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Abstract 
Due to the variability and unpredictability of solar power, which relies heavily 
on weather variables such as solar irradiance and temperature, precise forecast-
ing of photovoltaic (PV) energy production is crucial for effectively planning 
and operating power systems incorporating solar technology. Several machine 
learning algorithms (MLAs) have recently been developed for PV energy fore-
casting. This paper discusses various machine learning (ML) techniques for pre-
dicting the power output of a PV plant connected to the grid. Multiple algo-
rithms, including linear regression (LR), neural networks (NNs), deep learning 
(DL), and k-nearest neighbors (k-NNs), are evaluated. The models use real-time 
data collected from various weather sensors and electrical output over a year, 
including solar irradiance, ambient temperature, wind speed, and cell tempera-
ture, to forecast PV power generation. Over a medium-term horizon, forecast-
ing accuracy is assessed using datasets covering an entire week. The models are 
analyzed based on multiple performance metrics, such as absolute error (AE), 
root mean square error (RMSE), normalized absolute error (NAE), relative er-
ror (RE), relative root square error (RRSE), and correlation coefficient (R). The 
results indicate that the deep learning algorithm achieves the highest accuracy, 
with an RMSE of 0.026, an AE of 0.014, an NAE of 0.064, and an R of 99.7% for 
the weekly forecast validation. These precise forecasts produced in this research 
could assist grid operators in managing the variability of PV power output and 
planning to integrate fluctuating PV energy into the grid. 
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1. Introduction 

Renewable energy sources (RESs), particularly solar photovoltaic (PV) power, have 
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gained significant attention in recent years because of their potential for long-term 
use without damaging the environment. However, integrating various but unpre-
dictable RES is essential due to the irregularity of the energy market and the in-
termittent nature of these sources [1]. Utilizing energy forecasting can assist gov-
ernmental bodies in developing, implementing, and modifying energy policies. 
Consequently, effectively incorporating and managing these resources into the 
current infrastructure has become a significant responsibility for the energy sec-
tor, especially in regions heavily dependent on climate-influenced energy supplies 
[1]. 

The variability in PV generation presents significant challenges for managing 
the existing power infrastructure [2]. As the integration of solar energy increases, 
this complexity and cost escalate, impacting decision-making regarding backup 
resources, scheduling, storage, and long-term strategies. The unpredictable output 
from solar panels complicates the alignment with electricity demand, leading to dif-
ficulties sustaining an immediate balance between supply and demand. Thus, achiev-
ing high levels of solar PV penetration requires substantial modifications in man-
aging power systems and electricity trading [3] [4]. 

Accurate forecasting of solar power is crucial for tackling these challenges. Tech-
niques such as numerical weather predictions, image analysis, statistical approaches, 
and hybrid neural network methods are employed to estimate solar irradiance and 
PV output [4]. Advancements in technology, mainly through artificial intelligence 
(AI) and machine learning (ML), are enhancing the precision and effectiveness of 
solar forecasting. AI and ML support power grid managers in making informed 
choices, planning operations, and optimizing energy market strategies, which helps 
to minimize the costs associated with managing the fluctuations of intermittent 
solar power [5] [6]. 

The relation between weather parameters and the output of PV systems is in-
fluenced by the specific location, shaped by the area’s geographical and climatic 
characteristics. As a result, the extent of the relationship between weather condi-
tions and PV energy production varies from one location to another. Neverthe-
less, the effectiveness of a forecasting model relies on the nature of the correlation 
between inputs and outputs, emphasizing the need for a customized approach for 
each site [7]. Various factors influence the precision of PV forecasts, making it a 
complex task. This complexity is affected by elements such as the range of fore-
casting, the inputs used in the forecast model, and the performance evaluation [8]. 

