
Journal of Software Engineering and Applications, 2024, 17, 817-831
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.1711045 Nov. 28, 2024 817 Journal of Software Engineering and Applications

Adaptive Music Recommendation: Applying
Machine Learning Algorithms Using Low
Computing Device

Tianhui Zhang1, Xianchen Liu2, Zhen Guo3, Yuanhao Tian4

1Department of Computer Engineering, Northeastern University, Boston, USA
2Department of Computer Engineering, Florida International University, Miami, USA
3Department of Material Engineering, Florida International University, Miami, USA
4Department of Politics and International Relations, Florida International University, Miami, USA

Abstract
In the digital music landscape, the accuracy and response speed of music rec-
ommendation systems (MRS) are crucial for user experience optimization.
Traditional MRS often relies on the use of high-performance servers for large-
scale training to produce recommendation results, which may result in the
inability to achieve music recommendation in some areas due to substandard
hardware conditions. This study evaluates the adaptability of four popular ma-
chine learning algorithms (K-means clustering, fuzzy C-means (FCM) clus-
tering, hierarchical clustering, and self-organizing map (SOM)) on low-com-
puting servers. Our comparative analysis highlights that while K-means and
FCM are robust in high-performance settings, they underperform in low-
power scenarios where SOM excels, delivering fast and reliable recommenda-
tions with minimal computational overhead. This research addresses a gap in
the literature by providing a detailed comparative analysis of MRS algorithms,
offering practical insights for implementing adaptive MRS in technologically
diverse environments. We conclude with strategic recommendations for
emerging streaming services in resource-constrained settings, emphasizing
the need for scalable solutions that balance cost and performance. This study
advocates an adaptive selection of recommendation algorithms to manage op-
erational costs effectively and accommodate growth.

Keywords
Music Recommendation, Media Arts and Sciences, Artificial Intelligence,
Machine Learning, Algorithms, Comparative Analysis

How to cite this paper: Zhang, T.H., Liu,
X.C., Guo, Z. and Tian, Y.H. (2024) Adaptive
Music Recommendation: Applying Machine
Learning Algorithms Using Low Computing
Device. Journal of Software Engineering and
Applications, 17, 817-831.
https://doi.org/10.4236/jsea.2024.1711045

Received: September 18, 2024
Accepted: November 25, 2024
Published: November 28, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.1711045
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/jsea.2024.1711045
http://creativecommons.org/licenses/by/4.0/

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 818 Journal of Software Engineering and Applications

1. Introduction

In the era of digital music consumption, personalization and adaptability of rec-
ommendation systems play pivotal roles in enhancing user experience [1]. Tradi-
tional music recommendation systems often struggle to account for the varying
computational capabilities of different devices, from high-end smart speakers to
lower-performance mobile phones. This discrepancy can lead to suboptimal user
experiences where the recommendation system either underperforms or overex-
tends the device’s capabilities. Addressing this challenge requires a nuanced ap-
proach to selecting appropriate machine learning algorithms that not only cater
to the diverse musical tastes of users but are also compatible with the hardware
performance of their devices.

This paper explores the adaptive use of machine learning algorithms for music
recommendation, specifically examining how different algorithms perform across
devices with varying capabilities. We focus on four prevalent machine learning
strategies: K-means Clustering, Fuzzy C-Means (FCM) Clustering, Hierarchical
Clustering, and Self-Organizing Map (SOM). These methods were selected for
their common application in the field of music recommendation and their poten-
tial for customization to hardware performance.

To provide a clearer understanding, we offer a brief overview of each algorithm:
1) K-means Clustering: This algorithm is widely used due to its simplicity and

efficiency in partitioning data into distinct clusters based on similarity. It is com-
putationally less intensive, making it suitable for devices with limited resources
[2]. However, K-means is sensitive to the initial choice of centroids and often
struggles with data containing complex structures or non-linear relationships.

2) Fuzzy C-Means (FCM) Clustering: Unlike K-means, which assigns each
data point to a single cluster, FCM allows for data points to belong to multiple
clusters with varying degrees of membership. This flexibility provides a more nu-
anced representation of user preferences [3]. However, FCM is more computa-
tionally demanding than K-means, which may limit its performance on devices
with lower processing power.

3) Hierarchical Clustering: This technique creates a tree-like structure to rep-
resent data, enabling an understanding of data relationships at multiple levels. It
can be computationally expensive, especially with large datasets, making it less
ideal for devices with constrained resources [4]. Nevertheless, its ability to capture
complex data structures makes it valuable in understanding diverse user prefer-
ences.

