024.144021 414 American Journal of Computational Mathematics 
 

Continued 

(e) 

Matchweek 5 

Matchday 1 Matchday 2 

Bayer Barc Real MC 

Benf Giron Liver PSV 

Brugg Aston Lever Inter 

Feyen Slova Juv Arsen 

DinZ Celti Shakh Salzb 

Lille Atal Milan Stutt 

Crven Monac Sport PSG 

Spart Young Sturm Dortm 

Bolog Atlet Brest Leipz 

(f) 

Matchweek 6 

Matchday 1 Matchday 2 

PSG Liver MC Brest 

Barc Feyen Dortm Crven 

Atal Spart Leipz Inter 

Arsen Sport Atlet Sturm 

DinZ Shakh PSV Lever 

Young Benf Salzb Bolog 

Slova Brugg Celti Milan 

Giron Juv Monac Real 

Stutt Lille Aston Bayer 

(g) 

Matchweek 7 

Matchday 1 Matchday 2 

Real Lever MC Atlet 

Liver Stutt Bayer Slova 

Inter Giron PSG Bolog 

Arsen Dortm Barc Shakh 

PSV Crven Juv DinZ 

Celti Salzb Brugg Lille 

Monac Benf Feyen Sport 

Aston Atal Young Leipz 

Brest Milan Spart Sturm 
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Continued 

(h) 

Matchweek 8 

Matchday 1 Matchday 1 (cont.) 

Dortm Spart Leipz Aston 

Lever Celti Shakh Juv 

Atlet Brugg Salzb MC 

Atal Feyen Lille Real 

Benf Barc Crven Liver 

Milan Young Slova Inter 

Sport PSV Bolog Monac 

DinZ Bayer Stutt Brest 

Giron PSG Sturm Arsen 

6. Conclusions and Future Directions 

We created an ILP model for fair scheduling of the UEFA CL League Phase, one 
of the most popular club competitions in the world. Minimizing the maximum 
difference in strength of schedule is used as a fairness criterion. The models were 
implemented, tested and demonstrated significant improvements in fairness com-
pared to the actual 2024-25 schedule. We also created a model for getting a time-
table for the matchups determined by the fairness model. 

Below we give some future directions grouped in three categories. 
Other possible variations of the models 

­ Another way to obtain a fair schedule would be the following. In the Fair 
model, one could minimize the standard deviation instead of the maximum 
deviation from the average coefficient. Our expectation is that the output 
of that modified model will not be too different from the schedule we ob-
tained. But that model will be nonlinear and computationally more expen-
sive to solve. There might also be other criteria for making the schedule 
fairer and more balanced. 

­ One could use any of our models as a prototype to build other models if 
they want to explore and implement other ideas of creating a League Phase 
schedule. 

Extending the models to other sports 
The models can be extended to other sports leagues that have the following fea-

ture: any team plays not with every other team, but only with selected number of 
teams in the tournament. 

Our models with slight modifications can be certainly used for other UEFA club 
competitions (Europa League, Conference League) that have roughly the same 
format as the Champion’s League. 

Examples of other competitions for which our modeling ideas can be applied 
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are National Football League (NFL), and College Football (NCAAF). NFL has a 
total of 32 teams. But every team plays only with 17 teams (which includes playing 
twice with 3 teams in its own division). NCAAF includes many conferences with 
a large number of teams, for example, Big Ten, and SEC. Not every pair of teams 
play with each other within a conference. For example, Big Ten has 18 teams, but 
each team plays only against 9 of them in the regular season. Thus, the concept of 
fairness can be applied to creating matchup schedules for these two leagues too. 

