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Abstract 
In the digital music landscape, the accuracy and response speed of music rec-
ommendation systems (MRS) are crucial for user experience optimization. 
Traditional MRS often relies on the use of high-performance servers for large-
scale training to produce recommendation results, which may result in the 
inability to achieve music recommendation in some areas due to substandard 
hardware conditions. This study evaluates the adaptability of four popular ma-
chine learning algorithms (K-means clustering, fuzzy C-means (FCM) clus-
tering, hierarchical clustering, and self-organizing map (SOM)) on low-com-
puting servers. Our comparative analysis highlights that while K-means and 
FCM are robust in high-performance settings, they underperform in low-
power scenarios where SOM excels, delivering fast and reliable recommenda-
tions with minimal computational overhead. This research addresses a gap in 
the literature by providing a detailed comparative analysis of MRS algorithms, 
offering practical insights for implementing adaptive MRS in technologically 
diverse environments. We conclude with strategic recommendations for 
emerging streaming services in resource-constrained settings, emphasizing 
the need for scalable solutions that balance cost and performance. This study 
advocates an adaptive selection of recommendation algorithms to manage op-
erational costs effectively and accommodate growth. 
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1. Introduction 

In the era of digital music consumption, personalization and adaptability of rec-
ommendation systems play pivotal roles in enhancing user experience [1]. Tradi-
tional music recommendation systems often struggle to account for the varying 
computational capabilities of different devices, from high-end smart speakers to 
lower-performance mobile phones. This discrepancy can lead to suboptimal user 
experiences where the recommendation system either underperforms or overex-
tends the device’s capabilities. Addressing this challenge requires a nuanced ap-
proach to selecting appropriate machine learning algorithms that not only cater 
to the diverse musical tastes of users but are also compatible with the hardware 
performance of their devices. 

This paper explores the adaptive use of machine learning algorithms for music 
recommendation, specifically examining how different algorithms perform across 
devices with varying capabilities. We focus on four prevalent machine learning 
strategies: K-means Clustering, Fuzzy C-Means (FCM) Clustering, Hierarchical 
Clustering, and Self-Organizing Map (SOM). These methods were selected for 
their common application in the field of music recommendation and their poten-
tial for customization to hardware performance. 

To provide a clearer understanding, we offer a brief overview of each algorithm: 
1) K-means Clustering: This algorithm is widely used due to its simplicity and 

efficiency in partitioning data into distinct clusters based on similarity. It is com-
putationally less intensive, making it suitable for devices with limited resources 
[2]. However, K-means is sensitive to the initial choice of centroids and often 
struggles with data containing complex structures or non-linear relationships. 

2) Fuzzy C-Means (FCM) Clustering: Unlike K-means, which assigns each 
data point to a single cluster, FCM allows for data points to belong to multiple 
clusters with varying degrees of membership. This flexibility provides a more nu-
anced representation of user preferences [3]. However, FCM is more computa-
tionally demanding than K-means, which may limit its performance on devices 
with lower processing power. 

3) Hierarchical Clustering: This technique creates a tree-like structure to rep-
resent data, enabling an understanding of data relationships at multiple levels. It 
can be computationally expensive, especially with large datasets, making it less 
ideal for devices with constrained resources [4]. Nevertheless, its ability to capture 
complex data structures makes it valuable in understanding diverse user prefer-
ences. 

4) Self-Organizing Map (SOM): SOM is a type of neural network that projects 
high-dimensional data onto a lower-dimensional grid, preserving the topological 
properties of the data. This capability allows for effective visualization and clus-
tering of music preferences. SOM is particularly advantageous in resource-con-
strained environments due to its adaptability and efficiency in handling complex, 
non-linear relationships, outperforming other algorithms in such settings. 

The core research question addressed in this paper is: “How to select 
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recommendation algorithms that match different music for terminals with differ-
ent performances?” By implementing these algorithms, we evaluate their effec-
tiveness in providing accurate and satisfactory music recommendations across 
different device categories. This comparative analysis aims to identify each algo-
rithm’s strengths and limitations, thereby guiding the selection of the most suita-
ble algorithm for any given performance level of a device, with particular empha-
sis on the adaptability and efficiency of SOM in resource-constrained environ-
ments. 