Several previous studies have established PV power forecasting models utilizing 
ML methods. In [9], the author employed deep learning (DL) techniques to esti-
mate the generation of residential PV systems. Actual data was used to assess the 
forecasting accuracy of long- and short-term memory (LSTM), convolutional, and 
hybrid convolutional-LSTM networks over various horizons, compared with 
Prophet, based on MAE, RMSE, and NRMSE error metrics. In [10], the authors 
introduced a five-layer CNN-LSTM framework for PV power predictions using 
actual data from a site in Mexico. The findings indicated that the hybrid neural 
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network model produced superior predictions. In [11], the authors proposed a 
forecasting method reliant on particle swarm optimization. Evaluations conducted 
over four forecasting resolutions and time horizons demonstrated that the sug-
gested method lowered the MASE. Authors in [12] developed a single ML model 
to predict the power output of a large distributed solar array comprising numer-
ous PV systems. In [13], the authors employed support vector machine (SVM) 
models based on kernel techniques to evaluate rooftop PV potential across urban 
areas in Switzerland. In [14], the authors concentrated on hybrid renewable en-
ergy power forecasting by applying the SVM algorithm using actual sensor data. 
Their findings confirmed that big data analysis improves predictive accuracy for 
renewable energy sources by analyzing large datasets. Authors in [15] examined the 
accuracy, stability, and computational cost of two tree-based models, specifically 
extra trees (ETs) and random forest (RF), for hourly PV power predictions.  

Authors in [16] analyzed different ML approaches with varying degrees of com-
plexity to assess whether more complex models yield improved forecasting accu-
racy. They also examined the techniques of both online and offline training meth-
ods to find the most efficient strategy. In [17], the authors investigated and com-
pared the efficacy of individual, ensemble, and hybrid ML models in forecasting 
solar PV output power over four distinct time frames (one day, one week, two weeks, 
and one month in advance). In [18], authors introduced an ensemble stacked ML 
model for hourly predictions of two photovoltaic systems that vary in size and age. 
The research evaluated three ML techniques, random forest, gradient boosting, and 
multiple linear regressions, against a baseline linear regression (LR) model and a 
reference model for predicting PV power. 

Most prior studies focus on short-term forecasting, with limited attention to 
medium-term horizons crucial for operational planning and grid stability. More-
over, the influence of site-specific climatic conditions, such as those in arid regions 
like Cairo, still needs to be explored. 

This paper introduces ML forecasting models to estimate the output power of 
a PV array in a GTPV plant. To evaluate this forecasting approach, different machine 
learning algorithms (MLAs) are utilized, such as LR, neural networks (NNs), DL, 
and the k-nearest neighbor (k-NN) method. Input data consists of meteorological 
variables like solar irradiance, ambient temperature, cell temperature, and wind 
speed, gathered on-site through a weather station linked to the PV array. The ac-
tual output power from the PV array, collected through data loggers at the GTPV 
plant, serves as a label for the ML models. All algorithms are trained on a com-
prehensive dataset that spans an entire year of high-frequency data captured at 
five-minute intervals, thus covering various seasonal conditions. Subsequently, 
the ML models are tested for medium-term predictions extending one week into 
the future. All models are implemented and tested using the RapidMiner software 
platform.  

The main contribution of this paper is to evaluate the performance of different 
ML models for medium-term forecasting using a comprehensive dataset collected 
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from a grid-tied PV plant in Cairo, Egypt. By using a full year of high-resolution 
weather and power data, the study provides valuable insights into the impact of 
seasonal variability of meteorological parameters on PV power forecasting. More-
over, it proposes practical forecasting solutions for regions with similar climates. 

The paper is organized into four sections: Section 2 describes the GTPV plant. 
Section 3 outlines the methodology, which includes a description of data collection, 
pre-processing, and the evaluation criteria used to assess the performance of the 
MLAs. Section 4 provides a thorough analysis and discussion of the findings. Fi-
nally, Section 5 summarizes the key insights and conclusions. 

2. Grid-Tied PV Power Plant 

The GTPV system is installed on the roof of the ERI building located in Cairo, 
Egypt, with geographic coordinates of 30˚7'49.44''N latitude and 31˚22'48''E lon-
gitude, oriented south (zero azimuth) at a fixed tilt angle of 26 degrees. The PV 
array system has an overall capacity of 30.26 kW, divided into two sub-arrays, 
each with a capacity of 15.13 kW. Each sub-array comprises 34 modules arranged 
in two parallel strings, with 17 modules connected in series. The PV module has 
a maximum power output of 445 W and has an efficiency rating of 20.4% under 
STC. These photovoltaic modules are linked to a three-phase inverter with a capac-
ity of 27.6 kW; further details regarding the electrical characteristics of the photo-
voltaic modules, inverter, and plant layout can be found in Reference [19]. Mete-
orological information gathered from an on-site weather station, along with meas-
urements of electrical parameters, was precisely recorded using a Solar-Log Base 
100 data logger. This data acquisition unit regularly documented measurements, 
serving as the main monitoring device that connects the photovoltaic station to 
the weather sensors. High time-based resolution data was collected from both the 
PV system and weather monitors, sampled at intervals of 5 minutes. The param-
eters gathered included solar irradiance (W/m2), ambient temperature (˚C), wind 
speed (m/s), cell temperature (˚C), and the output power of the PV array. 