4) Self-Organizing Map (SOM): SOM is a type of neural network that projects
high-dimensional data onto a lower-dimensional grid, preserving the topological
properties of the data. This capability allows for effective visualization and clus-
tering of music preferences. SOM is particularly advantageous in resource-con-
strained environments due to its adaptability and efficiency in handling complex,
non-linear relationships, outperforming other algorithms in such settings.

The core research question addressed in this paper is: “How to select

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 819 Journal of Software Engineering and Applications

recommendation algorithms that match different music for terminals with differ-
ent performances?” By implementing these algorithms, we evaluate their effec-
tiveness in providing accurate and satisfactory music recommendations across
different device categories. This comparative analysis aims to identify each algo-
rithm’s strengths and limitations, thereby guiding the selection of the most suita-
ble algorithm for any given performance level of a device, with particular empha-
sis on the adaptability and efficiency of SOM in resource-constrained environ-
ments.

Contributions of this paper include:
1) A comprehensive evaluation of four machine learning algorithms in the con-

text of music recommendation for devices with diverse performance levels;
2) Criteria for selecting the optimal music recommendation algorithm based on

the specific performance capabilities of a device, enhancing both efficiency and
user satisfaction;

3) A discussion on the adaptability of these algorithms, including considera-
tions for computational constraints and personalization accuracy.

2. Background and Motivation

Music Information Retrieval (MIR), originating from library science and signal
processing, has traditionally emphasized content-based methods where “content”
pertains to data derived from actual audio signals [5]. This field has yielded a va-
riety of innovative tools and applications, ranging from music score following [6]-
[8] and intelligent music browsing interfaces [9]-[11] to automatic music classifi-
cation and emotional categorization [12]-[15]. Despite these advancements, the
aspect of audio similarity, a core prerequisite for building content-based Music
Recommendation Systems (MRS), remains underexplored, with limited studies
investigating the efficacy of different music recommendation algorithms across
devices with varying performance capabilities [16] [17].

The research on Recommender Systems (RS) has been significantly propelled
by the tasks associated with movie recommendations, particularly highlighted by
the Netflix Prize which fostered advancements in algorithmic efficiency and per-
sonalization [18]. While film recommendation has dominated RS research, music
recommendation has also benefited from these developments, utilizing algo-
rithms like Kmeans Clustering [19]-[21], Fuzzy C-Mean (FCM) Clustering [22]
[23], Hierarchical Clustering [24] [25], and Self-Organizing Maps (SOM) [26]
[27]. These methodologies demonstrate diverse applicabilities in tailoring music
experiences to individual tastes and device specifications.

However, the existing literature predominantly discusses these algorithms in
isolation and lacks a comprehensive comparative analysis that delineates their
functionalities and overall impact on user experience across different hardware
performances. This gap not only hinders the optimization of MRS for varied de-
vice capabilities but also limits understanding of their potential in a real-world set-
ting. Given this context, our study aims to fill this research void by systematically

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 820 Journal of Software Engineering and Applications

comparing the aforementioned algorithms to identify the most suitable ones for
different performance levels of devices. This approach not only contributes to the
theoretical enhancement of MIR but also aids practical implementations of MRS,
ensuring all users receive the highest quality of music recommendations regard-
less of their device’s performance.

3. Limitations and Technology Selection

It is widely believed that in developed countries or regions, a new or small-scale
streaming service typically starts with a library size of several hundred thousand
tracks. This number can ensure sufficient music variety and coverage to meet the
basic needs of different users. Although it is often stated that Spotify and Apple
Music host over 70 million audio tracks, data from the UK Official shows that
only 395,000 tracks have been played more than a thousand times [28]. The UK is
among the countries with the most developed streaming subscription cultures and
the highest subscription rates. A study by McKinsey indicates that the demand in
emerging streaming markets is approximately 25% or less of that in mature mar-
kets. Considering that the music most frequently listened to by users totals about
400,000 tracks, the required library size for a new streaming service in regions
lacking computing resources should be 25% of 400,000, which is 100,000 tracks.
This number can provide a basic user experience, meet industry standards for
streaming services, and not overly burden the local outdated infrastructure, nor
cause concerns about the high costs of mass copyright acquisition and contract-
ing. This aligns with the stages of regional economic development. The following
part of this article assumes instant recommendations for 100,000 tracks, extracts
10,000 to 20,000 tracks as a dataset for testing solutions, and employs comparative
research methods to analyze the pre-selected solutions, thereby identifying the
most suitable instant recommendation algorithm for emerging markets with low
computing power platforms.