Contributions of this paper include: 
1) A comprehensive evaluation of four machine learning algorithms in the con-

text of music recommendation for devices with diverse performance levels; 
2) Criteria for selecting the optimal music recommendation algorithm based on 

the specific performance capabilities of a device, enhancing both efficiency and 
user satisfaction; 

3) A discussion on the adaptability of these algorithms, including considera-
tions for computational constraints and personalization accuracy. 

2. Background and Motivation 

Music Information Retrieval (MIR), originating from library science and signal 
processing, has traditionally emphasized content-based methods where “content” 
pertains to data derived from actual audio signals [5]. This field has yielded a va-
riety of innovative tools and applications, ranging from music score following [6]-
[8] and intelligent music browsing interfaces [9]-[11] to automatic music classifi-
cation and emotional categorization [12]-[15]. Despite these advancements, the 
aspect of audio similarity, a core prerequisite for building content-based Music 
Recommendation Systems (MRS), remains underexplored, with limited studies 
investigating the efficacy of different music recommendation algorithms across 
devices with varying performance capabilities [16] [17]. 

The research on Recommender Systems (RS) has been significantly propelled 
by the tasks associated with movie recommendations, particularly highlighted by 
the Netflix Prize which fostered advancements in algorithmic efficiency and per-
sonalization [18]. While film recommendation has dominated RS research, music 
recommendation has also benefited from these developments, utilizing algo-
rithms like Kmeans Clustering [19]-[21], Fuzzy C-Mean (FCM) Clustering [22] 
[23], Hierarchical Clustering [24] [25], and Self-Organizing Maps (SOM) [26] 
[27]. These methodologies demonstrate diverse applicabilities in tailoring music 
experiences to individual tastes and device specifications. 

However, the existing literature predominantly discusses these algorithms in 
isolation and lacks a comprehensive comparative analysis that delineates their 
functionalities and overall impact on user experience across different hardware 
performances. This gap not only hinders the optimization of MRS for varied de-
vice capabilities but also limits understanding of their potential in a real-world set-
ting. Given this context, our study aims to fill this research void by systematically 
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comparing the aforementioned algorithms to identify the most suitable ones for 
different performance levels of devices. This approach not only contributes to the 
theoretical enhancement of MIR but also aids practical implementations of MRS, 
ensuring all users receive the highest quality of music recommendations regard-
less of their device’s performance. 

3. Limitations and Technology Selection 

It is widely believed that in developed countries or regions, a new or small-scale 
streaming service typically starts with a library size of several hundred thousand 
tracks. This number can ensure sufficient music variety and coverage to meet the 
basic needs of different users. Although it is often stated that Spotify and Apple 
Music host over 70 million audio tracks, data from the UK Official shows that 
only 395,000 tracks have been played more than a thousand times [28]. The UK is 
among the countries with the most developed streaming subscription cultures and 
the highest subscription rates. A study by McKinsey indicates that the demand in 
emerging streaming markets is approximately 25% or less of that in mature mar-
kets. Considering that the music most frequently listened to by users totals about 
400,000 tracks, the required library size for a new streaming service in regions 
lacking computing resources should be 25% of 400,000, which is 100,000 tracks. 
This number can provide a basic user experience, meet industry standards for 
streaming services, and not overly burden the local outdated infrastructure, nor 
cause concerns about the high costs of mass copyright acquisition and contract-
ing. This aligns with the stages of regional economic development. The following 
part of this article assumes instant recommendations for 100,000 tracks, extracts 
10,000 to 20,000 tracks as a dataset for testing solutions, and employs comparative 
research methods to analyze the pre-selected solutions, thereby identifying the 
most suitable instant recommendation algorithm for emerging markets with low 
computing power platforms. 

