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Abstract 
Multilevel modeling (MLM) has emerged as a powerful statistical framework 
for analyzing complex data structures with nested relationships. With its hier-
archical modeling approach, MLM enables researchers to account for depend-
encies and variations within and between different levels of a hierarchy. By 
explicitly modeling these relationships, MLM provides a robust and accurate 
analysis of data. It has become increasingly popular in the field of education. 
MLM enables the investigation of various research issues, the evaluation of 
individual and group-level indicators, and the calculation of both fixed and 
random effects. Overall, MLM revolutionizes data analysis by uncovering pat-
terns, understanding contextual effects, and making more precise statistical 
inferences in complex datasets. For fitting multilevel models in R, use lmer 
function provided by lme4 package. Through this examination, the use of a 
multilevel model is expected to increase and revolutionize data analysis and 
decision-making. The Constrained Intermediate Model (CIM) and Aug-
mented Intermediate model (AIM) deviation are compared using the Likeli-
hood-ratio (LR) test and the ANOVA function. This study analyzes student 
results from the University of Agriculture Faisalabad, collected via stratified 
random sampling. A linear mixed-effect model under multilevel modeling es-
timates the impact on CGPA, considering department, gender, intermediate 
marks, and entry test scores. These results indicate that Entry test is a signifi-
cant predictor of CGPA, but the effect of department identifier CMC on 
CGPA is not statistically significant. 
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1. Introduction 

In recent years, multilevel modeling has developed into a potent technique for 
analyzing layered data structures and exploring complicated phenomena. In this 
method, study variables and parameters are specified at two or more levels, or 
stages, for example, pupils within schools or patients within clinics.  

The method is sometimes referred to as hierarchical modeling or regression 
since these levels are organized in a hierarchy. Multilevel models were first intro-
duced by Peter Diggle and Harvey Goldstein in 1970; a large portion of the early 
research was carried out by British statisticians.  

Since it enables researchers to take into consideration hierarchical dependen-
cies and nested linkages within their datasets, multilevel modeling has become a 
strong statistical framework for studying complicated data structures [1]. 

1.1. Background and Motivation for Studying Multilevel Models 

Multilevel modeling (MLM), also referred to as hierarchical or nested modeling, 
originated in the 1950s. It gained prominence as psychologists and sociologists 
began to understand the need to consider the layered structure of social phenom-
ena. Its use increased significantly in the 1990s with advancements in software and 
computing power, leading to applications in education, public health, and organ-
izational research. MLM analyzes hierarchical data structures, such as students 
within schools or patients within hospitals, by modeling dependencies and vari-
ances across levels. It helps avoid biased estimates and incorrect statistical infer-
ences, allowing researchers to study relationships within and between levels. MLM 
is particularly valuable for exploring the impact of individual and group-level pre-
dictors, contextual factors, and interactions across different levels. By incorporat-
ing both fixed and random effects, MLM offers a comprehensive approach to un-
derstanding complex data, making it a powerful tool for studies in sociology, psy-
chology, and education. 

1.2. Hierarchical Data 

The development of specific statistical approaches is required due to the wide-
spread use of hierarchical data structures in many different domains. When ob-
servations are arranged into nested groups or levels, hierarchical data are pro-
duced. To conduct effective statistical modeling, it is essential to comprehend the 
structure and features of hierarchical data. 

At many levels, hierarchical data show linkages and variability. According to 
studies on schooling, for instance, students from the same school may be more 
similar than students from other schools due to overlapping environmental influ-
ences.  

Additionally, they enable the study of cross-level interactions, allowing research-
ers to investigate relationships between higher levels and individual-level traits. Re-
searchers can better understand the fundamental processes and mechanisms in 
hierarchical data by utilizing the flexibility and robustness of multilevel models. 
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1.3. Need for Multilevel Models 

Before analyzing a nested dataset, it’s important to determine if multilevel mod-
eling is necessary. Not all nested datasets require this approach. If the response 
variable scores show no variation between Level-2 units (such as schools), ordi-
nary least squares (OLS) multiple regression can be used for analysis. What fol-
lows is the new question, “How much change is there in the response variable in 
Level 2”. Calculating the ICC and design effect statistics find the answer to this 
puzzle. Using a sample of student achievement scores from a set of NELS data, 
researchers can predict that student achievement scores will vary across educa-
tional institutions due to individual differences in ability and motivation, etc. 

However, by averaging the science achievement scores of all students within 
each school, the science performance score for each school may be determined [2].  

Multilevel modeling is necessary to distinguish the variance present both among 
students and between schools, especially when differences exist in the average sci-
entific performance levels across schools. Traditional multiple regression methods 
are designed to account for variation in the response variable at only one level of 
analysis, such as students or schools, but not both simultaneously. Ordinary least 
squares regression and other conventional statistical methods make the assump-
tion that the observations are independent.  

1.4. An Empirical Investigation  

This study conducts an empirical analysis to demonstrate the benefits of multi-
level models in hierarchical data analysis, highlighting limitations of conventional 
techniques. By exploring various sample sizes, nesting levels, and distributional 
assumptions, we assess multilevel model performance using metrics like predic-
tion accuracy, design effects, ICC, and goodness-of-fit indices. Insights aim to 
guide researchers on optimal conditions for multilevel modeling, supported by 
thorough comparisons with empirical results.  

1.5. Intraclass Correlation Coefficient 

The intra-class correlation coefficient (ICC) measures the degree of similarity 
within clusters, guiding the choice of using multilevel models. A high ICC indi-
cates strong clustering, meaning observations within groups are more similar to 
each other than to those in other groups, while a low ICC suggests minimal clus-
tering, making traditional statistical methods suitable. ICC values range from 0 to 
1; values above 0.8 imply high reliability, while those below 0.5 indicate poor reli-
ability. It is commonly used in quantitative assessments where consistency among 
grouped observations is essential, such as evaluating relatedness among siblings 
or consistency among different observers. 

1.6. Design Effect  

Multilevel modeling core idea of “design effect” takes interdependence or clustering 
into consideration when making statistical inferences. “Deff” stands for design 
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effect. Because observations in hierarchical data are nested within groups or levels, 
there may be correlations or similarities between groupings. 

The assumption of independence that is frequently made in conventional sta-
tistical analysis techniques is broken by this clustering. 

The design effect assesses how the sample size required for precise estimates 
rises or reduces in comparison to independent data. It quantifies the inflation or 
deflation of the variance owing to clustering.  

Design effect (deff) estimation for various sampling designs is described by Kish 
(1965). Design effect expressed as a ratio of operating sampling variance to simple 
randomization of variance. 

A factor must be multiplied by the simple random sampling variance to obtain 
the real operating sampling variance. Defined as (1 + rho (n − 1)) in a basic cluster 
sampling scenario with equal cluster sizes, rho is the intraclass correlation, and n 
is the typical cluster size.  

The objectives of this research are: 
1) To evaluate the effectiveness of multilevel modeling (MLM) in analyzing 

nested educational data from the University of Agriculture Faisalabad, capturing 
variations within and between hierarchical levels such as departments and student 
demographics. 

2) To examine the impact of predictors, including department, gender, inter-
mediate marks, and entry test scores, on students’ CGPA through a linear mixed-
effects model using R’s lme4 package. 

3) To compare CIM and AIM models via likelihood ratio (LR) tests and 
ANOVA, assessing the predictive power of entry test scores on CGPA, while ex-
amining the non-significant effect of department identifiers. 