Computational issues 
We were able to find a close-to-optimal solution for our Fair model, and that 

solution had a significantly better maximum SOS deviation compared to the ac-
tual Phase League competition. But the solver could not find an optimal solution 
after the maximum allotted time on NEOS server. Improving the running time 
and finding an optimal solution for the Fair model is an open question. This might 
be achieved by adding cutting planes, reducing the number of binary variables, 
using other solvers, etc. 
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Appendix A. AMPL Programs and Outputs for Our Models 
A.1. AMPL Program for the Basic Model 

set pot_n; 
# set of pot numbers 
 
set pot{n in pot_n} ordered; 
# set of pots 
 
set all_teams := union{n in pot_n} pot[n] ordered; 
 
param coefficient{all_teams}; 
 
set countries; 
 
param team_country{t in all_teams, c in countries} binary; 
 
var matches{t1 in all_teams,t2 in all_teams: t1 != t2} binary default 0; 
# is 1 if team t1 plays team t2 as a home game 
#let matches['Real_M','Bayern'] := 1; 
 
minimize something: 1; 
 
subject to one_home_game_against_each_pot {t1 in all_teams, n in pot_n}: 
 sum{t2 in pot[n]: t2 != t1} matches[t1,t2] = 1; 
# each team plays exactly one home game against a team from each pot 
 
subject to one_away_game_against_each_pot {t1 in all_teams, n in pot_n}: 
 sum{t2 in pot[n]: t2 != t1} matches[t2,t1] = 1; 
# each team plays exactly one away game against a team from each pot 
  
subject to at_most_one_match_between_two_teams {t1 in all_teams, t2 in 
all_teams : t2 != t1}: 
 matches[t1,t2] + matches[t2,t1] <= 1; 
# any two teams play at most one game against each other 
  
subject to no_game_against_same_association{t1 in all_teams, c in countries: 
team_country[t1,c]=1}: 
 sum{t2 in all_teams: t2 != t1 and team_country[t2,c]=1} matches[t1,t2] = 0; 
# no games are played against the teams of the same association 
  
subject to no_more_than_two_games_against_other_associations 
   {t1 in all_teams, c in countries: team_country[t1,c]=0}: 
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      sum{t2 in all_teams: t2 != t1 and team_country[t2,c]=1} 
(matches[t1,t2]+matches[t2,t1]) <= 2; 
# no more than two games against the teams of any other association 

A.2. AMPL Program for the Fair Model 

set pot_n; 
# set of pot numbers 
 
set pot{n in pot_n} ordered; 
# set of pots 
 
set all_teams := union{n in pot_n} pot[n] ordered; 
 
param coefficient{all_teams}; 
 
param avgS := sum{t in all_teams} coefficient[t] / card(all_teams); 
# average expected strength of schedule 
 
set countries; 
 
param team_country{t in all_teams, c in countries} binary; 
 
var matches{t1 in all_teams,t2 in all_teams: t1 != t2} binary default 0; 
# is 1 if team t1 plays team t2 as a home game 
 
var str_of_sch{t in all_teams}; 
# strength of schedule of team t 
 
var max_dev; 
# maximum deviation from average strength of schedule 
 
minimize Maximum_Deviation: max_dev; 
 
subject to strength_of_schedule{t1 in all_teams}: 
 str_of_sch[t1] =  
  sum{t2 in all_teams: t2 != t1} 
     (coefficient[t2]*matches[t1,t2]+coefficient[t2]*matches[t2,t1])/8; 
     
subject to deviation1{t in all_teams}: 
 str_of_sch[t] - avgS <= max_dev; 
  
subject to deviation2{t in all_teams}: 
 avgS - str_of_sch[t] <= max_dev; 
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#subject to max_dev_limit1: max_dev <= .2; 
 
subject to one_home_game_against_each_pot {t1 in all_teams, n in pot_n}: 
 sum{t2 in pot[n]: t2 != t1} matches[t1,t2] = 1; 
# each team plays exactly one home game against a team from each pot 
 
subject to one_away_game_against_each_pot {t1 in all_teams, n in pot_n}: 
 sum{t2 in pot[n]: t2 != t1} matches[t2,t1] = 1; 
# each team plays exactly one away game against a team from each pot 
  