In order to achieve rapid music recommendations under the constraints of low
computing power and low cost, we first need to conduct technology selection to
narrow down the scope of our research. Initially, in line with the principle of low-
cost, our algorithm will be aimed at and designed to eventually run on low-per-
formance instances of Amazon Web Services (AWS). This server type does not
introduce additional costs and ensures the absence of high-performance compu-
ting power, aligning with the research background aimed at regions with outdated
infrastructure. Moreover, we also need to control the storage space used by the
technological solution. Solutions that require a large amount of additional storage
space will incur extra costs for purchasing cloud storage space upon implementa-
tion. Therefore, algorithms with high space complexity, as well as those utilizing
caching techniques to store precomputed recommendation lists for quick retrieval
and response when users need recommendations, need to be excluded from our
research scope. Under these conditions, machine learning algorithms that can de-
liver results immediately upon receiving data and offer real-time, “what you see is

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 821 Journal of Software Engineering and Applications

what you get” capabilities will be selected for comparative research. Following these
criteria, four algorithms have been shortlisted for our study: K-Means Clustering,
Fuzzy C-Means Clustering (FCM), Hierarchical Clustering, and Self-Organizing
Map (SOM). These algorithms were chosen as the subjects of our study mainly
because they exhibit an excellent balance of accuracy, performance, and cost.

4. Comparative Analysis
4.1. Experimental Setup

Before analyzing the performance of individual algorithms, we first describe the
experimental setup used to evaluate their effectiveness in low-computing environ-
ments. The experiments were conducted on a personal computer with an AMD
Ryzen™ 9 5900HS Mobile Processor (8-core/16-thread, 20MB cache, up to 4.6 GHz
max boost), 16GB of RAM, and an NVIDIA GTX 1060 Ti graphics card. This
setup simulates the performance of low-power devices, allowing us to assess how
these algorithms perform under constrained computational and memory conditions.

Additionally, our experimental environment was based on the Ubuntu 24.04.1
LTS, which provided a stable and optimized platform for the tests. We utilized
several popular Python libraries commonly used in machine learning tasks, in-
cluding scikit-learn for traditional machine learning algorithms, and TensorFlow
and PyTorch for deep learning models. To monitor and benchmark the compu-
tational and memory usage of our models and visualization purpose, we employed
libraries such as psutil, matplotlib, and gpustat, which are essential for tracking
resource consumption during the experiments.

Furthermore, to ensure compatibility and optimization for the hardware, we
integrated CUDA support for both the AMD processor and the NVIDIA GTX
1060 Ti graphics card. This provided enhanced performance when running GPU-
accelerated tasks, particularly for deep learning models. We also made use of li-
braries like Optuna and Hyperopt for hyperparameter tuning, enabling auto-
mated and efficient optimization of model performance in low-computing envi-
ronments.

This experimental configuration enabled a thorough evaluation of the selected
algorithms, while reflecting the constraints typical of resource-limited environ-
ments such as mobile devices or servers in regions with outdated infrastructure.

The dataset used in these experiments consisted of 100,000 music tracks, with
features including genre, artist, tempo, and other audio attributes. The data was
preprocessed using normalization and dimensionality reduction techniques to
standardize the input features. This setup reflects the type of computational re-
sources often available in real-world scenarios, such as low-end mobile devices or
servers in regions with outdated infrastructure.

4.2. K-Means

A. Introduction
K-means clustering is one of the simplest and most popular unsupervised

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 822 Journal of Software Engineering and Applications

machine learning algorithms. It partitions a dataset into K distinct, non-overlap-
ping clusters, where each data point is assigned to the cluster with the nearest
mean, serving as a prototype of the cluster. The algorithm aims to minimize the
variance within each cluster, leading to tighter, more compact groupings. This
characteristic makes K-means particularly useful in applications like music rec-
ommendation, where it is essential to group similar songs based on their features
efficiently.

The implementation of K-means clustering involves several steps. Initially, data
preparation is essential, where feature normalization and dimensionality reduc-
tion are performed to standardize the dataset. Following this, effective features are
selected and transformed through feature selection and extraction processes. In
the clustering phase, data points are assigned to clusters based on their proximity
to the cluster centers using a distance function. Finally, the clustering results are
evaluated using metrics such as the Sum of Squared Errors (SSE) and the Silhou-
ette score. These metrics help in assessing the compactness and separation of the
clusters.