3. Problem Formulation and Methodology 

This research uses ML techniques to create medium-term PV power generation 
predictions for a GTPV power plant. Various categories of ML techniques and 
datasets are suggested to apply the forecasting model to guarantee their accuracy 
and dependability. The identified ML algorithms include neural-based techniques 
such as NN, and DL, regression-based approaches such as LR, and lazy-learning 
methods, k-NN. The modeling process is implemented using RapidMiner Studio’s 
graphical user interface software. RapidMiner is a data analytics platform estab-
lished in 2001 [20]. It provides a variety of operators and repositories for activities 
such as data preparation, transformation, modeling, and assessment. Its specific 
features include tools for process management and utilities, access to repositories, 
data importing/exporting, manipulation, and model construction. Its extensive tool-
set assists the complete data science workflow, including parameter tuning, model 
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training validation, and performance assessment. Figure 1 represents the proposed 
PV power forecasting framework, which integrates environmental data and ad-
vanced computational techniques to enhance prediction accuracy. The framework 
begins by collecting key meteorological inputs, including solar irradiation, wind 
speed, ambient temperature, and cell temperature. These inputs are processed us-
ing a neural network model comprising an input layer, hidden layers, and an out-
put layer to extract patterns and relationships in the data. Weights and mathemat-
ical operations are applied within the network to generate preliminary forecasts. 
A subsequent decision-making module refines the predictions by employing dis-
tance calculation, value sorting, and selecting the optimal neural network model. 
The final output of the framework is a reliable and precise forecast of PV power 
aimed at optimizing system performance and supporting energy management 
strategies. 

 

 
Figure 1. The proposed PV power forecasting framework. 

 
Figure 2 illustrates the workflow utilized in this research, which consists of in-

put, training, and forecasting stages. The input stage involves gathering data, which 
includes environmental factors and plant output, followed by data pre-processing. 
This critical step enhances the inputs before modeling to boost accuracy. MLAs 
are created during training based on the pre-processed historical input-output da-
tasets. The models identify the correlations between inputs and targets to make 
forecasts. The forecasting phase enables the prediction of future PV power gener-
ation. With daily collection of new, real-time data, models are consistently updated 
and employed to provide medium-term power generation predictions. Once the 
raw data has been pre-processed, feature selection methods such as feature im-
portance ranking and Pearson correlation analysis are employed to determine the 
most predictive independent variables for inclusion in the models. The processed 
data is split into training, validation, and test subsets as 70% training and 30% 
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testing. MLAs are trained on the training dataset to identify patterns and fine-tune 
model parameters over multiple iterations iteratively. At the same time, hyper-
parameter tuning using the validation dataset aids in configuring elements of the 
model structure that are not adjusted during training, including the number of hid-
den layers in a neural network. The parameters of the MLAs are also tuned to en-
hance predictive precision. Finally, various error and correlation metrics are com-
puted to assess and contrast the forecasting quality of the MLAs. These metrics 
included absolute error (AE), root mean square error (RMSE), normalized absolute 
error (NAE), relative error (RE), relative root square error (RRSE), and correlation 
coefficient (R). 

 

 
Figure 2. Workflow of the proposed ML-based power forecasting of PV power. 

 
The steps in the workflow are outlined as follows: 
1) Data from the PV plant is gathered using the weather station and data logger, 

encompassing all meteorological data and the plant’s output measurements over 
one year at 5-minute intervals. 

2) RapidMiner software is utilized to implement the MLAs, and the data is re-
trieved for training and testing. 