subject to at_most_one_match_between_two_teams {t1 in all_teams, t2 in 
all_teams : t2 != t1}: 
 matches[t1,t2] + matches[t2,t1] <= 1; 
# any two teams play at most one game against each other 
 
subject to no_game_against_same_association{t1 in all_teams, c in countries: 
team_country[t1,c]=1}: 
 sum{t2 in all_teams: t2 != t1 and team_country[t2,c]=1} matches[t1,t2] = 0; 
# no games are played against the teams of the same association 
  
subject to no_more_than_two_games_against_other_associations 
   {t1 in all_teams, c in countries: team_country[t1,c]=0}: 
      sum{t2 in all_teams: t2 != t1 and team_country[t2,c]=1} 
(matches[t1,t2]+matches[t2,t1]) <= 2; 
# no more than two games against the teams of any other association 

A.3. AMPL Program for the Timetable Model 

set pot_n; 
# set of pot numbers 
 
set pot{n in pot_n} ordered; 
# set of pots 
 
set all_teams := union{n in pot_n} pot[n] ordered; 
 
set countries; 
 
param team_country{t in all_teams, c in countries} binary; 
 
param matches{t1 in all_teams,t2 in all_teams: t1 != t2} binary; 
# is 1 if team t1 plays team t2 as a home game 
 
set gameweek ordered; 
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set gameday ordered; 
 
var time{t1 in all_teams,t2 in all_teams, w in gameweek, d in gameday:  
 t1 != t2 and matches[t1,t2]==1} binary; 
 
minimize something: 1; 
 
subject to one_game_each_gameweek{t1 in all_teams, w in gameweek}: 
sum{t2 in all_teams, d in gameday: t1 != t2 and matches[t1,t2]==1}time[t1,t2,w,d] 
+ 
sum{t2 in all_teams, d in gameday: t1 != t2 and matches[t2,t1]==1}time[t2,t1,w,d] 
= 1; 
# each team plays exactly one game in each gameweek 
 
subject to each_matchup_exactly_once 
 {t1 in all_teams,t2 in all_teams: t1 != t2 and matches[t1,t2]==1}: 
  sum{w in gameweek, d in gameday}time[t1,t2,w,d] = 1; 
# each matchup between teams t1 and t2 must be played exactly once 
  
subject to nine_games_each_gameday{w in gameweek, d in gameday}: 
 sum{t1 in all_teams,t2 in all_teams: t1 != t2 and 
matches[t1,t2]==1}time[t1,t2,w,d] = 9; 
# total number of games each gameday should be exactly 9 
 
subject to one_home_game_in_first_two_rounds{t1 in all_teams}: 
 sum{t2 in all_teams, d in gameday: t1 != t2 and matches[t1,t2]==1} 
  (time[t1,t2,1,d]+time[t1,t2,2,d]) = 1; 
# each team plays exactly one home game in the first two rounds 
 
subject to one_home_game_in_last_two_rounds{t1 in all_teams}: 
 sum{t2 in all_teams, d in gameday: t1 != t2 and matches[t1,t2]==1} 
  (time[t1,t2,7,d]+time[t1,t2,8,d]) = 1; 
# each team plays exactly one home game in the last two rounds 
 
subject to no_more_than_two_home_matches_in_a_row{t1 in all_teams, w in 
gameweek: w<=6}: 
 sum{t2 in all_teams, d in gameday: t1 != t2 and matches[t1,t2]==1} 
  (time[t1,t2,w,d]+time[t1,t2,w+1,d]+time[t1,t2,w+2,d]) <= 2; 
# each team can play no more than two home games in a row 
 
subject to no_more_than_two_away_matches_in_a_row{t1 in all_teams, w in 
gameweek: w<=6}: 
 sum{t2 in all_teams, d in gameday: t1 != t2 and matches[t2,t1]==1} 
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  (time[t2,t1,w,d]+time[t2,t1,w+1,d]+time[t2,t1,w+2,d]) <= 2; 
# each team can play no more than two away games in a row 
  