2. Reviews of Literature 

[3] found that emphasis of this essay had been on using SPSS 8. 0 output to inter-
pret measurement error that exists in data. Before taking into account individual 
heterogeneity, error in measurement size (RMSE), and the variance between mul-
tiple measured averages, the r coefficient could not be properly evaluated. Saw 
Morrow and Jackson (1993) for details on how to appropriately present reliable 
results. [4] examined how multiple measurements that were not time-based. In 
situation of missing data, a single instance shows how to properly assess inde-
pendent variables for categorical, continuous, or semi-continuous experimental 
stimuli or subjects.  

[5] found in recent years, researchers in the social and psychological sciences 
have become more and more interested in using growth mixture and latent class 
modelling techniques. This has been made possible in part by technical improve-
ments and the availability of computer software designed with this goal in mind. 
Two latent growth modelling techniques, growth mixture modelling (gmm) and 
latent class growth analysis (lcga), have grown in prominence due to their capacity 
to recognise significant groupings or classes of individuals as well as homogenous 
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subpopulations within larger heterogeneous populations. [6] examined how lon-
gitudinal models are often used in the behavioural sciences due to their main ad-
vantages, which include better power, more comprehensive evaluation, and the 
establishment of time precedence. The capacity to discern between inter-person 
and within-person influences during the regression of a result on a time-varying 
covariate was one especially notable benefit provided by longitudinal data. It’s in-
teresting to note that not all applications based on social science research have 
fully utilised the ability to divide apart these consequences. [7] The degree of bias 
depends on the informativeness of any ignored clustering in the sampling design 
and stratification. While some multilevel software programs support the inclusion 
of first-stage sampling design data in two-level models, not all do. Dependent vari-
ables are chosen based on previous research using these data sets. The implications 
of ignoring the sample design in two-level models both unconditional and condi-
tional—were demonstrated using five examples from publicly available data sets. 

[8] demonstrated that multilevel contingency and interactionism theories were 
based on cross-level interaction effects. Investigators had frequently bemoaned 
how challenging it was to detect hypothesized cross-level relationships, and there 
was currently no way to assess the statistical power of such experiments. We cre-
ated such a strategy, validated its correctness, and presented evidence about the 
relative significance of elements that impact power to identify interactions of 
cross-level through the results of large-scale simulation research. Our findings 
suggested that magnitude interaction of cross-level, the standard deviation of low-
ered leveled slopes, lowered or upper leveled sample sizes were the main factors 
that affect the ability of statistical models to detect cross-level interactions. We 
offered a Monte Carlo tool to researchers so they could a priori design. 

[9] discovered that to provide information on fieldwork organisation and meth-
odology, sample design, weighting, and concerns for the use of design-based vs 
model-based estimates, this paper outlines the key aspects of the NCS-R design 
and field operations. Empirical data were given on the non-response bias, the de-
sign effect, and the trade-off between bias and efficiency-response bias. [10] stud-
ied the multilevel modelling approach, which offered several potential applica-
tions in personality and social psychology. This article offered an introduction to 
multilevel modelling with a focus on some of its applications in social and person-
ality psychology in order to enable the author to fulfil his promise. Multilevel 
modelling was defined in this lecture, along with arguments in favour of it and an 
overview of its use in social and personality psychology research. Along with some 
of the subtleties of setting up multilevel studies and interpreting data, software 
solutions were explained. 

[11] found that the intraclass correlation coefficient (ICC) from a one-way ran-
dom effects model was widely used to dependability mean judgements in the over-
all behavioural, educational, and psychological investigations. Despite its evident 
use, the feature of ICC (2) as a focused estimator of average score intraclass cor-
relation coefficient was hardly studied [12]. The study empirically assesses the 
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consequences of neglecting sampling strategy in two-level analyses weighted sets 
from the National Center Education Statistics (NCES). Currently, researchers 
have the option to ignore sampling designs above the levels they model, which 
could lead to biased standard error estimates that lead to incorrect inferences 
about hypotheses.  

[13] examined the intraclass correlation coefficient, an indicator of consistency 
that measures both the degree of correlation and agreement between measure-
ments. When a continuous data set met the criteria for applying parametric ap-
proaches, the ICC was frequently employed in orthodontic research. The ICC, 
however, had a total of ten distinct versions that were sometimes overlooked by 
researchers and may produce varied results. [14] has been discovered that physical 
multilevel models of deformation that were rigid with explanations for the chang-
ing nature of the structure of the content had the potential to lead to the creation 
of useful materials. In this research, we offered an enhanced statistical multilevel 
model for understanding thermomechanical process of polycrystals, which in-
cluded a description of the dynamic recrystallization process, modified by analys-
ing the mutual arrangement of crystallites [15]. The proposed authoritative voiced 
paper provides a thorough defence of multilevel modelling. In addition to encour-
aging used of multilevel modelling in company information systems or serving as 
inspiration for further study, it intends to conduct a comprehensive assessment of 
its prospects. Comparisons between instruments, general-purpose modelling lan-
guages, property modelling languages, and multilevel modelling were used to cre-
ate the assessment. 

3. Materials and Methods 
3.1. Methodology 

According to [16], the logic of scientific technique is called methodology. The sys-
tematic process of conducting research involves looking for fresh information in 
order to confirm existing information and the natural laws that underlie it. The 
scientific method is a set of precise guidelines and methods that serve as the foun-
dation for research and as a yardstick by which to measure assertions of truth. The 
description of the study region, definitions of the materials used, and key compo-
nents of the current investigation are all explained in this section of the study. 

3.2. Data 

For the above-mentioned purpose, the data of Multilevel model (MLM) Charac-
terized by CGPA, Entry test marks, inter marks and collected data from Depart-
ment of Mathematics & Statistics, Biochemistry, Chemistry, Computer Science, 
Botany, Zoology, Wildlife & Fisheries and Physics, University of agricultural Fai-
salabad.  

3.3. Multilevel Modeling 

Hierarchically organised data are common in research contexts, including educa- 
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tional, clinical, and other types. Just as students live in classrooms or teachers live 
in schools, teachers also live in schools. As an alternative, local public servant or-
ganisations may, in turn, be nested inside service receivers and house social work-
ers who deliver services. Studies at any of these levels will yield misleading results 
if the specific level (students) or content level (school) is not included. 

In order to appropriately account for the hierarchical (correlated) nesting of 
data, multilevel models have been created [17]. 

A statistical model known as multilevel modelling is used to simulate the rela-
tionship between the dependent variable and the independent variable when there 
is a correlation between the data. 

These models are also known  
• Hierarchical models 
• Mixed effect models 
• Nested data models  
• Random coefficient models 

Multilevel modeling analyzes relationships between lower-level and higher-
level variables, known as cross-level interactions, and distinguishes individuals 
from contextual effects. It is essential to assess whether multilevel modeling is nec-
essary before analyzing hierarchical datasets. If there is no variability in the re-
sponse variable across Level 2 units (such as schools), using OLS regression might 
be appropriate. To determine if multilevel modeling is needed, calculate the ICC 
and design effect. These models explore different research questions, including 
analyzing how socioeconomic status (SES) relates to reading achievement at both 
the individual and school levels, accounting for influences from both perspectives 
[18]. 

The purpose of multilevel model is to determine constant and unpredictable 
effects at both and levels by taking into account the dependency of values in each 
group within (Level 1) and then between (Level 2).  