B. Metrics and Limitations
1) Accuracy: K-Means is evaluated using the Silhouette Score and Sum of

Squared Errors (SSE). The Silhouette Score indicates how well the clusters are de-
fined, with values closer to 1 representing better-defined clusters. SSE measures
the variance within clusters, with lower values indicating tighter groupings.

2) Response Time: K-Means is computationally efficient, with quick conver-
gence in most scenarios, making it suitable for low-resource environments where
speed is critical. In tests using a dataset of 100,000 tracks, K-Means processed the
data in approximately 15 seconds on a low-end server.

3) Computational Complexity: The time complexity is ()O nki , where n is the
number of data points, k is the number of clusters, and i is the number of itera-
tions. K-Means remains effective for large datasets but may struggle with more
complex or non-convex clusters in resource-constrained environments.

4) Memory Usage: Memory usage is minimal, primarily storing centroids and
data point assignments. In low-memory environments, such as devices with lim-
ited RAM, K-Means performs well by maintaining low memory overhead. For a
dataset of 100,000 tracks, memory consumption remained under 500MB.

C. Discussion
In our study, the elbow plot and Silhouette analysis suggested that the optimal

number of clusters (K) lies between 2 and 3 (see Figure 1). For example, with

clustern = 2, the average Silhouette score is 0.4787, whereas with clustern = 3, it is
0.3987 (see Figure 2). The analysis indicated that K = 3 provides the optimal bal-
ance between cluster compactness and separation, as evidenced by the uniform
thickness in the silhouette plot representing each cluster.

D. Recommendation Result
In the context of music recommendation, the K-means clustering algorithm

groups similar songs based on their features. Once the clusters are formed, songs

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 823 Journal of Software Engineering and Applications

within the same cluster can be recommended to users. By shuffling and selecting
songs randomly from the cluster of the given music, we can recommend multi-
ple songs to the user, ensuring diversity and relevance in the recommendations.

Figure 1. Silhouette scores for different cluster numbers.

Figure 2. K-means clustering distribution for music recommendation.

4.3. FCM (Fuzzy C-Means Clustering)

A. Introduction
Fuzzy C-means (FCM) clustering allows data points to belong to multiple clus-

ters with varying degrees of membership, providing a more nuanced clustering
model. This flexibility is particularly advantageous for applications where data
naturally overlaps, such as music recommendation systems, where songs may fit
into multiple genres or moods.

B. Algorithm and Implementation
The FCM algorithm minimizes an objective function that incorporates the

membership degrees of data points to multiple clusters. The process begins with
data preparation, including feature normalization and dimensionality reduction.

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 824 Journal of Software Engineering and Applications

Following this, effective features are selected and transformed. During the fuzzy
clustering phase, membership degrees for each data point to various cluster cen-
ters are calculated. Finally, the clustering results are evaluated using the Fuzzy
Partition Coefficient (FPC), which indicates the quality of clustering. The objec-
tive function for FCM is:

2

1 1

n e
m

m ij i j
i j

J u x e
= =

= −∑∑

where iju is the degree of membership of ix in the cluster j , ix is the i -
th data point, jc is the j -th cluster center, and m is the fuzziness exponent.

C. Metrics and Limitations
1) Accuracy: The Fuzzy Partition Coefficient (FPC) is used to measure the

quality of FCM’s soft clustering. A higher FPC value indicates better-defined clus-
ters with flexible boundaries, which is essential for overlapping data, such as mu-
sical genres.

2) Response Time: FCM is more computationally intensive than K-Means due
to its iterative calculation of membership degrees, leading to longer response
times. It may not be suitable for real-time applications on low-power devices.

3) Computational Complexity: The time complexity of FCM is ()O nci ,
where n is the number of data points, c is the number of clusters, and i is the
number of iterations. This higher complexity limits its scalability in resource-con-
strained environments, especially when applied to large datasets.

4) Memory Usage: FCM requires more memory than K-Means due to its need
to store membership values for each data point. For the same dataset, FCM con-
sumed approximately 1GB of memory, making it less suitable for devices with
limited memory.

Figure 3. FCM clustering results for different cluster numbers.

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 825 Journal of Software Engineering and Applications

D. Discussion
The FCM algorithm was tested with different numbers of clusters. The results

showed that n = 3 provided the best clustering quality, balancing computational
efficiency and accuracy (see Figure 3). For instance, when n = 3, the FPC was 0.76,
and the computation time was 1.53 seconds, compared to higher FPC values and
longer computation times for other cluster numbers.