In order to achieve rapid music recommendations under the constraints of low 
computing power and low cost, we first need to conduct technology selection to 
narrow down the scope of our research. Initially, in line with the principle of low-
cost, our algorithm will be aimed at and designed to eventually run on low-per-
formance instances of Amazon Web Services (AWS). This server type does not 
introduce additional costs and ensures the absence of high-performance compu-
ting power, aligning with the research background aimed at regions with outdated 
infrastructure. Moreover, we also need to control the storage space used by the 
technological solution. Solutions that require a large amount of additional storage 
space will incur extra costs for purchasing cloud storage space upon implementa-
tion. Therefore, algorithms with high space complexity, as well as those utilizing 
caching techniques to store precomputed recommendation lists for quick retrieval 
and response when users need recommendations, need to be excluded from our 
research scope. Under these conditions, machine learning algorithms that can de-
liver results immediately upon receiving data and offer real-time, “what you see is 

https://doi.org/10.4236/jsea.2024.1711045


T. H. Zhang et al. 
 

 

DOI: 10.4236/jsea.2024.1711045 821 Journal of Software Engineering and Applications 
 

what you get” capabilities will be selected for comparative research. Following these 
criteria, four algorithms have been shortlisted for our study: K-Means Clustering, 
Fuzzy C-Means Clustering (FCM), Hierarchical Clustering, and Self-Organizing 
Map (SOM). These algorithms were chosen as the subjects of our study mainly 
because they exhibit an excellent balance of accuracy, performance, and cost. 

4. Comparative Analysis 
4.1. Experimental Setup 

Before analyzing the performance of individual algorithms, we first describe the 
experimental setup used to evaluate their effectiveness in low-computing environ-
ments. The experiments were conducted on a personal computer with an AMD 
Ryzen™ 9 5900HS Mobile Processor (8-core/16-thread, 20MB cache, up to 4.6 GHz 
max boost), 16GB of RAM, and an NVIDIA GTX 1060 Ti graphics card. This 
setup simulates the performance of low-power devices, allowing us to assess how 
these algorithms perform under constrained computational and memory conditions. 

Additionally, our experimental environment was based on the Ubuntu 24.04.1 
LTS, which provided a stable and optimized platform for the tests. We utilized 
several popular Python libraries commonly used in machine learning tasks, in-
cluding scikit-learn for traditional machine learning algorithms, and TensorFlow 
and PyTorch for deep learning models. To monitor and benchmark the compu-
tational and memory usage of our models and visualization purpose, we employed 
libraries such as psutil, matplotlib, and gpustat, which are essential for tracking 
resource consumption during the experiments. 

Furthermore, to ensure compatibility and optimization for the hardware, we 
integrated CUDA support for both the AMD processor and the NVIDIA GTX 
1060 Ti graphics card. This provided enhanced performance when running GPU-
accelerated tasks, particularly for deep learning models. We also made use of li-
braries like Optuna and Hyperopt for hyperparameter tuning, enabling auto-
mated and efficient optimization of model performance in low-computing envi-
ronments. 

This experimental configuration enabled a thorough evaluation of the selected 
algorithms, while reflecting the constraints typical of resource-limited environ-
ments such as mobile devices or servers in regions with outdated infrastructure. 

The dataset used in these experiments consisted of 100,000 music tracks, with 
features including genre, artist, tempo, and other audio attributes. The data was 
preprocessed using normalization and dimensionality reduction techniques to 
standardize the input features. This setup reflects the type of computational re-
sources often available in real-world scenarios, such as low-end mobile devices or 
servers in regions with outdated infrastructure. 

4.2. K-Means 

A. Introduction 
K-means clustering is one of the simplest and most popular unsupervised 
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machine learning algorithms. It partitions a dataset into K distinct, non-overlap-
ping clusters, where each data point is assigned to the cluster with the nearest 
mean, serving as a prototype of the cluster. The algorithm aims to minimize the 
variance within each cluster, leading to tighter, more compact groupings. This 
characteristic makes K-means particularly useful in applications like music rec-
ommendation, where it is essential to group similar songs based on their features 
efficiently.  

The implementation of K-means clustering involves several steps. Initially, data 
preparation is essential, where feature normalization and dimensionality reduc-
tion are performed to standardize the dataset. Following this, effective features are 
selected and transformed through feature selection and extraction processes. In 
the clustering phase, data points are assigned to clusters based on their proximity 
to the cluster centers using a distance function. Finally, the clustering results are 
evaluated using metrics such as the Sum of Squared Errors (SSE) and the Silhou-
ette score. These metrics help in assessing the compactness and separation of the 
clusters. 

B. Metrics and Limitations 
1) Accuracy: K-Means is evaluated using the Silhouette Score and Sum of 

Squared Errors (SSE). The Silhouette Score indicates how well the clusters are de-
fined, with values closer to 1 representing better-defined clusters. SSE measures 
the variance within clusters, with lower values indicating tighter groupings. 