 
Table 1. A few illustrations of mega and micro units 

Mega-level Micro-level 

Schools Teachers 

Classes Pupils 

Neighbourhoods Families 

Districts Voters 

Departments Employees 

Families Children 

Doctors Patients 

Interviewers Respondents 

Firms Departments 
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This results in more accurate estimates of the relationships between variables, 
especially when the within-group dependence is substantial. A variety of study 
topics are explored using multilevel models, such as understanding how collabo-
rating impact outcomes, and estimating the variability of outcomes at different 
levels (Table 1). 

Examining the relationship between variables at multiple levels of analysis. The 
ICC or design effect are important considerations in the design and analysis of 
multilevel models. 

3.4. Types of Multilevel Modeling 
Hierarchical Data 
Different “levels” of the data (and analyses) must be discussed by researchers due 
to the nature of the data in hierarchical models. 

Utilizing numbers is one method of doing this. The lowest level is often referred 
to as “Level-1,” the next level above is “Level-2,” and so on. In the illustration, 
“Level-1” denotes the inhabitants, and “Level-2” denotes the communities (Figure 
1). 
 

 
Figure 1. Two-level hierarchical data structure. 
 

Using descriptive language is another method for expressing the stages. In the 
context of public health, this could refer to “resident level” as opposed to “neigh-
bourhood level.” Nested data frequently have more than two levels. 

Using the public health scenario as an example, residents can be nested within 
towns and cities, and those 8 neighbourhoods may be nested within cities, creating 
a three-level nesting structure in Figure 2. 
 

 
Figure 2. Three-level hierarchical data structure. 
 

Longitudinal studies can also be seen as having a nested data building, where 
repeated measurements are collected over time for the same individuals. Addition-
ally, individuals may be grouped within higher-level clusters. Figure 3 illustrates 
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this model. In these models, it is typical to center the Level-1 time covariate on a 
fixed value rather than the mean. As a result, this dissertation will emphasize 
cross-sectional models. 

Multilevel models provide techniques for studying hierarchical data and im-
proving individual effect estimation [19]. For instance, a person might only be 
concerned with Level-1 (the resident level) impacts. It could possibly be inclined 
to perform a regression analysis that takes each resident’s score as independent 
and disregards the fact that the data are nested. 
 

 
Figure 3. Example of longitudinal data represented in two-level model. 

 
The problem with this strategy is that people who live in the same neighbour-

hood are probably more alike than people who live in separate neighbourhoods.  
The regression analysis’s independence assumption is broken as a result. Mod-

els that do not take this violation into account will have inaccurate estimations of 
the standard error and ineffective parameter values. 

Researchers can evaluate data using multilevel models, which improve param-
eter and standard error estimation and take into account the hierarchical nature 
of the data. 

To estimate regression equations for samples that are too small to do so on their 
own (such as modest numbers of minority students across 25 colleges). 

[19] points out that multilevel models can draw strength from a wider pool of 
data. The modeling of distinct random errors 9 for each Level-2 unit improves 
standard error estimates in multilevel models by addressing the dependence be-
tween individuals belonging to the same Level-2 group. 

3.5. Repeated Measure Data 

In repeated measure data, the observations within each individual or group are 
not independent, as they are likely to be similar to each other observations from 
other persons or groups. Multilevel modeling takes into account this hierarchical 
structure and allows for the analysis of both within-individual/group variability 
and between-individual/group variability.  

The basic idea behind multilevel modeling is to model the dependent variable 
at different levels. In the case of repeated measure data, the lowest level (Level 1) 
represents individual observations, and higher level (Level 2) represents individ-
uals or groups from which observations are nested. 

By incorporating random effects at different levels, multilevel models can esti-
mate the variability within and between levels. This allows for the examination of 
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individual differences in the dependent variable, as well as the identification of 
contextual factors that may explain the variability between individuals or groups. 

Multilevel models can handle various types of data, including continuous, bi-
nary, and categorical outcomes. They also accommodate unbalanced designs, 
missing data, and unequal spacing between measurements. 

3.6. Random Effect Data 

In statistical analysis, random effects refer to sources of variability that are con-
sidered random or unobserved in the population being studied. These sources of 
variability are assumed to be randomly selected from a larger population or dis-
tribution. Random effects are used to model and account for the variation that 
exists between different groups or clusters within the data. 

For example, consider a study examining the test scores of students from dif-
ferent schools. The schools would be considered as random effects because we are 
not interested in making specific inferences about individual schools but rather 
want to generalize the findings to a larger population of schools (Figure 4).  
 

 
Figure 4. Random effects and fixed effects slope. 

3.7. Multiple Outcome Data 

Multiple outcome data refers to a situation in which multiple outcomes or de-
pendent variables are measured for each unit or observation in a study. Instead of 
focusing on a single outcome variable, researchers may collect data on multiple 
outcomes to gain a more comprehensive understanding of the phenomenon un-
der investigation [20]. 

Using multilevel modelling, more than one dependent variable (DV) may be 
contained in a model. Once more, the researcher is required to make this clear 
and use software that enables multivariate multilevel modelling (MMLM), also 
known as multivariate linear mixed modelling (MLMM) or hierarchical multivar-
iate linear modelling (HMLM).  
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3.8. Multivariate Analysis 

Multivariate analysis techniques, such as multivariate regression or multivariate 
analysis of variance (MANOVA), allow for the simultaneous analysis of multiple 
outcome variables while accounting for their interrelationships. 

3.8.1. Structural Equation Modeling (SEM) 
Statistical method SEM enables complex relationships examination among multi-
ple variables, including multiple outcomes. It allows for the testing of direct and 
indirect effects among variables and can provide insights into causal relationships. 

3.8.2. Latent Class Analysis (LCA)  
LCA is a statistical method that uses patterns of various outcomes to find latent 
(unobserved) subgroups within a population. It can help uncover distinct profiles 
or classes of individuals based on their response patterns. 

3.9. Nested Data and Cluster Sampling Designs 

Multilevel modeling is the presumption that the various observations within a 
sample will have independently distributed error terms. This presumption basi-
cally states that once the independent factors in the analysis are taken into ac-
count, there are no correlations between the people in the sample for the depend-
ent variable.  

Multilevel modeling gives a direct mechanism to add indicators for clusters at 
all levels in complex hierarchical data where the data are hierarchical and hence 
clustered or acquired from clustered sampling.  

Multilevel analysis offers proper standard errors by exploiting the cluster infor-
mation, which are typically more conservative than those produced by ignoring 
the presence of clustering. 

3.10. REML Estimation 

REML estimation is used to provide estimates for maximum likelihood of the var-
iance parameters. These values are then used to estimate the constant effects using 
extended least squares methods. 

As opposed to ML estimates, REML estimates the variance parameters while 
taking into account uncertainty in the fixed effects. One would assume that given 
the fixed effects’ uncertainty is more pronounced with lower sample sizes, the dis-
crepancies between different methodologies will normally be larger when sample 
sizes are less. 

Several empirical studies have noted differences between ML and REML esti-
mates across various scenarios, though these studies do not consistently favor one 
approach over the other. As sample sizes increase, the sampling distributions of 
these estimates tend to approach a normal distribution. This leads to asymptotic 
efficiency in the estimates of fixed effects and variance parameters, and asymptot-
ically unbiased estimates for both. Thus, ML and REML are often recommended 
for larger sample sizes. However, with smaller sample sizes, particularly when data 
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are irregular, the reliability of ML and REML diminishes, prompting researchers 
to explore alternative methods. Moreover, assumptions of error-free variance es-
timates when inferring fixed effects become increasingly tenuous with smaller 
sample sizes. 