3) Outlier values are eliminated through data filtering. 
4) Data normalization is conducted using the min-max scaling technique. 
5) The processed data is divided into training and testing subsets, comprising 

70% for training and 30% for testing. 
6) ML models are employed to predict PV power output. 
7) To confirm the model’s accuracy, a validation model is applied to a new da-

taset with a medium-term horizon. 
8) The model’s performance metrics are assessed and displayed. 
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3.1. Feature Selection 

Meteorological factors are crucial in determining the effectiveness of PV power 
forecasting since they directly affect energy generation. The primary input is solar 
irradiance, closely followed by ambient temperature, as both strongly correlate with 
PV output. The movement of clouds also causes sudden and significant fluctua-
tions in PV power production. This research includes all essential meteorological 
factors that adequately represent site conditions as input features. Solar irradiance 
is a critical parameter due to its direct relationship with energy production. Am-
bient temperature influences efficiency even more at elevated levels.  
 

 
Figure 3. Meteorological data recordings over a year: (a) Solar irradiance; (b) Ambient tem-
perature; (c) Cell temperature. 

 
This study’s meteorological data encompasses an entire year, from October 2022 

to September 2023, covering all seasons. The dataset consists of eight variables: 
date, time, radiation, ambient temperature, wind speed, cell temperature, and PV 
power. Measurements were taken using a logger at five-minute intervals, resulting 
in over 105,000 samples for each parameter. The original dataset is split into 70% 
training and 30% testing subsets. In the analysis, all meteorological factors affect-
ing PV output are selected as input features; solar irradiance is identified as the 
critical variable, followed by ambient temperature, which has a notable impact on 
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performance at elevated temperatures, cell temperature, and wind speed. Figure 
3 depicts the variations in meteorological parameters and cell temperature through-
out the studied year. Solar irradiance ranges from 0 to 1000 W/m2, with occasional 
slight spikes reaching up to 1200 W/m2 during clear weather, particularly notice-
able in April and May. Ambient temperature fluctuates between 10 and 44˚C, with 
night-time lows around 10˚C and daytime highs approaching 44˚C. Cell temper-
ature exhibits a range from 10 to 68˚C. With consistently low values, wind speed 
ranges from 1 to 9 m/s, as Cairo typically experiences moderate to low wind con-
ditions. Winter shows significant fluctuations in solar radiation and increased 
challenges in forecasting. Before modeling, this dataset undergoes pre-processing 
to improve the model’s accuracy. This pre-processing involves two critical steps: 
outlier removal and data normalization. The outlier removal process eliminates 
abnormal readings, while data normalization standardizes the variables to uni-
form measurement units, making the data suitable for practical training. The ap-
propriate data normalization method was selected based on the chosen ML tech-
nique. 

3.2. Data Pre-Processing—Filtration 

The input data for solar power generation and meteorological information necessi-
tate pre-processing to enhance model accuracy and computational efficiency. The 
goal of pre-processing is to refine datasets before the development of ML models. A 
sequence of filtering procedures was implemented for both photovoltaic power out-
put and meteorological data. Initially, implausible values such as negative figures, 
null entries resulting from sensor errors, or missing sensor data were eliminated. It 
streamlines the datasets to mitigate improper training complications and the com-
putational costs associated with irregularities, outliers, and irrelevant inputs. Supply-
ing complete high-resolution datasets, which include null PV values during night-
time, could decrease training and accuracy due to data sparsity. Filters were utilized 
to eliminate unlikely outliers and days with extensive missing data.  

In this research, the approach involved discarding readings that exceeded the 
maximum rated capacity of the PV system. Furthermore, days that lacked sufficient 
data records were also filtered out. This approach aimed to lessen potential compli-
cations during training and the computational load caused by incomplete or im-
proper inputs by meticulously cleaning and conditioning the datasets before the 
model development phase. The pre-processing steps focused on removing faulty 
inputs, tackling sparsity, isolating consistent patterns, and adjusting dataset char-
acteristics for optimal ML.  