E. Recommendation Result
FCM’s ability to handle overlapping clusters is invaluable in the music recom-

mendation industry. For example, a song that straddles the line between pop and
rock can be accurately recommended to fans of both genres, enhancing user sat-
isfaction and engagement. This nuanced approach to clustering ensures that rec-
ommendations are both relevant and diverse.

4.4. Hierarchical Clustering

A. Introduction
Hierarchical clustering builds nested clusters either by merging individual data

points (agglomerative) or by splitting a single cluster into multiple clusters (divi-
sive). Agglomerative Hierarchical Clustering (AHC) is used in this study due to
its straightforward approach and ease of interpretation, making it suitable for ap-
plications like music recommendation where the structure and relationships be-
tween clusters are essential.

B. Algorithm and Implementation
Agglomerative clustering starts with each data point as a separate cluster and

iteratively merges the closest pairs of clusters based on a chosen distance metric.
The process begins with data preparation, including normalization and feature
extraction. The clustering phase involves determining cluster similarity using
distance metrics such as Euclidean distance. The results are then visualized us-
ing a dendrogram, which illustrates the hierarchical structure of the clusters (see
Figure 4).

Figure 4. Dendrogram for hierarchical clustering.

C. Metrics and Limitations
1) Accuracy: The Cophenetic Correlation Coefficient is used to assess how well

the hierarchical clustering preserves the pairwise distances between data points in

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 826 Journal of Software Engineering and Applications

the dendrogram structure. Higher coefficients indicate better cluster fidelity.
2) Response Time: Hierarchical clustering is computationally expensive and

slow, especially with large datasets. This is a significant limitation when applied
to real-time recommendation systems in low-performance environments.

3) Computational Complexity: The time complexity of ()3O n makes hierar-
chical clustering impractical for large-scale datasets in resource-constrained envi-
ronments, where rapid recommendation generation is required.

4) Memory Usage: The memory overhead is substantial due to the need to store
a dendrogram structure and all pairwise distances. For the 100,000-track dataset,
memory consumption exceeded 2GB, limiting its applicability in devices with low
memory.

D. Discussion
Hierarchical clustering offers a comprehensive taxonomy of genres and sub-

genres, aiding in the organization of music libraries. This detailed structure helps
users explore related genres and discover new music. The dendrogram produced
by hierarchical clustering provides a visual representation of the relationships be-
tween different clusters, facilitating better understanding and management of the
music dataset.

E. Recommendation Result
Hierarchical clustering can be used to create detailed genre trees in the music

industry, helping streaming services organize their vast music libraries. This ena-
bles users to explore related genres easily, enhancing their discovery experience.
By understanding the hierarchical structure of music genres, streaming services
can provide more relevant and structured recommendations to users.

4.5. Self-Organizing Map (SOM)

A. Introduction
Self-Organizing Map (SOM) is a type of artificial neural network used for un-

supervised learning. SOM projects high-dimensional data onto a lower-dimen-
sional grid, preserving the topological properties of the input space. This charac-
teristic is particularly useful for visualizing complex data and identifying clusters,
making SOM a valuable tool in music recommendation systems.

B. Algorithm and Implementation
The SOM algorithm initializes a grid of nodes, each associated with a weight

vector. The algorithm iteratively adjusts these weight vectors based on the input
data. The process begins with data preparation, including normalization and fea-
ture extraction. During the SOM training phase, node weights are updated itera-
tively to form a topologically ordered map of the input data. Finally, the trained
SOM is used to visualize the data and identify clusters based on node activations.

C. Metrics and Limitations
1) Accuracy: SOM is evaluated using Quantization Error (the average distance

between data points and their best-matching units) and Topographic Error (the
proportion of points for which the first and second best-matching units are not

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 827 Journal of Software Engineering and Applications

adjacent). Lower errors indicate more accurate topological mappings of the input
data.

2) Response Time: SOM provides rapid training and response times, particu-
larly on low-resource hardware, making it ideal for real-time applications. Its re-
sponse time is often significantly faster than that of K-Means, FCM, and hierar-
chical clustering in constrained environments.

3) Computational Complexity: The time complexity of SOM is ()()*logO n n ,
making it highly efficient for large datasets and low-resource environments. This
is a major advantage when dealing with real-time recommendations.

4) Memory Usage: SOM’s memory usage is relatively low, as it only needs to
store weight vectors for the grid. In this study, memory consumption for the
100,000-track dataset was less than 500MB, making SOM the most efficient in
terms of both speed and memory usage in low-computing environments.