3.11. Hypothesis Testing Likelihood Ratio Testing 

An essential part of interpreting any model is testing hypotheses. Knowing 
whether a parameter is important or not is essential. Depending on the parameter 
being observed, different statistical tests will be used. For our fixed effect param-
eters, we can employ the conventional z-tests and t-tests. However, likelihood ra-
tio testing will be required to look for random effects. 

Making use of likelihood ratios in reality, likelihood ratio tests are rather simple 
to interpret. Consider a situation where the model’s intercept is random. We will 
fit the model with and without a random intercept and compute the log-likelihood 
of each model in order to do an LRT.  

3.12. Intraclass Correlation 

When people are grouped inside an advanced level unit (for example, a classroom, 
school, or school district), the intraclass correlation (ICC, abbreviated _I in the 
population) can be used to quantify the correlation between individual scores in-
side a cluster or nested structure [21].  

The Iρ  is a measurement of how much of the outcome variable’s variance oc-
curs between groups compared to all other variations. Alternatively, it can be 
thought of as the correlation between measurements of two randomly selected 
individuals from the same group. Its range is 0 (no variation among clusters) to 1 
(variance among clusters but no within-cluster variance). It can be said to be 

 Between Cluster varianceICC
Total variance

−
=  (3.1) 

 
2

2 2I
τρ

τ σ
=

+
 (3.2) 

where 2τ  denotes clusters between population variance and 2σ  indicates var-
iations in population within clusters. Higher values of I show a stronger correla-
tion between introductions to Multilevel Data Structure 25 scores of two cluster 
members, indicating that a larger proportion of the outcome measure’s overall 
variation is related to cluster membership. 

Another way to think about this problem is that people who belong to the same 
cluster (say a school) are more similar to one another than people who belong to 
different groups on the measured variable. 

 0 ICC 1≤ ≤  (3.3) 

The ICC is a measure of the reliability or consistency ratings of a set or meas-
urements different judges by made. In the context of multilevel models (MLMs). 
The ICC can vary from 0 to 1, where 0 denotes total disagreement and 1 denotes 
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complete agreement among evaluators. An ICC value greater than 0.75 is gener-
ally considered to indicate good agreement. 

In a multilevel model, ICC can be used to quantify the degree of clustering in 
the data; this may be used to choose a right number of random variables for model.  

Additionally, group-level predictors’ dependability is evaluated using it and to 
quantify the extent to which variability in response variables can be attributed to 
differences between higher-level units. 

The ICC is an essential metric in multilevel modeling, as it highlights the influ-
ence that a hierarchical data structure can have on the outcome variable. Higher 
ICC values indicate that clustering has a greater effect. As a result, as the ICC value 
increases, we must exercise greater caution while employing multilevel modelling 
approaches for data analysis.  

Before moving on to strategies for dealing with it directly, we will first talk about 
the issues of disregarding this layered structure in the following section. 

3.13. Design Effect 

The Design Effect is more informative to decide whether multilevel modelling is 
required [22]. When examining intricate surveys or clustered data, the field of 
education and other applicable disciplines frequently refer to the design impact. 

Design effect demonstrates the cluster-related inflection in the estimate’s vari-
ability (Level 2). 

 ( )DEFF 1 1n ρ= + − ×  (3.4) 

 DEFF 1n ρ= − +  (3.5) 

n = expected number of measurements made each cluster; 
ρ = ICC for that variable; 
If DEFF > 1, account for clustering and consider LMM for modeling. 

• One may simply disregard the hierarchical nature of their data and perform 
conventional regression when the DEFF is less than 1.5. 

• The confidence intervals must be three times as wide as they would be for a 
simple random sample, for instance, if the DEFF is 3.04.  

3.14. Multilevel Linear Models 

The fundamental principles of MLMs. Our intention is to acquaint readers with 
terminology that appears repeatedly throughout the book and explain them in a 
way that is largely nontechnical. Prior to discussing the fundamentals of parame-
ter estimation, we should first distinguish between random and fixed effects.  

Next, they should address the two widely used methods: maximum likelihood 
estimation (MLE) and restricted maximum likelihood (REML). Finally, we should 
review the underlying presuppositions of MLMs and provide an overview of their 
most common applications, along with examples. 

We shall discuss the topic of centering in this part as well as the significance of 
this idea in MLM. The reader will have enough technical knowledge of MLMs 
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after finishing this chapter to start utilizing the R software package for fitting 
MLMs. 

3.15. Random Intercept  

Basic simple linear regression model  

 0 1 i iy Xβ β ε= + +  (3.6) 

• A function of an independent variable, x, is used to express the dependent var-
iable y; 

• A slope coefficient of 1β  multiplied; 
• Intercept 0β ; 
• Unpredictable fluctuation between subjects ε. 

We defined the intercept by using the conditional mean of y when the value of 
x is zero. One intercept is shared by every member of the target population in a 
single-level regression model like this one.  

However, when individuals are grouped in some way (such as students in clas-
ses and schools, or organizational groups in the firm), it is possible that each group 
has a different intercept, that is, specific means by which the dependent variables 
can exist for x = 0 in groups. The single intercept model, as shown in Equation 
(3.6), works well when there is no clustering effect. Determining whether differ-
ences in means exist among clusters is an empirical question. It’s important to 
note that this discussion focuses specifically on scenarios where the intercept var-
ies across clusters. It is also possible for 1β  to change depending on the group or 
possibly other model coefficients from more complex models.  
 0 1ij j j ijy xβ β ε= + +  (3.7) 

where the ith person in the jth group is represented by the subscript ij. We will 
begin analyzing MLM signatures and models by working with the simplest multi-
level model, which predicts only the outcome of the effect that we allow to vary 
for each group. 
 0ij j ijy β ε= +  (3.8) 

This leads to the random intercept that we express as  
 0 00 0j jUβ γ= +  (3.9) 

In this framework,  

00γ  represents an average or general intercept value that holds across clusters 
as a fixed effect because it remains constant across all clusters. 

Whereas 0 jU  is a group-specific effect on the intercept and random effect be-
cause it varies from cluster to cluster.  
 00 0 1j xy Uγ β ε= + + +  (3.10) 

In multilevel modeling (MLM), our analysis of a dataset often begins with a 
basic random intercept model, commonly referred to as the null model, repre-
sented in the following form 

 00 0ij jy Uγ ε= + +  (3.11) 
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The null model serves as a foundational reference point for constructing and 
comparing other models, as will be discussed in subsequent sections. 

3.16. Centering 

First, consider how to centre predictor(s). estimate various effects depending on 
the type of centring use, especially with regard to Level-1 predictor(s).  

When it comes to Level-1 predictors, there are essentially only two centring 
methods: grand-mean centring and cluster-mean centring. Be cautious since cer-
tain software programs that aren’t included in this primer could centre the varia-
bles. 

Regression analysis “centring” a predictor variable (X). Variables that have de-
parted from a specific value are said to be centred. 

An example is a raw score variable ( ijX ) that deviates from the overall mean 
( ..X ) of the sample:  

 ..CGM ijX X X= −  (3.12) 

The sample mean is not the only value that can be utilized. Centring is occa-
sionally used in regression studies on data that are not hierarchically nested to 
generate a meaningful zero point for a measure that lacks one.  