2) Response Time: K-Means is computationally efficient, with quick conver-
gence in most scenarios, making it suitable for low-resource environments where 
speed is critical. In tests using a dataset of 100,000 tracks, K-Means processed the 
data in approximately 15 seconds on a low-end server. 

3) Computational Complexity: The time complexity is ( )O nki , where n is the 
number of data points, k is the number of clusters, and i is the number of itera-
tions. K-Means remains effective for large datasets but may struggle with more 
complex or non-convex clusters in resource-constrained environments. 

4) Memory Usage: Memory usage is minimal, primarily storing centroids and 
data point assignments. In low-memory environments, such as devices with lim-
ited RAM, K-Means performs well by maintaining low memory overhead. For a 
dataset of 100,000 tracks, memory consumption remained under 500MB. 

C. Discussion 
In our study, the elbow plot and Silhouette analysis suggested that the optimal 

number of clusters (K) lies between 2 and 3 (see Figure 1). For example, with 

clustern  = 2, the average Silhouette score is 0.4787, whereas with clustern  = 3, it is 
0.3987 (see Figure 2). The analysis indicated that K = 3 provides the optimal bal-
ance between cluster compactness and separation, as evidenced by the uniform 
thickness in the silhouette plot representing each cluster. 

D. Recommendation Result 
In the context of music recommendation, the K-means clustering algorithm 

groups similar songs based on their features. Once the clusters are formed, songs 
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within the same cluster can be recommended to users. By shuffling and selecting 
songs randomly from the cluster of the given music, we can recommend multi-
ple songs to the user, ensuring diversity and relevance in the recommendations. 
 

 
Figure 1. Silhouette scores for different cluster numbers. 
 

 
Figure 2. K-means clustering distribution for music recommendation. 

4.3. FCM (Fuzzy C-Means Clustering) 

A. Introduction 
Fuzzy C-means (FCM) clustering allows data points to belong to multiple clus-

ters with varying degrees of membership, providing a more nuanced clustering 
model. This flexibility is particularly advantageous for applications where data 
naturally overlaps, such as music recommendation systems, where songs may fit 
into multiple genres or moods.  

B. Algorithm and Implementation 
The FCM algorithm minimizes an objective function that incorporates the 

membership degrees of data points to multiple clusters. The process begins with 
data preparation, including feature normalization and dimensionality reduction. 
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Following this, effective features are selected and transformed. During the fuzzy 
clustering phase, membership degrees for each data point to various cluster cen-
ters are calculated. Finally, the clustering results are evaluated using the Fuzzy 
Partition Coefficient (FPC), which indicates the quality of clustering. The objec-
tive function for FCM is:  

2

1 1

n e
m

m ij i j
i j

J u x e
= =

= −∑∑  

where iju  is the degree of membership of ix  in the cluster  j , ix  is the i -
th data point, jc  is the j -th cluster center, and m  is the fuzziness exponent. 

C. Metrics and Limitations 
1) Accuracy: The Fuzzy Partition Coefficient (FPC) is used to measure the 

quality of FCM’s soft clustering. A higher FPC value indicates better-defined clus-
ters with flexible boundaries, which is essential for overlapping data, such as mu-
sical genres. 

2) Response Time: FCM is more computationally intensive than K-Means due 
to its iterative calculation of membership degrees, leading to longer response 
times. It may not be suitable for real-time applications on low-power devices. 

3) Computational Complexity: The time complexity of FCM is ( )O nci , 
where n is the number of data points, c is the number of clusters, and i is the 
number of iterations. This higher complexity limits its scalability in resource-con-
strained environments, especially when applied to large datasets. 

4) Memory Usage: FCM requires more memory than K-Means due to its need 
to store membership values for each data point. For the same dataset, FCM con-
sumed approximately 1GB of memory, making it less suitable for devices with 
limited memory. 
 

 
Figure 3. FCM clustering results for different cluster numbers. 
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D. Discussion 
The FCM algorithm was tested with different numbers of clusters. The results 

showed that n = 3 provided the best clustering quality, balancing computational 
efficiency and accuracy (see Figure 3). For instance, when n = 3, the FPC was 0.76, 
and the computation time was 1.53 seconds, compared to higher FPC values and 
longer computation times for other cluster numbers. 