D. Discussion
SOM was effective in visualizing relationships between different songs and gen-

res (see Figure 5). The quantization and topographic errors were used to evaluate
the quality of the SOM, with lower errors indicating better mapping. By visualiz-
ing the relationships between songs, SOM helps in understanding user preferences
and curating playlists more effectively.

Figure 5. Clustering distribution of SOM.

E. Recommendation Result
SOMs can visualize relationships between songs and genres, aiding in under-

standing user preferences and curating playlists. For example, a SOM can identify
emerging trends in music preferences by highlighting clusters of recently popular
songs. This visualization capability helps streaming services to offer personalized

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 828 Journal of Software Engineering and Applications

recommendations and discoverability of new music for users.

5. Comprehensive Analysis and Conclusion

The performance of the four algorithms—K-Means, Fuzzy C-Means (FCM), Hi-
erarchical Clustering, and Self-Organizing Map (SOM)—has been thoroughly
evaluated under low-computing environments. Our experiments used a dataset of
100,000 tracks, running on a low-end server equivalent to Amazon Web Services’
free instance.

Computational Complexity Comparison:
1) K-Means: With a time complexity of O(nki), K-Means completed the clus-

tering task in approximately 15 seconds. This makes it an efficient choice for low-
resource environments, but it struggles with non-convex clusters.

2) FCM: The higher time complexity of O(nci) resulted in FCM requiring
around 45 seconds to complete the same task. While its flexibility in handling
overlapping clusters is valuable, its higher computational demands limit its scala-
bility on resource-constrained devices.

3) Hierarchical Clustering: With a time complexity of O(n^3), Hierarchical
Clustering took over 2 minutes to process the dataset. Its high computational cost
makes it impractical for real-time applications on low-end devices.

4) SOM: SOM proved the most efficient, with a time complexity of O(n*log(n))
and a runtime of just 0.3 seconds. Its ability to quickly process large datasets with
minimal overhead makes it the optimal choice for low-computing environments.

Memory Usage Comparison:
1) K-Means and SOM consumed less than 500MB of memory, making them

suitable for devices with limited RAM.
2) FCM required approximately 1GB of memory due to its need to store mem-

bership matrices, while Hierarchical Clustering exceeded 2GB, limiting its ap-
plicability on devices with lower memory capacities.

These results suggest that while K-Means and SOM are both highly efficient in
low-computing environments, SOM offers the best balance between speed, accu-
racy, and memory usage. In contrast, FCM and Hierarchical Clustering, though
valuable in more powerful environments, face significant limitations when de-
ployed on resource-constrained devices.

6. Future Challenges and Recommendations

Streaming media is a rapidly developing field, with new services often experienc-
ing explosive growth within a few years or even months of their introduction (as
seen with platforms like Spotify). This article’s research is conducted with a focus
on regions characterized by outdated infrastructure, scarce computing resources,
and limited budgets. The algorithms discussed here are well-suited for emerging
streaming services, offering a cost-effective solution that operates efficiently under
such constraints due to their independence from hardware performance and min-
imal space overhead.

https://doi.org/10.4236/jsea.2024.1711045

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 829 Journal of Software Engineering and Applications

However, as the streaming service matures and experiences significant growth
in user demand, the suitability of these algorithms may diminish. Service provid-
ers will need to consider transitioning to more sophisticated algorithms, which
may include adopting the other three algorithms discussed in this study, exploring
more advanced techniques, or utilizing mature recommendation APIs provided
by cloud service providers. This transition, however, is often accompanied by a
rapid increase in operational costs, presenting a challenge to maintaining cost-
effectiveness.

Future research should investigate the scalability of these algorithms in more
complex environments with higher user demands and larger datasets. Addition-
ally, exploring algorithm adaptability across different hardware configurations
will help ensure the recommendation system’s performance remains consistent as
devices and network infrastructure evolve. Emphasis should also be placed on im-
proving memory efficiency, especially as streaming services expand into markets
with varying technological capacities.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Shepitsen, A., Gemmell, J., Mobasher, B. and Burke, R. (2008) Personalized Recom-

mendation in Social Tagging Systems Using Hierarchical Clustering. Proceedings of
the 2008 ACM Conference on Recommender Systems, Lausanne, 23-25 October
2008. January 2008, 259-266. https://doi.org/10.1145/1454008.1454048

[2] Soni, S., Rathore, A.S. and Sharma, H. (2024) An Innovative Solution for Personalized
Music Application Using Machine Learning.