The X measuring a person’s height or weight is a prime illustration of this. In 
this situation, the predicted value of Y when X is zero would be the intercept’s 
interpretation. This is not very helpful as neither height nor weight can ever be 
zero.  

But when X is centered on the sample mean, the intercept is interpreted as the 
predicted Y for a person whose weight or height is at the sample mean of X.  

There are two options for mean-centering the Level-1 predictor variable in two-
level models. 

The first choice is to focus on the sample as a whole’s mean. The term “grand 
mean centering” or “centering grand mean” (CGM) is used to describe this.  

This translates to taking the mean of X across all residents, regardless of where 
they dwell (neighbourhood or city), and deducting that value from the observed 
X for each resident in the public health example above:  

 ..CGM ijX X X= −  (3.13) 

The second alternative is to place the Level 1 predictor variable’s centre of grav-
ity on the Level-2 group’s mean of that variable.  

The term “Centering within context” (CWC) is used to describe this. In the 
public health example, every neighbourhood has a unique mean for X, which is 
the total mean of X for the local population.  

The X that is centered within context is the X for a particular resident less the 
mean for that resident’s neighbourhood:  

 .CWC ij jX X X= −  (3.14) 

The Centering options increase in the three-level model. The Level-1 X variable 
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can also be centered on the Level-3 mean in addition to the CWC. 

 - 3 ..CWC L ijk kX X X= −  (3.15) 

To indicate that it is being centered on the Level 3 mean, I designate this type 
of Centering within context as CWC-L3. 

Although it is a Centering alternative, there isn’t a compelling substantive ar-
gument for why this Centering approach would be beneficial in a three-level 
model. As a result, this method of Centering is not further discussed in this dis-
sertation. 

3.17. Assumptions Underlying MLMs 

This section explains these presumptions and discusses how they affect MLM-us-
ing researchers. In later chapters, we go over how to verify that these presump-
tions are true for particular sets of data.  

At Level 2, it is initially assumed that the residuals are independent across clus-
ters. Additionally, the random intercept and slope(s) at this level are considered 
to be independent of each other when comparing across different clusters. Second, 
it is assumed that the Level 2 intercepts and coefficients are independent of the 
Level 1 residual, meaning that errors in the estimates at the cluster and individual 
levels are unconnected.  

Finally, the Level 1 residuals exhibit constant variance and follow a normal dis-
tribution, similar to the assumptions made for residuals in traditional linear re-
gression models. Additionally, the Level 2 intercept and slope(s) are assumed to 
follow a multivariate normal distribution with a consistent covariance matrix. 

3.18. Overview of Two-Level MLMs 

Specific requirements for Multilevel Modeling (MLM) include Residuals with 
Random Effects at Level 1 and Level 2. This section will include examples of two- 
and three-level MLMs in addition to using MLMs with information that goes be-
yond implementation research. By the end of this section, readers will have a solid 
foundation for using R to evaluate MLMs in the following chapters. We will begin 
by examining the random slope model and the two-level MLM. 

 00 00 0 1ij ij j j ij ijy x U U xγ γ ε= + + + +  (3.16) 

The autonomous variable  ijx  and random errors at both the student and 
school levels were influenced by the dependent variable ijy  (reading achieve-
ment). 

The two parts of this model are expressed as  

 0 1Level 1: ij j j ij ijy xβ β ε= + +  (3.17) 

 0 1Level 2 : hj h h j hjz Uβ γ γ= + +  (3.18) 

1h jzγ , which represents the slope for ( 1hγ ), and value of the average vocabulary 
score for the school ( jz ). a single equation for the two-level MLM. 
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 00 10 01 1001 0 1ij ij j ij j j j ij ijy x z x z U U xγ γ γ γ ε= + + + + + +  (3.19) 

The term “cross-level interaction” refers to the interaction between predictors 
at Level 1 and Level 2. 

00γ  intercept or grand mean for the model; 

10γ  fixed effect of variable x on the outcome;  

0 jU  represents random variation for the intercept across groups;  

1 jU  represents random variation for the slope across groups;  

01γ  represents fixed effect of Level 2 variable z (average vocabulary) on the 
outcome;  

11γ  represents slope for and value of the average vocabulary score for the 
school. 

The degree of vocabulary performance at a student’s school may have a consid-
erable impact on the association between their vocabulary test score and overall 
reading achievement, according to a significant value for this coefficient (Table 2, 
Table 3). 

 
Table 2. Model building process for 2-level linear models. 

Model 1 
No predictors, just 
random effect for 
the intercept 

Output used to calculate ICC provides information on 
how much variation in the outcome exists between Level-
2 and Level-3 units 

Model 2 
Model1 + Level-1 
fixed effects 

The association between Level-1 predictors and the 
outcome is shown by the results. 

Model 3 
Model 2 + random 
slopes for Level-1 
predictors 

The same information as Model 2 is provided by fixed 
effect results; random slope findings show if there are 
differences in the associations between Level-1 predictors 
and the outcome between Level-2 units and Level-3 units. 

Model 4 
Model 3 + Level-2 
fixed effects 

Results with Level-2 fixed effects show how Level-2 
predictors and the result are related. The remaining 
findings offer the same details as those given for Model 3 

 
Table 3. Model building process for 3-level linear models. 

Model 1 
No predictors, just 
random effect for 
the intercept 

The output used to compute the ICC reveals how much 
difference there is between Level-2 and Level-3 units in the 
result. 

Model 2 
Model1 + Level-1 
fixed effects 

The association between Level-1 predictors and the 
outcome is shown by the results. 

Model 3 
Model 2 + random 
slopes for Level-1 
predictors 

The same information as Model 2 is provided by fixed effect 
results; random slope findings show if there are differences 
in the associations between Level-1 predictors and the 
outcome between Level-2 units and Level-3 units. 

Model 4 
Model 3 + Level-2 
fixed effects 

Results with Level-2 fixed effects show how Level-2 
predictors and the result are related. The information is the 
same for the remaining findings. 
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Continued 

Model 5 
Model 4 + random 
slopes for Level-2 
predictors 

The Model 4 findings are still relevant. If there are different 
correlations between Level-2 predictors and the outcome, 
Level-2 variable random slope findings show this. 

Model 6 
Model 5 + Level-3 
fixed effects 

Results with Level 3 fixed effects show how Level 3 
predictors and the result are related. The same kind of 
information is provided by all the other Level-1 and Level-2 
outcomes. 

 
We’ll use one as an illustration. A group of academics from New Zealand con-

ducted a study on 700 cats from 200 houses in the early 2000s (i.e., an average of 
3.5 cats per household [23].  

The researchers separated the impacts of Level-1 cat characteristics, such as 
whether the cat has long legs, from Level-2 household variables, such as if there is 
a dog in the home, in order to predict cat obesity. 

The researchers considered cats to be Level-1 units that were nested in homes, 
which were Level-2 units. They found that when short-legged cats reside in homes 
without dogs, they frequently weigh more. 

One method for representing data using the “MODEL” object is regression. The 
extent to which a model fails to properly describe the data is referred to as “RE-
SIDUALS”.  

Clearly, we are just social scientists, and we can only expect our models to ex-
plain so much of the actual world. To put it another way, our models can never be 
totally accurate. 

