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Abstract 
Stability criteria for the complex-valued impulsive system are applied widely 
in many fields, such as quantum systems, which have been studied in recent 
decades. In this paper, I investigate the Lyapunov control of finite dimensional 
complex-valued systems with impulsive control fields, where the studied com-
plex-valued systems are governed by the Schrödinger equation and can be 
used in quantum systems. By one Lyapunov function based on state error and 
the invariant principle of impulsive systems, I study the convergence of com-
plex-valued systems with impulsive control fields and propose new results for 
the mentioned complex-valued systems in the form of sufficient conditions. A 
numerical simulation to validate the proposed control method is provided. 
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1. Introduction 

The concept of stability theory is fundamental to the fields of control theory and 
system engineering [1]-[6]. In the stability problem, the state error of the system 
is required to converge to zero. For example, the authors in references [7]-[12] 
have investigated the stability problem for different systems. 

The common setting adopted in the aforementioned works is always in real num-
ber fields, i.e., the objective of the study is real-valued differential systems. The au-
thors in [12]-[15] studied the stability problem of complex-valued differential sys-
tems. The complex-valued differential system has many potential applications in 
science and engineering, such as the quantum system, which is one of the classical 
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complex-valued systems. There have been many theoretical and experimental 
breakthroughs in the stability study of quantum systems [16]-[21], and references 
therein indicate that quantum control has become an important area of research. 

Impulsive dynamical systems are a special class of dynamical systems which 
exhibit continuous evolution typically described by ordinary differential equa-
tions and instantaneous state jumps or impulses. Nowadays, there have been var-
ious approaches for control of impulsive dynamical systems [8] [10] [11] [22], 
which indicates that increasing interest in the analysis and synthesis of impulsive 
systems, or impulsive control systems, due to their significance both in theory and 
applications. 

Quantum control is a significant aspect of quantum information processing and 
quantum technologies. It is the cornerstone of quantum technology, extensively 
utilized in quantum computing and quantum communication. Various ap-
proaches for finite-time control of quantum systems have been developed. 

In order to drive the system state to its target in less time, I add an impulsive 
control field beside the continuous control field and apply the impulsive control 
method to control quantum systems from the result in [3], when one control field 
with a given frequency, quantum systems governed by the Schrödinger equation 
can be described as impulsive dynamical systems. 

In this paper, I apply the stability criteria for a complex-valued impulsive sys-
tem to give a better option to drive the quantum state to its target. The Lyapunov 
function is presented based on state error. In Section 2, a complex-valued system 
with impulsive control fields is presented, and introduce the invariant principle 
of impulsive systems. In Section 3, I give one control field to drive quantum state 
based on one Lyapunov function and analyze the asymptotic stability of quantum 
systems with impulsive control fields. In order to justify the effectiveness of the 
proposed control fields, one simulation experiment is given in Section 4. 

2. Notations and Definitions 

Consider the impulsive dynamical system described by 

( ) ( )( ) ( )
( ) ( )( )

1, , ;

, .
c k k

d k

x t f x t t

x t f x t t

τ τ

τ
+ = ∈


∆ = =



                (2.1) 

where ( ) nx t ∈  denotes the system state, ( )cf x  is a continuous function 

from n  to n , the set { }1 2 1 2, , :E τ τ τ τ += < < ⊂    is an unbounded, 

closed, discrete subset of +  which denotes the set of times when jumps occur, 
and : n n

df →   denotes the incremental change of the state at the time kτ . 

In the n-dimensional complex space n , I choose the most common norm 
*:x x x= , where x is represented as a column vector ( )T

1 2, , , nx x x , and *x  
denotes its conjugate transpose. 