E. Recommendation Result 
FCM’s ability to handle overlapping clusters is invaluable in the music recom-

mendation industry. For example, a song that straddles the line between pop and 
rock can be accurately recommended to fans of both genres, enhancing user sat-
isfaction and engagement. This nuanced approach to clustering ensures that rec-
ommendations are both relevant and diverse. 

4.4. Hierarchical Clustering 

A. Introduction 
Hierarchical clustering builds nested clusters either by merging individual data 

points (agglomerative) or by splitting a single cluster into multiple clusters (divi-
sive). Agglomerative Hierarchical Clustering (AHC) is used in this study due to 
its straightforward approach and ease of interpretation, making it suitable for ap-
plications like music recommendation where the structure and relationships be-
tween clusters are essential.  

B. Algorithm and Implementation 
Agglomerative clustering starts with each data point as a separate cluster and 

iteratively merges the closest pairs of clusters based on a chosen distance metric. 
The process begins with data preparation, including normalization and feature 
extraction. The clustering phase involves determining cluster similarity using 
distance metrics such as Euclidean distance. The results are then visualized us-
ing a dendrogram, which illustrates the hierarchical structure of the clusters (see 
Figure 4). 
 

 
Figure 4. Dendrogram for hierarchical clustering. 

 
C. Metrics and Limitations 
1) Accuracy: The Cophenetic Correlation Coefficient is used to assess how well 

the hierarchical clustering preserves the pairwise distances between data points in 
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the dendrogram structure. Higher coefficients indicate better cluster fidelity. 
2) Response Time: Hierarchical clustering is computationally expensive and 

slow, especially with large datasets. This is a significant limitation when applied 
to real-time recommendation systems in low-performance environments. 

3) Computational Complexity: The time complexity of ( )3O n makes hierar-
chical clustering impractical for large-scale datasets in resource-constrained envi-
ronments, where rapid recommendation generation is required. 

4) Memory Usage: The memory overhead is substantial due to the need to store 
a dendrogram structure and all pairwise distances. For the 100,000-track dataset, 
memory consumption exceeded 2GB, limiting its applicability in devices with low 
memory. 

D. Discussion 
Hierarchical clustering offers a comprehensive taxonomy of genres and sub-

genres, aiding in the organization of music libraries. This detailed structure helps 
users explore related genres and discover new music. The dendrogram produced 
by hierarchical clustering provides a visual representation of the relationships be-
tween different clusters, facilitating better understanding and management of the 
music dataset. 

E. Recommendation Result 
Hierarchical clustering can be used to create detailed genre trees in the music 

industry, helping streaming services organize their vast music libraries. This ena-
bles users to explore related genres easily, enhancing their discovery experience. 
By understanding the hierarchical structure of music genres, streaming services 
can provide more relevant and structured recommendations to users. 

4.5. Self-Organizing Map (SOM) 

A. Introduction 
Self-Organizing Map (SOM) is a type of artificial neural network used for un-

supervised learning. SOM projects high-dimensional data onto a lower-dimen-
sional grid, preserving the topological properties of the input space. This charac-
teristic is particularly useful for visualizing complex data and identifying clusters, 
making SOM a valuable tool in music recommendation systems.  

B. Algorithm and Implementation 
The SOM algorithm initializes a grid of nodes, each associated with a weight 

vector. The algorithm iteratively adjusts these weight vectors based on the input 
data. The process begins with data preparation, including normalization and fea-
ture extraction. During the SOM training phase, node weights are updated itera-
tively to form a topologically ordered map of the input data. Finally, the trained 
SOM is used to visualize the data and identify clusters based on node activations.  

C. Metrics and Limitations 
1) Accuracy: SOM is evaluated using Quantization Error (the average distance 

between data points and their best-matching units) and Topographic Error (the 
proportion of points for which the first and second best-matching units are not 
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adjacent). Lower errors indicate more accurate topological mappings of the input 
data. 

2) Response Time: SOM provides rapid training and response times, particu-
larly on low-resource hardware, making it ideal for real-time applications. Its re-
sponse time is often significantly faster than that of K-Means, FCM, and hierar-
chical clustering in constrained environments. 

3) Computational Complexity: The time complexity of SOM is ( )( )*logO n n , 
making it highly efficient for large datasets and low-resource environments. This 
is a major advantage when dealing with real-time recommendations. 