 DATA MODEL RESIDUALS= +  (3.20) 

 0i iY B e= +  (3.21) 

Data can be described using the simplest regression equation possible, which is 
a regression with no predictor and the mean as the constant. 

Depending on the nature of the independence issue, using classic regression 
while ignoring this issue will almost surely lead to biased standard errors and false-
positive or false-negative conclusions. 

Must consequently utilize two-level linear regression in this circumstance. The 
objective of two-level regression, like traditional regression, is to characterize data 
using an object called “MODEL.” The extent to which such a model fails to accu-
rately represent the data is referred to, similarly to traditional regression, as “RE-
SIDUALS.” 

There are, however, two distinct residual types this time around:  
1) “Level-2 RESIDUALS” refers to the degree to which the model fails to accu-

rately capture between-cluster variances.  
2) “Level-1 RESIDUALS” are the degree to which the model falls short of accu-

rately capturing within-cluster variability. 

 DATA MODEL LEVEL-2 RESIDUALS LEVEL-1 RESIDUALS= + +  (3.22) 

 00 0ij j ijY B u e= + +  (3.23) 
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It’s important to note that all equations for two-level regression follow the same 
structure. A regression with no predictor and the overall mean as the constant is 
the most straightforward two-level linear regression equation. Both conventional 
regression and multilevel modeling employ two distinct estimation techniques.  

Multilevel modelling typically uses the maximum likelihood (ML) estimator 
(the coefficients and variance terms are jointly estimated by maximising the like-
lihood of the predicted values given the data). 

3.19. To Estimate the (Co)variance Terms, Intermediate Models  
Are Built 

Construct the two intermediate models to assess if it is necessary to predict this 
anticipated variation:  

1) A restricted intermediate model that ignores the Level-1 effect’s between-
cluster variation  

2) An enhanced intermediate model that takes into account this variance. After 
that, we must contrast the two intermediate models [24]. 

3.20. Constrained Intermediate Model 

The cross-level interactions are not included in this model. The objective is to 
estimate the crude slope residuals and they are likely to account for some of the 
residual variation 

 00 10 01 0
cmc

ij ij j j ijY B B x B X u e= + × + × + +  (3.24) 

In the above constrained intermediate model equation 
1) Coefficient estimate B10 (the fixed slope) corresponds to the overall effect of 

Level-1 predictor; 
2) cmc

ijx  (cluster-mean cantered hotness); 
3) Coefficient estimate B01 corresponds to the effect of Level-2 predictor;  
4) Xj (period of success). 

3.21. Augmented Intermediate Model 

Then, the two intermediate models will be compared (Aguinis et al., 2013). 

 ( )00 10 1 01 0
cmc

ij j ij j j ijY B B u x B X u e= + + × + × + +  (3.25) 

3.22. Data of Student’s Result 

It is expected that universities will generate highly qualified graduates who achieve 
all requirements. From the time that students enrolled in the university until the 
time that they graduate, a variety of factors influence how well they perform aca-
demically. The most common measurement used to assess students’ academic 
success is their cumulative grade point average (CGPA). 

During the study time period, many factors have their influence on the perfor-
mance of student’s performance on their cumulative grade point average (CGPA) 
such as intelligence level, hours of study, teacher’s conveying method.  
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Many researches have been done to check the influence the influence of differ-
ent factors on cumulative grade point average (CGPA) just like [25] has examined 
the current review’s objective, which was to determine the impact of online re-
cordings on students’ difficult results. In this study, straight blended impact mod-
els fitted to the data were used to differentiate the effects of video access from the 
effects of many other factors, such as orientation, academic year, course section, 
and students’ aggregate grade point average (CGPA).  

They actually made a very big admission and came to the conclusion that online 
recordings often work best for students with lower CGPAs. 

However, in this investigation, the main objective was to examine the impact of 
previous teaching methods on current teaching interventions. For this, CGPA was 
used as a response variable, while Intermediate marks and Entry test marks were 
utilized as explanatory variables. 

A dataset with N = 406 student grades uses regression analysis. Regression may 
be considered a technique for describing data using the “MODEL” object. In other 
words, our models can never accurately reflect the facts, and the degree to which 
a model falls short of doing so is referred to as “RESIDUALS”. 

3.23. lmer  

The lmer () function (“Linear Mixed Effects in R”) from the lme4 package is used 
to execute a multilevel linear model. Independent variables at all data levels were 
also treated for null fit, random intercept, and the random slope model and com-
parative methods of model fit were optimized. 

4. Results and Discussion 

The University of Agriculture Faisalabad provided the data set for this study, 
which was collected using a stratified random sampling technique based on stu-
dents’ result data. This linear mixed-effect model is fitted under multilevel mod-
eling process and used to jointly estimate the effect on CGPA and the set of other 
variables, including department identifier, gender, intermediate marks and entry 
test marks. 

In this portion, the experiment is accomplished by multilevel modeling ap-
proaches for empirical investigation. 
• “Inter” represents a numerical variable with values ranging from 498.0 to 1078.0. 
• “Gender” is a binary variable with values 0 and 1, representing the gender of 

the students. 
• “CGPA” represents the response variable (Cumulative Grade Point Average), 

with values ranging from 1.94 to 3.90. 
• “Entry. Test” is a numerical variable indicating the entry test score. 
• “Department” is a character variable indicating the department of the students, 

a total of 406 students. 

4.1. Entering Variables 

In Table 4 and Table 5, the summary provides information about the distribution 
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and characteristics of the CGPA, Entry Test and Inter variables. As Inter is the 
cluster, CGPA is the outcome obtained of eight different departments that are de-
pendent on the entry test and inter marks of the students. 
 
Table 4. Summary of statistics department identifier CMC. 

 Department Identifier GMC Department identifier CMC 

Min. −3.4901 −3.833 

1st Qu. −2.4901 −1.500 

Median 0.0099 0.000 

Mean 0.0000 0.000 

3rd Qu. 1.5098 1.500 

Max. 3.5099 4.000 

 
Table 5. Summary of CGPA, entry test marks, inter marks. 

 CGPA Entry test Inter 

Minimum 1.94 37.00 498.0 

1st Quartile 3.01 54.00 799.0 

Median 3.36 63.00 856.0 

Mean 3.31 63.59 849.7 

3rd Quartile 3.60 71.75 908.0 

Maximum 3.90 88.00 1078.0 

 
The department is the cluster mean Centering of the Level 1 predictor. 
Inter represents a numerical variable with values ranging from 498.0 to 1078.0. 

Gender is a binary variable with values 0 and 1, representing the gender of the 
students. CGPA represents the response variable (Cumulative Grade Point Aver-
age), with values ranging from 1.94 to 3.90. Entry test is a numerical variable in-
dicating the entry test score. 
 

 
Figure 5. Bar chart of entry test marks by inter. 
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Figure 5 compares the Entry Test marks for each level of “Inter” using the 
height of the bars. 

Figure 6 shows a histogram that represents the distribution of CGPA values in 
the dataset. Each bar in the histogram represents a range of CGPA values, and the 
height of the bar indicates the frequency or count of observations falling within 
that range. 
 

 
Figure 6. Histogram of CGPA. 

 
In Figure 7, scatter plot visualizes the relationship between Entry Test Scores 

and CGPA. Each point represents a data point. The x-axis represents Entry Test 
Scores, while the y-axis represents CGPA. By examining the plot, we can observe 
the distribution and potential patterns or trends between Entry Test Scores and 
CGPA, as well as any variation based on the “Inter” variable. 
 