Denote by ( )nM   the space of n n×  complex matrices with an inner product 
( ) ( ) ( ), : n nM M⋅ ⋅ × →   , 
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( ) ( ), ,a b Tr ab=  

and the norm ( )2 ,a a a= . As we know, quantum systems are typical complex 
systems, whose state variables are defined on the complex field. Consider the fol-
lowing n-level quantum system with two control fields, and set the Plank constant 

1= : 

( ) ( ) ( ) ( ) ( )0 1 1 2 2
1

,k
k

i t H f t H f t H t tβ δ τ β
∞

=

 
= + + − 
 

∑         (2.2) 

where the ket ( ) ntβ ∈  represents the state vector of quantum systems, which 
is right continuous, and the state vector evolves on or in a sphere with radius one, 
and I denote the set of quantum states by nVS , and ( )δ ⋅  is the Dirac impulse. 
Physically, two states 1β  and 2β  that differ by a phase ( )t Rθ ∈ , i.e., 

( )( )1 2exp i tβ θ β= , describe the same physical state in or on the sphere of n . 
I denote the bra associated with the ket ( )tβ  with ( )tβ . When the quantum 
system evolves freely under its own internal dynamics, i.e., there is no external 
field implemented on the system, just the free Hamiltonian 0H  is introduced. 

( )1,2jH j =  represents the interaction energy between the system and the ex-
ternal classical control fields ( )( )1,2jf t j = , and is called interaction Hamilto-
nian. ( )0,1,2jH j =  are all n n×  self-adjoint operators in the n-dimensional 
Hilbert space   and assumed to be time-independent. In this paper, I set the 
first control function ( )1f t  is continuous, and the other one ( )2f t  only takes 
effect on quantum systems at the impulsive points E. 

In quantum control, the target state is usually an eigenstate of the free Hamil-
tonian, and I set the target state fβ  satisfies: 

0 ,f f fH β λ β=  

where fλ  is the eigenvalue of 0H  corresponding to fβ . 
By the same method in [4], I obtain that quantum systems (2.2) with impulsive 

control fields can be described as 

( ) ( )( ) ( )

( ) ( )
0 1 1

2 2

, ;

, .

k

k k

i t H f t H t t

f t H t

β β τ

β β τ τ−

 = + ≠

∆ = =



              (2.3) 

When taking non-trivial geometry about states, I add a second control ω  cor-
responding to ( )tθ  into consideration [9], then investigate the following quan-
tum systems 

( ) ( ) ( ) ( ) ( )0 1 1 2 2
1

,k
k

i t H f t H f t H t I tβ δ τ ω β
∞

=

 
= + + − + 
 

∑       (2.4) 

where I is the identity matrix. If the control field ( )2f t  only takes effect at the 
impulsive point E, the quantum systems with impulsive control fields are 

( ) ( )( ) ( )

( ) ( )
0 1 1

2 2

, ;

, .

k

k k

i t H f t H I t t

f t H t

β ω β τ

β β τ τ−

 = + + ≠

∆ = =



           (2.5) 

Subject to quantum systems (2.2) or (2.4), I focus on finding control fields 
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( )1f t  and ( )2 kf τ , such that the quantum systems with impulsive control field 
(2.3) or (2.5) are driven to target states. Firstly, I introduce the invariant principle 
of impulsive systems. 

Lemma 2.1 [2] Consider the impulsive dynamical system (2.1), assume 

c ⊂   is a compact positively invariant set with respect to (2.1), and assume 
that there exists a 1C  function : cV →   such that 

1) ( )( ) 0, ,c kV x t x t τ≤ ∈ ≠  ; 
2) ( )( ) ( )( ) ( )( ) , ,k d k k c kV x f x V x x tτ τ τ τ− − −+ ≤ ∈ = ; 

Let  

( )( ) ( )( ) ( )( ) ( )( ){ }: , 0} { : ,c k c k k d k kG x t V x t x t V x f x V xτ τ τ τ τ− − −∈ ≠ = ∪ ∈ = + =

   ,  

and let M G⊂  denote the largest invariant set contained in G. If 0 cx ∈ , then 
( )x t M→  as t →∞ . 

3. Impulsive Control of Quantum System 

In this section, I shall design an impulsive feedback controller for complex-valued 
quantum systems. As can be seen later, the proposed controller is not only simple 
and direct, but the bus can also stabilise the quantum systems so that all trajecto-
ries will converge to the target state. When the phase θ  is considered, I choose 
the Lyapunov function based on the state error [9] [19]. 