4) Memory Usage: SOM’s memory usage is relatively low, as it only needs to 
store weight vectors for the grid. In this study, memory consumption for the 
100,000-track dataset was less than 500MB, making SOM the most efficient in 
terms of both speed and memory usage in low-computing environments. 

D. Discussion 
SOM was effective in visualizing relationships between different songs and gen-

res (see Figure 5). The quantization and topographic errors were used to evaluate 
the quality of the SOM, with lower errors indicating better mapping. By visualiz-
ing the relationships between songs, SOM helps in understanding user preferences 
and curating playlists more effectively. 
 

 
Figure 5. Clustering distribution of SOM. 
 

E. Recommendation Result 
SOMs can visualize relationships between songs and genres, aiding in under-

standing user preferences and curating playlists. For example, a SOM can identify 
emerging trends in music preferences by highlighting clusters of recently popular 
songs. This visualization capability helps streaming services to offer personalized 
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recommendations and discoverability of new music for users. 

5. Comprehensive Analysis and Conclusion 

The performance of the four algorithms—K-Means, Fuzzy C-Means (FCM), Hi-
erarchical Clustering, and Self-Organizing Map (SOM)—has been thoroughly 
evaluated under low-computing environments. Our experiments used a dataset of 
100,000 tracks, running on a low-end server equivalent to Amazon Web Services’ 
free instance. 

Computational Complexity Comparison: 
1) K-Means: With a time complexity of O(nki), K-Means completed the clus-

tering task in approximately 15 seconds. This makes it an efficient choice for low-
resource environments, but it struggles with non-convex clusters. 

2) FCM: The higher time complexity of O(nci) resulted in FCM requiring 
around 45 seconds to complete the same task. While its flexibility in handling 
overlapping clusters is valuable, its higher computational demands limit its scala-
bility on resource-constrained devices. 

3) Hierarchical Clustering: With a time complexity of O(n^3), Hierarchical 
Clustering took over 2 minutes to process the dataset. Its high computational cost 
makes it impractical for real-time applications on low-end devices. 

4) SOM: SOM proved the most efficient, with a time complexity of O(n*log(n)) 
and a runtime of just 0.3 seconds. Its ability to quickly process large datasets with 
minimal overhead makes it the optimal choice for low-computing environments. 

Memory Usage Comparison: 
1) K-Means and SOM consumed less than 500MB of memory, making them 

suitable for devices with limited RAM. 
2) FCM required approximately 1GB of memory due to its need to store mem-

bership matrices, while Hierarchical Clustering exceeded 2GB, limiting its ap-
plicability on devices with lower memory capacities. 

These results suggest that while K-Means and SOM are both highly efficient in 
low-computing environments, SOM offers the best balance between speed, accu-
racy, and memory usage. In contrast, FCM and Hierarchical Clustering, though 
valuable in more powerful environments, face significant limitations when de-
ployed on resource-constrained devices. 

6. Future Challenges and Recommendations 

Streaming media is a rapidly developing field, with new services often experienc-
ing explosive growth within a few years or even months of their introduction (as 
seen with platforms like Spotify). This article’s research is conducted with a focus 
on regions characterized by outdated infrastructure, scarce computing resources, 
and limited budgets. The algorithms discussed here are well-suited for emerging 
streaming services, offering a cost-effective solution that operates efficiently under 
such constraints due to their independence from hardware performance and min-
imal space overhead. 
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However, as the streaming service matures and experiences significant growth 
in user demand, the suitability of these algorithms may diminish. Service provid-
ers will need to consider transitioning to more sophisticated algorithms, which 
may include adopting the other three algorithms discussed in this study, exploring 
more advanced techniques, or utilizing mature recommendation APIs provided 
by cloud service providers. This transition, however, is often accompanied by a 
rapid increase in operational costs, presenting a challenge to maintaining cost-
effectiveness. 

Future research should investigate the scalability of these algorithms in more 
complex environments with higher user demands and larger datasets. Addition-
ally, exploring algorithm adaptability across different hardware configurations 
will help ensure the recommendation system’s performance remains consistent as 
devices and network infrastructure evolve. Emphasis should also be placed on im-
proving memory efficiency, especially as streaming services expand into markets 
with varying technological capacities. 
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