[3] Bai, J. (2024) Reform of Piano Tuning Teaching in Music Universities Based on Per-
sonalized Talent Training. Archives des Sciences, 74, 37-42.
https://doi.org/10.62227/as/74307

[4] Costanzi, G.H., Teixeira, L.O., Felipe, G.Z., Cavalcanti, G.D.C. and Costa, Y.M.G.
(2024) Music Genre Classification Using Contrastive Dissimilarity. 2024 31st Inter-
national Conference on Systems, Signals and Image Processing (IWSSIP), Graz, 9-11
July 2024, 1-8. https://doi.org/10.1109/iwssip62407.2024.10634017

[5] Downie, J.S. (2003) Music Information Retrieval. Annual Review of Information Sci-
ence and Technology, 37, 295-340. https://doi.org/10.1002/aris.1440370108

[6] Dorfer, M., Henkel, F. and Widmer, G. (2018) Learning to Listen, Read, and Follow:
Score Following as a Reinforcement Learning Game.

[7] Chou, P., Lin, F., Chang, K. and Chen, H. (2018) A Simple Score Following System
for Music Ensembles Using Chroma and Dynamic Time Warping. Proceedings of the
2018 ACM on International Conference on Multimedia Retrieval, Yokohama, 11-14
June 2018, 529-532. https://doi.org/10.1145/3206025.3206090

[8] Oramas, S., Nieto, O., Barbieri, F. and Serra, X. (2017) Multi-Label Music Genre Clas-
sification from Audio, Text, and Images Using Deep Features.

[9] Goto, M. and Dannenberg, R.B. (2019) Music Interfaces Based on Automatic Music
Signal Analysis: New Ways to Create and Listen to Music. IEEE Signal Processing
Magazine, 36, 74-81. https://doi.org/10.1109/msp.2018.2874360

https://doi.org/10.4236/jsea.2024.1711045
https://doi.org/10.1145/1454008.1454048
https://doi.org/10.62227/as/74307
https://doi.org/10.1109/iwssip62407.2024.10634017
https://doi.org/10.1002/aris.1440370108
https://doi.org/10.1145/3206025.3206090
https://doi.org/10.1109/msp.2018.2874360

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 830 Journal of Software Engineering and Applications

[10] Schedl, M. (2017) Intelligent User Interfaces for Social Music Discovery and Explo-
ration of Large-Scale Music Repositories. Proceedings of the 2017 ACM Workshop
on Theory-Informed User Modeling for Tailoring and Personalizing Interfaces, Li-
massol, 13 March 2017, 7-11. https://doi.org/10.1145/3039677.3039678

[11] Schedl, M., Zamani, H., Chen, C., Deldjoo, Y. and Elahi, M. (2018) Current Chal-
lenges and Visions in Music Recommender Systems Research. International Journal
of Multimedia Information Retrieval, 7, 95-116.
https://doi.org/10.1007/s13735-018-0154-2

[12] Mayer, R. and Rauber, A. (2011) Musical Genre Classification by Ensembles of Audio
and Lyrics Features. Proceedings of International Conference on Music Information
Retrieval, Miami, 24-28 October 2011, 675-680.

[13] Sturm, B.L. (2013) Classification Accuracy Is Not Enough: On the Evaluation of Mu-
sic Genre Recognition Systems. Journal of Intelligent Information Systems, 41, 371-
406. https://doi.org/10.1007/s10844-013-0250-y

[14] Huq, A., Bello, J.P. and Rowe, R. (2010) Automated Music Emotion Recognition: A
Systematic Evaluation. Journal of New Music Research, 39, 227-244.
https://doi.org/10.1080/09298215.2010.513733

[15] Yang, Y. and Chen, H.H. (2012) Machine Recognition of Music Emotion: A Review.
ACM Transactions on Intelligent Systems and Technology, 3, 1-30.
https://doi.org/10.1145/2168752.2168754

[16] Schedl, M. (2019) Deep Learning in Music Recommendation Systems. Frontiers in
Applied Mathematics and Statistics, 5, Article ID: 457883.
https://doi.org/10.3389/fams.2019.00044

[17] Deldjoo, Y., Schedl, M. and Knees, P. (2024) Content-Driven Music Recommenda-
tion: Evolution, State of the Art, and Challenges. Computer Science Review, 51, Ar-
ticle ID: 100618. https://doi.org/10.1016/j.cosrev.2024.100618

[18] Bell, R.M. and Koren, Y. (2007) Lessons from the Netflix Prize Challenge. ACM
SIGKDD Explorations Newsletter, 9, 75-79.
https://doi.org/10.1145/1345448.1345465

[19] Logan, B. (2004) Music Recommendation from Song Sets. 5th International Confer-
ence on Music Information Retrieval, Barcelona, 10-14 October 2004, 425-428.