Theorem 1 For quantum system (2.5), if 0H  is non-degenerate, set the con-
trol fields ( )( )( )0 0f fK g Im tλ ω β β+ = , ( ) ( )( )( )1 1 1 1ff t K g Im H tβ β= , and 

( )
( ) ( )( )

( )
2

2
4
2

2 k k f

k

Re H
f

Tr H

β τ β τ β
τ

− −− −
= , where constants ( )0 0,1jK j> = ,  

the image of function ( )j j jy g x=  passes the origin of plane j jx y−  monoton-
ically and lies in quadrant I or III, then quantum systems with impulses (2.5) con-
verge to the largest invariant set 2nVS E∩ , where  

( ){ }2 1: 0, 0f fE H Imβ β β β β= = = . If all the states in 2E  are equiva-
lent to the target state fβ , then the systems will converge asymptotically to the 
target state fβ . 

Proof. I choose a Lyapunov function based on state error, 

( )( ) ( ) ( ), .f fV t t t tβ β β β β= − −              (3.1) 

When kt τ≠ , ( ) ( )( ) ( ) ( )( )1 1f f fV Im t f t Im H tλ ω β β β β= − + − , the 
simple control field  

( )( )( ) ( )( )( )0 0 1 1 1 1, ,f f fK g Im t f K g Im H tλ ω β β β β+ = =    (3.2) 

I have  

( ) ( )( ) ( )( )( )
( )( ) ( )( )( )
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0 0

1 1 1 1
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f f

f f

k

V t K Im t g Im t

K Im H t g Im H t
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β β β β

β β β β

τ

= −

−
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

 

When kt τ= ,  
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since ( ) ( ) ( ) ( )22 2 4
2 2 2k k kH H Tr Hβ τ β τ β τ− − −≤ ≤ , by the control field  

( )
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Using the control field 1, ( )f f tλ ω+  (3.2), the largest invariant set of quantum 
systems with impulsive control fields (2.5) is 2nVS E∩  [9], where  

( ){ }2 1: 0, 0f fE H Imβ β β β β= = = . From the invariant principle Lemma 
2.1, the quantum systems with impulsive control fields (2.5) will converge to 

2nVS E∩ . 
Thus I complete the proof. 

4. Illustrative Examples 

In order to illustrate the effectiveness of the proposed method in this paper, one 
numerical simulation was presented for a five-level quantum system, and the 
Fourth-Order Runge-Kitta method was used to solve the problem with a time step 
size of 0.05. 

Example 1. Consider the five-level quantum system with internal Hamiltonian 
and the control Hamiltonians given as follows: 

0 1 2

1 0 0 0 0 0 0 0 1 1 0 0 1 0 0
0 1.1 0 0 0 0 0 0 0 0 0 0 1 0 1

, , .0 0 1.2 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 1.4 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 1.7 1 0 0 1 0 0 1 0 1 0

H H H

     
     
     
     = = =
     
     
     
     

 

Let the initial state and the target state also be ( )T
0 1 0 0 0 0β =  and 

( )T0 0 0 0 1fβ = , respectively. The parameters are chosen as 1 0.15K = , 

2 0.001K = . Set the state ( ) ( )T
1 2 3 4 5t x x x x xβ = , by the same control 

fields 
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( )( )( )0 0 ,f fK g Im tλ ω β β+ =
 

( ) ( )( )( )1 1 1 1 ,ff t K g Im H tβ β=
 

( )
( ) ( )( )

( )
2

2 4
2

2
,

k k f

k

Re H
f

Tr H

β τ β τ β
τ

− −− −
=

 
The simulation results are shown in Figure 1. In Figure 1(a), the population of 
the system with impulsive control field 2f  is shown, component 5x  increases 
to 1, and other components decrease to 0. The result shown in Figure 1(b) demon-
strates the control performance without impulsive control, component 5x  in-
creases to 1 firstly, then decreases a little. The final transition probability attains 
about 0.99942 in Figure 1(a), which is better than the one (about 0.99581) in Fig-
ure 1(b), and significantly, the control method with one impulsive control field 
can prevent the evolution from decaying. 

 

 
(a) 

 
(b) 

Figure 1. (a) The population of the five-level system trajectory from 0β  by control fields 

1 2,f f  in Example 1; (b) The population of the five-level system trajectory from 0β  

without control field 2f  in Example 1. 
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5. Conclusion 

In this paper, I have introduced the Lyapunov control method to complex-valued 
systems with impulsive control fields and given one kind of control field based on 
a Lyapunov function inspired by state error. The theoretical results have been ver-
ified by a numerical simulation to illustrate the effectiveness and advantages of 
the proposed method compared with existing results. 
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