 
Figure 7. Scatter plot of CGPA vs entry test scores. 

4.2. Building an Empty Model to Calculate the ICC/DEFF 

It performs a linear mixed-effects regression model (multilevel model) with 
“CGPA” as the dependent variable, a fixed intercept term, and a random intercept 
for the variable “Inter”. This section presents a summary of the linear mixed 
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model results, covering the random effects, fixed effects, and model fit statistics. 
Provides a summary of the linear mixed model results, including random effects, 
fixed effects and model fit statistics. 

4.2.1. Random Effects 
In Table 6, random effects component of the model estimates the variance of the 
random intercepts for the “Inter” variable. The estimated standard deviation of 
the random intercepts is 0.2773, indicating the variability in “CGPA” across dif-
ferent levels of “Inter”. 
 
Table 6. Summary of random effects. 

Groups Name Variance Std. Dev. 

Inter. Marks Intercept 0.0769 0.2773 

Residuals  0.0647 0.2544 

4.2.2. Fixed Effects 
In Table 7, fixed intercept estimate is 3.284 with a standard error of 0.0291. This 
means that, on average, the expected value of “CGPA” is 3.284 when all other 
predictors are held constant. 
 
Table 7. Summary of fixed effects. 

 Estimate Standard Error T-value 

Intercept 3.2838 0.0291 113 

4.2.3. Model Fit Statistics 
In Table 8, restricted maximum likelihood estimation (REML) criterion at con-
vergence is 221.9. This value represents the goodness of fit of the linear mixed 
model to the data.  
 
Table 8. REML criterion. 

REML criterion at convergence 221.9 
 

A lower REML criterion suggests a better fit, indicating that the model explains 
a larger proportion of the variation in the response variable (CGPA) based on the 
fixed and random effects. 

In conclusion, the results indicate that the intercept term is significantly asso-
ciated with the CGPA scores. The random intercepts suggest that there is varia-
bility in CGPA between different levels of the “Inter” grouping variable. The over-
all model fit, as indicated by the REML criterion, suggests a reasonable fit to the 
data. 

4.2.4. ICC and Design Effect (DEFF) 
In Table 9, the ICC value of adjusted and unadjusted 0.543 indicates a moderate 
level of clustering or dependency of CGPA scores within the levels of the “Inter” 
grouping variable.  

https://doi.org/10.4236/ojs.2024.146031


H. Faisal et al. 
 

 

DOI: 10.4236/ojs.2024.146031 712 Open Journal of Statistics 
 

Table 9. ICC and DEFF. 

 Adjusted ICC Unadjusted ICC Design Effect 

ICC 0.543 0.543  

DEFF   2.194 

 
Approximately 54.3% of the total variability in CGPA scores can be attributed 

to between-group differences. The DEFF value of 2.194 implies the need to adjust 
the standard errors of the fixed effects estimates. These errors should be multiplied 
by approximately 2.194 to account for the clustering effect. This adjustment re-
flects the increased uncertainty in estimates caused by dependency among obser-
vations within the same group. 

The DEFF value of 2.194 implies that the standard errors of the fixed effects 
estimates should be adjusted or multiplied by approximately 2.194 to account for 
the clustering effect. This adjustment accounts for the increased uncertainty in the 
estimates due to the dependency among observations within the same group. 

Overall, these results indicate the presence of clustering in the data and high-
light the need to account for the group-level variation when analyzing or design-
ing studies. 

4.3. Building Intermediate Models to Estimate (Co)variance Terms 
4.3.1. Constrained Intermediate Model (CIM) 
Table 10 summarizes the goodness-of-fit measures for the CIM. These measures 
provide information about the model’s fit to the data and can be used for model 
comparison purposes. 
 
Table 10. Summary of constrained intermediate model. 

Model AIC BIC Log Likelihood Deviance 

CIM 166.93 186.94 −78.463 156.93 

 
In this case, the CIM has an AIC (Akaike Information Criterion) value of 166.93 

and a BIC (Bayesian Information Criterion) value of 186.94. Lower AIC and BIC 
values indicate a better fit, so the CIM with these values suggests a relatively good 
fit to the data. 

The log likelihood value of −78.463 and the deviance value of 156.93 represent 
the goodness-of-fit statistics for the CIM. These values indicate how well the 
model predicts the observed data. A lower deviance value suggests a better fit of 
the model to the data. 

1) Random Effects 
In Table 11, inter group, which represents the random intercept for the clusters, 

the estimated variance is 0.0546, indicating the variability in the outcome variable 
across different clusters.  

The corresponding standard deviation is 0.2337. Residual row represents the 
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residual variance, which captures the unexplained variability in the outcome var-
iable after accounting for the fixed effects and random intercept. The estimated 
residual variance is 0.05881, with a corresponding standard deviation of 0.2425. 

 
Table 11. Summary of random effects. 

Group Name Variance Std Dev. 

Inter (Intercept) 0.0546 0.2337 

Residual  0.0588 0.2425 

 
2) Fixed Effects 
Table 12 shows fixed effects, the result of estimates, standard errors, and t-val-

ues for each predictor variable. The intercept has an estimated value of 2.5200, 
which represents the expected value of the outcome when all predictors are at 
zero.  

 
Table 12. Summary of fixed effects. 

Variable Estimate Std. Error t-value 

(Intercept) 2.5200 0.0979 25.734 

Department Identifier CMC −0.0015 0.0060 −0.248 

Entry Test 0.0122 0.0015 8.088 

 

The department identifier CMC variable has an estimated coefficient of 
−0.001493, indicating a negligible effect on the outcome. The Entry test variable 
has an estimated coefficient of 0.012180, indicating a statistically significant posi-
tive effect on the outcome. 

Table 13 are showing Constrained Intermediate Model suggests that the Entry 
test variable has a statistically significant impact on CGPA, while the department 
identifier CMC variable does not show a significant relationship. 

 
Table 13. Confidence intervals for CIM. 

Variable 2.5% 97.5% 

(Intercept) 2.3270 2.7136 

Department Identifier CMC −0.0133 0.0103 

Entry Test 0.0092 0.0152 

4.3.2. Augmented Intermediate Model (AIM) 
Table 14 shows that AIM model has an AIC value of 170.7, indicating the model’s 
goodness of fit. Lower AIC values indicate better-fitting models.  

 
Table 14. Summary of augmented intermediate model. 

AIC BIC Log Likelihood Deviance 

170.7 198.8 −78.4 156.7 
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The BIC value for the AIM model is 198.8. Similar to AIC, lower BIC values 
indicate better model fit, while considering the complexity of the model. The log-
likelihood of the AIM model is −78.4. The deviance of the AIM model is 156.7, 
which represents the measure of model fit. 

1) Random Effects 
In Table 15, group inter estimated standard deviation for this random effect is 

0.2337, indicating the average amount of variability in the intercept between dif-
ferent groups.  

 
Table 15. Summary of random effect. 

Groups Name Variance Std. Dev. 

Inter. Marks Intercept 5.465 0.2337 

Department Identifier CMC  9.909 0.0031 

Residuals  5.876 0.2424 
 

The correlation is not applicable in this case. Department identifier CMC pre-
dictor variable across different groups. The estimated standard deviation for this 
random effect is 0.0031, indicating the average amount of variability in the effect 
of “department identifier CMC” between different groups. 