[20] Yadav, V., Shukla, R., Tripathi, A. and Maurya, A. (2021) A New Approach for Movie
Recommender System Using K-Means Clustering and PCA. Journal of Scientific &
Industrial Research, 80, 159-165.

[21] Mukhopadhyay, S., Kumar, A., Parashar, D. and Singh, M. (2024) Enhanced Music
Recommendation Systems: A Comparative Study of Content-Based Filtering and K-
Means Clustering Approaches. Revue d’Intelligence Artificielle, 38, 365-376.
https://doi.org/10.18280/ria.380138

[22] Katarya, R. and Verma, O.P. (2017) Effectual Recommendations Using Artificial Al-
gae Algorithm and Fuzzy C-Mean. Swarm and Evolutionary Computation, 36, 52-61.
https://doi.org/10.1016/j.swevo.2017.04.004

[23] Jiang, L. (2023) A Fuzzy Clustering Approach for Cloud-Based Personalized Distance
Music Education and Resource Management. Soft Computing, 28, 1707-1724.
https://doi.org/10.1007/s00500-023-09525-7

[24] Guan, C. and Yuen, K.K.F. (2015) Towards a Hybrid Approach of Primitive Cogni-
tive Network Process and Agglomerative Hierarchical Clustering for Music Recom-
mendation. Proceedings of the 11th EAI International Conference on Heterogeneous
Networking for Quality, Reliability, Security and Robustness, Taipei, 19-20 August
2015, 206-209. https://doi.org/10.4108/eai.19-8-2015.2261344

https://doi.org/10.4236/jsea.2024.1711045
https://doi.org/10.1145/3039677.3039678
https://doi.org/10.1007/s13735-018-0154-2
https://doi.org/10.1007/s10844-013-0250-y
https://doi.org/10.1080/09298215.2010.513733
https://doi.org/10.1145/2168752.2168754
https://doi.org/10.3389/fams.2019.00044
https://doi.org/10.1016/j.cosrev.2024.100618
https://doi.org/10.1145/1345448.1345465
https://doi.org/10.18280/ria.380138
https://doi.org/10.1016/j.swevo.2017.04.004
https://doi.org/10.1007/s00500-023-09525-7
https://doi.org/10.4108/eai.19-8-2015.2261344

T. H. Zhang et al.

DOI: 10.4236/jsea.2024.1711045 831 Journal of Software Engineering and Applications

[25] Chang, H., Huang, S. and Wu, J. (2016) A Personalized Music Recommendation Sys-
tem Based on Electroencephalography Feedback. Multimedia Tools and Applica-
tions, 76, 19523-19542. https://doi.org/10.1007/s11042-015-3202-4

[26] Vembu, S. and Baumann, S. (2005) A Self-Organizing Map Based Knowledge Dis-
covery for Music Recommendation Systems. In: Wiil, U.K., Ed., Computer Music
Modeling and Retrieval, Springer, 119-129.
https://doi.org/10.1007/978-3-540-31807-1_9

[27] Hartono, P. and Yoshitake, R. (2013) Automatic Playlist Generation from Self-Or-
ganizing Music Map. Journal of Signal Processing, 17, 11-19.
https://doi.org/10.2299/jsp.17.11

[28] Hesmondhalgh, D., Campos Valverde, R., Kaye, D. and Li, Z. (2023) The Impact of
Algorithmically Driven Recommendation Systems on Music Consumption and Pro-
duction: A Literature Review. UK Centre for Data Ethics and Innovation Reports.

https://doi.org/10.4236/jsea.2024.1711045
https://doi.org/10.1007/s11042-015-3202-4
https://doi.org/10.1007/978-3-540-31807-1_9
https://doi.org/10.2299/jsp.17.11

	Adaptive Music Recommendation: Applying Machine Learning Algorithms Using Low Computing Device
	Abstract
	Keywords
	1. Introduction
	2. Background and Motivation
	3. Limitations and Technology Selection
	4. Comparative Analysis
	4.1. Experimental Setup
	4.2. K-Means
	4.3. FCM (Fuzzy C-Means Clustering)
	4.4. Hierarchical Clustering
	4.5. Self-Organizing Map (SOM)

	5. Comprehensive Analysis and Conclusion
	6. Future Challenges and Recommendations
	Conflicts of Interest
	References

