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Abstract 
Continuous groundwater quality monitoring poses significant challenges af-
fecting the environment and public health. Groundwater in Abidjan, specifi-
cally from the Continental Terminal (CT), is the primary supply source. 
Therefore, ensuring safe drinking water and environmental protection re-
quires a thorough evaluation and surveillance of this resource. Our present 
research evaluates the quality of the CT groundwater in Abidjan using the wa-
ter quality index (WQI) based on the analytical hierarchy process (AHP). This 
study also explores the application of machine learning predictions as a time-
efficient and cost-effective approach for groundwater resource management. 
Therefore, three Machine Learning regression algorithms (Ridge, Lasso, and 
Gradient Boosting (GB)) were executed and compared. The AHP-based WQI 
results classified 98.98% of samples as “good” water quality, while 0.68% and 
0.34% of samples were respectively categorized as “excellent” and “poor” wa-
ter. Afterward, the prediction performance evaluation highlighted that the GB 
outperformed the other models with the highest accuracy and consistency 
(MSE = 0.097, RMSE = 0.300, r = 0.766, rs = 0.757, and τ = 0.804). In contrast, 
the Lasso model recorded the lowest prediction accuracy, with an MSE of 
148.921, an RMSE of 6.828, and consistency parameters of r = 0.397, rs = 0.079, 
and τ = 0.082. Gradient Boosting regression effectively learns nonlinear events 
and interactions by iteratively fitting new models to errors of previous models, 
enabling a more realistic groundwater quality prediction. This study provides 
a novel perspective for improving groundwater quality management in Abid-
jan, promoting real-time tracking and risk mitigations. 
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Regression Models 

 

1. Introduction 

Worldwide, Groundwater quality presents urgent and complex challenges im-
pacting the environment, health, and well-being of individuals in communities. 
Being a major source of fresh water, the quality of groundwater is essential for 
sustaining life, supporting ecosystems, and driving economic activities [1]. In 
Abidjan the capital of Côte d’Ivoire, Groundwater from the Continental Terminal 
(CT) accounts for about 68% of the total drinking water production [2]. Unfortu-
nately, this resource quality is subject to continuous deterioration, as reported by 
the national water supply company [3]. The key reported causes of deterioration 
include the dispersion of solid and liquid waste materials, the sanitation equip-
ment and system shortage, the improper disposal of used oils, and the discharge 
of non-compliant waste from households, industries, or automobile workshops 
[4]. Moreover, over 79% of the district’s groundwater shows unsafe hydrogeolog-
ical protection, while 12% is vulnerable [5]. Developing nations like Côte d’Ivoire 
strive to raise and regulate water quality monitoring systems. However, Abidjan 
aquifers lack unified approaches and resource management policy as there are 
several decision-making centers with opposing stands [6]. Besides these issues, 
another challenge in groundwater quality monitoring is the complex and variable 
nature of the hydrogeological system, which can generate fuzziness in the assess-
ment process [7]-[9]. Furthermore, water quality assessment generates an intri-
cate database of various parameter types, often overlooked by most stakeholders. 
The primary interest of these assessments lies in the interpretation derived with a 
significantly heightened focus on the inferences drawn regarding the suitability of 
the water resources for different purposes (drinking, agriculture, or industry) [10] 
[11]. Consequently, setting up a detailed approach to offer insights into ground 
and surface water quality regarding their intended functions is important [12] as 
applied by the WQI. The Water quality index (WQI) defines the overall state of 
water bodies by converting concentrations of water quality parameters into a nu-
merical score. This is achieved via calculation techniques [13], minimizing the 
significant amount of data in a single value and enabling their straightforward 
interpretation [14] [15]. The WQI is widely used to classify ground and surface 
water quality [16]-[18]. The applied WQI model comprises five key steps, includ-
ing the selection of water quality parameters, the conversion of parameter values 
into dimensionless sub-indices or parameters standardization, the weight attrib-
ution to individual parameters, the aggregation of the weighting factors with 
standardized values to obtain the final WQI value, and the categorization of the 
resource quality based on the WQI classification ranges [19] [20]. 

The primary drawback is the variability of the conventional weight assignment 
to parameters in the WQI calculation [21] [22]. In contrast, multi-criteria decision 
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analysis methods (MCDM), such as the analytical hierarchy process (AHP), rep-
resent a consistent weighting system that avoids misjudgments. AHP is a robust 
method for determining parameter weights through matrix comparisons that 
minimizes errors and improper weight distributions [20]. In water quality assess-
ment, the need for large amounts of data requires considerable time and resources 
(technical and financial) [23] [24]. Additionally, handling dense hydrogeological 
data using traditional water quality evaluation methods can lead to information 
losses or model inaccuracies [25]. Consequently, scholars considered machine 
learning (ML) a more convenient approach due to its quick, cost-effective, and 
accurate forecasting capabilities [23] [24] [26] [27]. Machine learning is a multi-
faceted method that enables insights and interpretation of system behaviors from 
input data, enhancing holistic water resource management and strategic planning 
[24] [26] [27]. Moreover, ML can be a relevant alternative in situations lacking 
exhaustive hydrogeological data for detailed modeling with physics-based models 
[28]. 