The correlation between this random effect and the intercept is 1.00, suggesting 
a positive correlation between the intercept and the effect of “department identi-
fier CMC” across groups. 

2) Fixed Effect 
In Table 16, estimated intercept is 2.516269. This represents the expected aver-

age value of the response variable (CGPA) when all the predictor variables are 
held at zero.  

 
Table 16. Summary of fixed effects. 

 Estimate Std. Error t value 

Intercept 2.5163 0.0979 25.706 

Department Identifier CMC −0.0018 0.0060 −0.304 

Entry Test 0.0122 0.0015 8.133 
 

The coefficient suggests that there is a small negative effect of “Department 
Identifier CMC “on CGPA, although the effect size is quite small. There is a pos-
itive effect of “Entry test” on CGPA, indicating that higher scores on the entry test 
are associated with higher CGPA values (Table 17). 

 
Table 17. Confidence intervals for AIM. 

Fixed Effect 2.5% 97.5% 

(Intercept) 2.322656506 2.71054336 

Department Identifier CMC −0.013810866 0.01010980 

Entry test 0.009250244 0.01522480 

https://doi.org/10.4236/ojs.2024.146031


H. Faisal et al. 
 

 

DOI: 10.4236/ojs.2024.146031 715 Open Journal of Statistics 
 

4.3.3. Comparing the Constrained and Augmented Intermediate Model 
Table 18 represents the final result. The Chi-squared test compares the deviances 
of the CIM and AIM models. In this case, the p-value is 0.9118, which is greater 
than the commonly used significance level of 0.05. Therefore, there is insufficient 
evidence to reject the null hypothesis that the CIM model fits the data significantly 
better than the AIM model. 
 
Table 18. Summary of model. 

Model npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

CIM 5 168.10 188.13 −79.051 158.10    

AIM 7 171.92 199.96 −78.958 157.92 0.1848 2 0.9118 

 
In Figure 8, the tile plot visualizes the relationship between Entry Test scores 

(x-axis), Inter values (y-axis), and the predicted CGPA values. Each tile represents 
a combination of an Entry Test score and an Inter value. 
 

 
Figure 8. Predicted CGPA value. 

 
This plot helps in understanding the predicted CGPA values based on different 

combinations of Entry Test scores and Inter values. 
 

 
Figure 9. Observed CGPA values. 
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In Figure 9, plot shows the observed CGPA values corresponding to different 
combinations of Inter and Entry test scores. Each point represents a data point in 
the dataset. 

In Figure 10, the graph displays the relationship between the Entry Test Score 
and CGPA (Cumulative Grade Point Average) based on different departments. 
Each department is represented by a different color. 
 

 
Figure 10. Relationship between entry test score and CGPA by department. 

 
The graph shows a scatter plot of the data points, and a linear regression line is 

fitted for each department separately. 
The x-axis represents the Entry Test Score, which is a measure of the students’ 

performance on a standardized test. The y-axis represents the CGPA, which is a 
measure of academic performance. 

Based on this graph, we conclude that there is a positive relationship between 
the Entry Test Score and CGPA across departments, indicating that higher scores 
on the Entry Test are associated with higher CGPA.  

However, the strength of this relationship and the extent to which it varies 
across departments can be further examined by considering additional statistical 
analysis and interpreting the coefficients of the linear regression models. 

5. Discussion 

The study described the use of multilevel modeling (MLM) in educational re-
search by Peugh (2010). It describes the seven key steps for performing a multi-
level analysis: defining the research question, choosing the suitable parameter es-
timator, determining the necessity of MLM, constructing Level-1 and Level-2 
models, offering multilevel effect sizes, and evaluating the likelihood ratio model. 
The article seeks to guide applied researchers in performing and assessing multi-
level analyses and offers recommendations for effectively presenting the results. 
The study emphasizes the potential for larger bias in MLM results compared to 
traditional analyses that pool data from all clusters, due to the smaller sample sizes 
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typically present at the lowest level of any multilevel model. It highlights the trade-
off between the potential advantages of using MLM and the need for results to be 
easily comprehensible to policymakers and practitioners. 

Investigate the application of linear mixed effects models in comparing disso-
lution profiles, with a focus on making the methodology more understandable to 
individuals working in dissolution laboratories. The study uses theoretical com-
ponents and real data to demonstrate the use of linear mixed effects models in this 
context. 

They propose a simple iterative method for estimating and selecting fixed and 
random effects in linear mixed models. They suggest using a data-oriented penalty 
function and demonstrate the consistency of their method’s variable selection 
process through simulation experiments and real data analysis.  

Jongmans (2021) examines the intra-class correlation coefficient (ICC) as a 
measure of differences within groups in hierarchical data structures. The study 
investigates the ICC Bayes factor test for various sample sizes and concludes that 
the ICC can effectively communicate intra-group differences and provide further 
context for mean scores in nested data. 

In the study mentioned, the main goal was to evaluate different models within 
the linear mixed effects modeling structure using data collected from the Univer-
sity of Agriculture, Faisalabad.  

The dataset included 406 observations on student’s result data, and the lmer 
package in R (a statistical programming language) was used to estimate the Level 
1 and Level 2 regression equations for the linear mixed effects model. The varia-
bles considered in the models included CGPA, intermediate marks, entry test 
marks, department identifier, and gender. 

Overall, these studies contribute to the understanding and application of mul-
tilevel modeling and linear mixed effects models in educational research, provid-
ing insights into their methodology, interpretation, and potential challenges. 

The LR test is performed using the ANOVA function to compare the deviance 
of the CIM and AIM models. The result of the LR test shows that the chi-square 
test statistic is 0.1848 with 2 degrees of freedom, resulting in a p-value of 0.9118. 
This indicates that the difference in deviance between the two models is not sta-
tistically significant. 

6. Summary 

This study demonstrates the importance of multilevel modeling (MLM) in behav-
ioural sciences, highlighting its capability to analyze hierarchical data where tra-
ditional regression may fall short. Using linear mixed-effects models, an extension 
of MLM, this research explores how MLM accounts for clustered, cross-classified 
data structures that ordinary least squares (OLS) regression cannot fully address 
due to assumptions of data independence. 

MLM is particularly valuable when outcome variables are clustered by categor-
ical factors, and overlooking these clusters can lead to misinterpretations. A null 
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model, which includes clustering variables modifying the intercept of the depend-
ent variable, confirms the necessity of MLM by testing clustering significance. 
Multilevel models allow for complex analysis, accommodating nested or cross-
classified structures and specifying different covariance structures across hierar-
chical levels. 

This research utilized data from the University of Agriculture, Faisalabad, com-
prising 406 student test results gathered via stratified random sampling. Students 
were nested within classes, which were further nested within departments. Using 
the R lmer package, Level 1 and Level 2 equations in the linear mixed-effects 
model assessed variables such as CGPA, intermediate marks, entry test marks, de-
partment identifier, and gender. 

The constrained intermediate model (CIM) and augmented intermediate 
model (AIM) both indicate that the department identifier has no significant effect 
on CGPA, while entry test marks positively correlate with CGPA. Deviance values 
between CIM and AIM were similar, suggesting the augmented model did not 
offer a significantly better fit. Results reveal that entry test scores significantly pre-
dict CGPA, but department identifiers show no statistical significance, underscor-
ing MLM’s effectiveness in capturing meaningful patterns in educational data. 
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