Additionally, a filtration method was employed to eliminate negative irradiance 
values. The frequency of night-time sampling was reduced rather than entirely 
discarded. The sparse data during the night could result in ineffective training and 
reduced accuracy; since PV power is zero at night, the dataset for this period was 
diminished but not removed, as these points still signify the cyclical nature of solar 
irradiation absence.  
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3.3. Data Pre-Processing—Normalization 

Data normalization is crucial for standardizing input features and the output label 
to consistent values. This study utilized range transformation to normalize data to 
a fixed scale of 0 to 1. The range normalization method involves rescaling the in-
put data to fit within a smaller standard range derived from its original broader range. 
Precisely, all variables are adjusted to lie between 0 and 1. This method minimizes 
forecasting errors by limiting values to a narrow range while preserving the cor-
relations between input parameters. It ensures that variables with naturally high 
values stay within those with smaller magnitudes. Normalizing data in this man-
ner also enables MLAs to treat all features equally during training, enhancing the 
training speed and convergence. Variables that have been standardized to the same 
scale can then be directly compared regarding their relative significance. Mathemat-
ically, the min-max scalar modifies data following the formula [21]: 

( ) ( )min max mins ix x x x x= − −                     (1) 

where xs is the scaled value, xi is the measured value, and xmax and xmin are the 
maximum and the minimum values of the dataset. 

3.4. Machine Learning Models 
3.4.1. Linear Regression (LR) 
Regression analysis is a statistical technique employed for numerical forecasting. It 
measures the connection between a dependent variable (also known as the target 
variable) and various independent variables (regular attributes) [22] [23]. LR 
fits a straight line to represent the linear association between the dependent and 
independent variables. It describes the observed data using a linear equation [22] 
[23]. 

3.4.2. Neural Networks (NNs) 
The architecture of the ML-based NN model utilized in this research is a feed-
forward multi-layer perceptron NN, which is trained using a back-propagation 
algorithm. A standard sigmoid activation function is applied to the nodes in this 
configuration. Furthermore, the output node employs a sigmoid or linear activa-
tion function based on the specific problem type. In this case, sigmoid output ac-
tivation was chosen since the task involves forecasting or classifying a variable as 
a classification problem. Conversely, a linear activation would be more suitable 
for numeric regression tasks where the goal is to predict an exact target value 
[24]-[26]. 

3.4.3. Deep Learning (DL) 
In RapidMiner, the DL algorithm utilizes H2O optimization [20]. It is a multi-layer 
feed-forward artificial neural network, which is trained through stochastic gradi-
ent descent using back-propagation [27]-[29]. The network architecture has numer-
ous hidden layers that feature neurons using tanh, rectifier, and max-out activation 
functions. 
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3.4.4. k-Nearest Neighbor (k-NN) 
The k-NN algorithm makes predictions by analyzing the nearest training instances 
in a feature space. During the training phase, k-NN merely retains the feature vec-
tors and their associated target values without making explicit generalizations [30]. 
In the case of regression, it calculates the average of the target variable values from 
the nearest neighbors to predict a continuous outcome. Closer neighbors may be 
given greater weight in influencing the prediction. Feature values are often normal-
ized before calculating distances. One of the benefits of k-NN is its straightforward 
implementation and comprehension. A drawback, however, is that it requires sig-
nificant memory to store all training examples and has high computational costs 
for classification [17] [31]-[34]. 

3.5. Performance Indices 

Several statistical metrics are used to assess the effectiveness of the MLAs utilized 
in this study and evaluate their predictive performance. Among these metrics are 
absolute error (AE), root mean square error (RMSE), normalized absolute error 
(NAE), relative root square error (RRSE), and correlation coefficient (R). The Ab-
solute Error is the RapidMiner software’s standard function [35].  

( )( )( )( )1 ^ 2RMSE n yp yi yi= ∑ −                  (2) 

  p iAE y y= −                           (3) 

( )( )1NAE n yp yi yi= ∑ −                     (4) 

( )( )  RE yp yi yi= −                        (5) 

( )( ) ( )( )( )^ 2 ^ 2RRSE yp yi yi y= ∑ − ∑ −                (6) 

where yi is the measured power value, and yp is the predicted power value. 