subject to Milan_teams{w in gameweek, d in gameday}: 
 sum{t in all_teams: t!='Milan' and matches['Milan',t]==1}time['Milan',t,w,d] 
+ 
 sum{t in all_teams: t!='Inter' and matches['Inter',t]==1}time['Inter',t,w,d] <= 
1; 
# Milan and Inter (both teams are based in city of Milan)  
# cannot both host games on the same game day 
 
subject to Milan_teams_last_week: 
        sum{t in all_teams,d in gameday: t!='Milan' and 
matches['Milan',t]==1}time['Milan',t,8,d] + 
       sum{t in all_teams,d in gameday: t!='Inter' and 
matches['Inter',t]==1}time['Inter',t,8,d] <= 1; 
# Milan and Inter (both teams are based in city of Milan)  
# cannot both host games in the last game week 
 
subject to Madrid_teams{w in gameweek, d in gameday}: 
 sum{t in all_teams: t!='Real_M' and 
matches['Real_M',t]==1}time['Real_M',t,w,d] + 
 sum{t in all_teams: t!='Atl_M' and 
matches['Atl_M',t]==1}time['Atl_M',t,w,d] <= 1; 
# Real_M and Atl_M (both teams are based in city of Madrid)  
# cannot both host games on the same game day 
 
subject to Madrid_teams_last_week: 
sum{t in all_teams,d in gameday: t!='Real_M' and 
matches['Real_M',t]==1}time['Real_M',t,8,d] + sum{t in all_teams,d in gameday: 
t!='Atl_M' and matches['Atl_M',t]==1}time['Atl_M',t,8,d] <= 1; 
# Real_M and Atl_M (both teams are based in city of Madrid)  
# cannot both host games in the last game week 

A.4. The AMPL Output of the Fair Model for k = 0.2 

You are using the solver gurobi_ampl. 
Checking ampl.mod for gurobi_options... 
Checking ampl.com for gurobi_options... 
Executing AMPL. 
processing data. 
processing commands. 
Executing on prod-exec-1.neos-server.org 
 
Presolve eliminates 399 constraints and 82 variables. 
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Adjusted problem: 
1215 variables: 
        1178 binary variables 
        37 linear variables 
1834 constraints, all linear; 9044 nonzeros 
        324 equality constraints 
        1510 inequality constraints 
1 linear objective; 0 nonzeros. 
 
Gurobi 11.0.3:   tech:threads = 4 
Gurobi 11.0.3: optimal solution; objective 1 
3.323e+07 simplex iterations 
307801 branching nodes 
 
_total_solve_time = 1785.96 
 
avgS = 64.4167 
 
str_of_sch [*] := 
Real_M 64.25       Leverk 64.3195      Feyen 64.25     Slovan_B 64.3582 
MC 64.3362      Atl_M 64.5695   Sporting 64.5496     Monaco 64.2395 
Bayern 64.545        Atal 64.42          PSV 64.5855   Sparta_P 64.5 
PSG 64.5566        Juv 64.4704      Din_Z 64.3125    Aston_V 64.5496 
Liverp 64.478        Benf 64.2996      Salzb 64.6153    Bologna 64.3125 
Inter 64.5496    Arsenal 64.5         Lille 64.2776     Girona 64.4605 
Dortm 64.25       Brugge 64.545      Crvena 64.382      Stuttg 64.5329 
Leipzig 64.5282   Shakhtar 64.228     Young_B 64.295       Sturm 64.5695 
Barc 64.257       Milan 64.3988     Celtic 64.4832      Brest 64.228 
; 
 
max_dev = 0.2 
 
min{t in all_teams} str_of_sch[t] = 64.228 
 
max{t in all_teams} str_of_sch[t] = 64.6153 
 
max{t in all_teams} str_of_sch[t] - min{t in all_teams} str_of_sch[t] = 0.38725 
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