4. Results and Discussion 
4.1. ML Models Train and Test 

This research employed weather data and cell temperature to train various MLAs 
for forecasting PV power. Our primary objective was to reduce the absolute er-
ror as the main metric. The model was validated using actual PV power meas-
urements from October 1, 2022, to September 30, 2023 (from a 30.26 kW GTPV 
plant). Figure 4 illustrates the evaluation metrics for the tested MLAs. This bar 
chart compares the performance of four ML models: LR, NN, DL, and k-NN—
across various error metrics: RMSE, RE, AE, RRSE, and NAE. RMSE reflects the 
average magnitude of prediction errors. LR has the highest RMSE, indicating it 
performs the worst in minimizing prediction errors. DL shows the lowest RMSE, 
highlighting it as the most accurate model for predicting PV power. RE is the ratio 
of error to the actual value. NN exhibits a significantly higher RE than other mod-
els, indicating poor performance. DL and k-NN maintain lower RE values, 
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indicating better consistency. AE is the absolute difference between predicted and 
actual values. DL achieves the lowest AE, emphasizing its substantial predictive 
accuracy. LR and NN have higher AE values, demonstrating weaker performance 
in capturing precise predictions. RRSE normalizes RMSE relative to the variance 
of the data. LR has the highest RRSE, confirming its inability to generalize across 
the dataset effectively. DL again performs the best, demonstrating robust general-
ization. NAE quantifies the absolute error relative to the scale of the data. DL and 
NN achieve similar, low NAE values, suggesting strong predictive capabilities 
concerning data scaling. LR and k-NN show higher NAE values, implying less 
reliable performance in handling variability. DL consistently outperforms the 
other methods across most metrics, emphasizing its ability to handle complex re-
lationships in PV power forecasting. LR consistently ranks lowest across all met-
rics, likely due to its linear nature, which is insufficient for capturing non-linear 
patterns in PV power generation. NN performs well in RMSE and AE but falters 
with a high RE, indicating it might struggle with certain aspects of error normali-
zation or data variability. k-NN offers moderate accuracy but is less effective than 
DL, particularly in metrics like AE and NAE. The figure shows that the DL algo-
rithm recorded the lowest values for RMSE, 0.022, AE, 0.015, and RRSE, 0.076. 
The results highlight the importance of selecting advanced models (like DL) for 
PV power forecasting due to their superior ability to handle non-linearity and 
complexity in data. 

Figure 5 compares the predicted annual PV and AC power output with actual 
values, including environmental factors. This figure pertains to the DL algorithm, 
which demonstrated the best performance. The figure demonstrates a positive cor-
relation between solar irradiation (W/m2) and PV power (W). As solar radiation 
increases, the PV power output also increases linearly, which is expected given that 
solar radiation is the primary driver of PV power generation. The predicted PV 
powers closely follow the actual values, indicating that the forecasting model ac-
curately captures the relationship between solar radiation and PV power. The cor-
relation is 99.7%, indicating high predictive accuracy. 

 

 
Figure 4. Performance indices of the MLAs. 
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Figure 5. Actual and predicted PV power based on DL algorithm vs solar irradiance and 
ambient temperature. 

 
The relationship between ambient temperature (˚C) and PV power output is 

more complex than solar radiation. PV power increases with ambient temperature 
initially but declines beyond a certain point. This behavior reflects the combined 
effects of temperature on PV module efficiency (e.g. higher temperatures reducing 
efficiency). Predicted PV power values broadly follow the trend of actual values, but 
the scatter is more pronounced, particularly at higher temperatures. This increased 
scatter indicates that the model may not fully capture the non-linear effects of tem-
perature on PV power output. 

4.2. Weekly Forecasting Validation 

This section examines the effectiveness of various MLAs (LR, NN, DL, and k-NN) 
for medium-term forecasting. The model utilizes validation data from a week dur-
ing January. Figure 6 illustrates the meteorological data for the chosen week. The 
solar irradiance follows a daily pattern, peaking during midday and decreasing to 
zero at night. The curve demonstrates consistent cyclic behavior across seven days 
during January 2024, indicating clear-sky conditions with minimal variability. Fluc-
tuations within the peaks may correspond to transient weather events, such as clouds 
representing the winter climate in Cairo. Solar irradiance is the primary input for 
PV power generation, and this plot confirms the strong dependence on time and 
weather patterns. Two temperature profiles are shown: ambient temperature and 
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cell temperature. Both follow a similar daily pattern (24-hour), rising during the 
day and decreasing at night. The cell temperature consistently exceeds the ambi-
ent temperature, with a more pronounced peak during midday. The ambient tem-
perature curve exhibits less variation compared to the cell temperature curve, sug-
gesting that PV module heating is highly influenced by solar intensity. Wind speed 
values fluctuate significantly over time (Figure 5(c)), ranging from 0 to 6 m/s. The 
pattern does not show a clear periodic or regular trend; rather, it highlights irreg-
ular fluctuations typical of natural wind patterns. 

Meanwhile, Figure 7 presents all models’ forecasted PV power outputs over a 
week, representing the medium-term forecasting timeframe. The prediction da-
taset utilized in this evaluation comprised 2016 data points at 5-minute intervals. 
All models show a nearly linear relationship between solar irradiance and PV power, 
aligning with photovoltaic systems’ fundamental physics. The data points predicted 
by all models closely follow the actual trend of PV power with solar irradiance, in-
dicating good model performance. The clustering of points along the diagonal line 
suggests minimal deviation between predicted and actual power values, especially 
at higher irradiance levels. 

 

 
Figure 6. Weather data for the selected week: (a) Solar irradiation; (b) Temperature (cell 
and ambient); (c) Wind speed. 
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Figure 7. PV power forecasting for a week of different MLAs. 

 
Figure 8 presents the average evaluation metrics for the MLAs based on the 

weekly validation data. The evaluation of the ML models utilized for weekly ag-
gregated data showed remarkable enhancements in prediction accuracy. Among 
the models assessed, the DL model performance exceeded the performance of the 
others, attaining a remarkable level of precision with the following metrics: an 
RMSE of 0.026, an AE of 0.014, an RRSE of 0.102, an NAE of 0.064, and a corre-
lation coefficient of 99.7%. These findings highlight the DL model’s capability to 
effectively manage the non-linear and intricate relationships between meteorolog-
ical factors and PV power output. The RMSE of 0.026 indicates a very low average 
deviation, while the low AE of 0.014 reflects the model’s proficiency in matching 
predictions with actual data. The RRSE and NAE values (10.2% and 6.4%, respec-
tively) also illustrate the DL model’s strength, surpassing traditional models such 
as LR and k-NN. The correlation coefficient of 99.7% signifies an almost flawless 
correspondence between predicted and actual values, further highlighting the 
model’s accuracy. 

 

 
Figure 8. Performance metrics of the ML models for a week. 

 
Figure 9 compares the actual and predicted PV power output generated by the 
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DL model. The figure shows a repeating daily pattern corresponding to solar power 
generation cycles, with peak values occurring during midday and tapering off to-
wards the evening and early morning. The close alignment between the actual and 
predicted values demonstrates the high accuracy of the deep learning model in fore-
casting PV power. The model successfully captures the variability and trends of 
solar power generation across multiple days. Minor discrepancies may exist dur-
ing rapid transitions, likely due to environmental factors. Overall, the figure high-
lights the effectiveness of the proposed forecasting framework in predicting PV 
power outputs. 

 

 
Figure 9. Actual and predicted PV power of DL model. 

5. Conclusion 

This research established forecasting models to predict the power output from a 
GTPV plant by employing various ML techniques alongside meteorological data 
for medium-term forecasting. The models were trained using a high-frequency 
dataset encompassing one year of actual performance data, deployed and evalu-
ated within the RapidMiner platform, and validated through application to weekly 
data measurements. Key findings highlight that both solar irradiance and ambient 
temperature significantly impact the power output of PV systems. The DL model 
achieved the highest forecasting accuracy, recording the lowest RMSE of 0.022, 
AE of 0.015, RRSE of 0.076, NAE of 0.064, and R of 99.7% for the weekly forecast-
ing validation. Validation for medium-term forecasting confirmed the accuracy of 
the models; when utilizing weekly data, the models exhibited good precision, with 
the DL model attaining the highest performance, achieving an RMSE of 0.026, AE 
of 0.014, RRSE of 0.102, NAE of 0.064, and R of 99.7%. Overall, the models displayed 
effective performance across varying weather scenarios. These findings highlight 
the potential of DL for medium-term PV power forecasting. Its high accuracy makes 
it particularly suitable for operational decision-making in grid management and 
energy trading, where reliable predictions are critical for balancing supply and de-
mand. Moreover, it can help grid operators prepare for fluctuations in PV power 
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output, thus enabling better integration of variable solar energy into the power 
grid. 
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