For two decades, Scholars have significantly employed ML prediction models 
for their studies in the water management system, including regression techniques 
such as decision tree regression (DT), boosting ensembles, ridge regression (RR), 
lasso regression (LR), and the artificial neural network (ANN). The DT regression 
model has been applied in several studies, such as river water quality prediction 
[29] or applied in combination with the support vector regression (SVR) for 
wastewater quality indicator prediction [30]. The boosting ensembles have been 
used for discharge coefficient estimation [31], arsenic adsorption in water treat-
ment [32], among others. Ridge regression was also used for medium and long-
term runoff forecasting [33], groundwater quality forecasting with other models, 
such as lasso [29], and other techniques. Artificial neural network prediction has 
been extensively utilized in various studies, including flood susceptibility [34], ni-
trate or fluoride contamination [35] [36], etc. 

The integration of ML in water quality assessment using the WQI method has 
also gained traction recently [37]. For example, the prediction of some river’s 
quality index in India was optimized through eight individual machine-learning 
regression methods, which include DT, Ridge, Lasso, and ANN [29]. The water 
quality rating scale and water quality weight score were derived as feature sets. 
The results showed that linear regression (LR) and Ridge trained using the scale 
accurately predicted WQI, with 𝑀𝑀𝑀𝑀𝑀𝑀 = 0 and 𝑟𝑟 = 1, outperforming the existing 
models. Ahmed et al. [38] applied eight algorithms, such as gradient boosting and 
polynomial regression, to predict WQI. The Gradient boosting algorithm per-
forms better with MAE = 1.9642, while the polynomial regression has MAE = 
2.7273. Yilma et al. [39] forecasted the WQI of the Akaki River using the artificial 
neural network. The model involved eight hidden layers and 15 hidden neurons 
predicting WQI with more than 90% accuracy. Gupta et al. [40] proposed an ANN 
model for predicting WQI using a cascade forward network with the best predict-
ability. Leong et al. [41] developed two models for WQI forecasting: the support 
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vector machine (SVM) with three kernel functions (linear, polynomial, and Radial 
Basis Function) and the least squares support vector machine (LS-SVM). The pol-
ynomial kernel demonstrates the best performance for the SVM, with an R2 of 
0.8796. Moreover, the LS-SVM that used pertinent predictors for training had 
higher accuracy, with an R2 of 0.9227, while the SVM that used all the predictors 
yielded an R2 of 0.9184. 

Past literature reveals that different ML models perform optimally under di-
verse hydrogeological conditions. Nonetheless, most studies on WQI prediction 
have employed conventional weight assignment methods. To the best of our 
knowledge, no research has evaluated Abidjan CT groundwater quality using a 
WQI based on AHP MCDM. In addition, no investigation into the performance 
of ML models for groundwater quality prediction in Abidjan has been recorded. 
To address this gap, this exploratory study aims to predict an AHP-based WQI 
for Abidjan CT groundwater through three regression algorithms (Ridge, Lasso, 
and Gradient Boosting). The Continental Terminal groundwater is a vital source 
for the Abidjan population, and if its quality can be forecasted, this can control 
and mitigate significant risks. Hence, this research provides novel perspectives on 
managing Abidjan groundwater through machine learning prediction. Integrat-
ing AHP in the WQI method also simplifies and improves the determination of 
the relative importance of groundwater quality indicators. Lastly, this study allows 
a regular evaluation framework without the necessity of extensive sampling, la-
boratory analysis time, and expenses. 

2. Study Area 

The Continental terminal aquifer considered in this study is predominantly found 
in the district of Abidjan, the southeastern part of Côte d’Ivoire (Figure 1). The 
district covers the area between latitude 5˚20'10”N and longitude 4˚01'39”W, with 
an elevation ranging from 0 to 200m [42]. This region is characterized by an 
equatorial transitional climate known as the Attieen climate, with two wet seasons 
(April to July and October to November) and two dry seasons (August to Sep-
tember and December to March) [43]. The geology of Abidjan corresponds to the 
coastal sedimentary basin, representing 2.5% of Côte d’Ivoire’s surface area and 
measuring 350 to 400 km long and 40 to 50 km wide [43]. The sedimentary basin 
in Abidjan is composed of three aquifers: the Quaternary, the Continental Termi-
nal, and the Maastrichtian. The CT aquifer, further north in the basin, covers its 
entire surface aside from the Quaternary coastal area [44]. The CT aquifer is 
unconfined from the Mio-Pliocene age formations in the form of high plateaus 
[42]. These formations are characterized by a lenticular stratification of coarse 
sands, varicolored clays, ferruginous sandstones, and iron ores [45]. Known as 
the Abidjan aquifer, CT exploitation accounts for more than 50% of the national 
drinking water production. The CT groundwater is mainly recharged by two 
processes: the direct infiltration through the Quaternary formation (upper layer) 
and the long rainy season, which recharges the groundwater in approximately  
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Figure 1. CT groundwater sampling location in Abidjan, Côte d’Ivoire: Anonkoua Kouté (AK), Niangon Nord (NN), Djibi (DJI), 
Nord Riviera (NR), Riviera Centre (RC), Zone Ouest (ZO), Zone Est (ZE), Zone Nord (ZN), Adjamé Nord (AN). 

 
two months and lasts 2 to 4 months [43] [45]. 

3. Methodology 
3.1. Data Collection 

In this study, nine sampling sites in the CT groundwater of Abidjan were studied. 
Given the impact of the rainy season on CT groundwater recharge and imploring 
the representative sampling method, the National Public Hygiene Laboratory in 
Abidjan provided data (98 samples/site) from their sampling campaigns from 
May 2nd to September 1st, 2022. These samples were considered sufficiently rep-
resentative to approximate the characteristics of the broader population from 
which they were extracted [46]. A total of twelve indicators have been assessed in 
compliance with World Health Organization (WHO) specifications, notably pH, 
electric conductivity (EC), total dissolved solids (TDS), chloride (Cl−), sulfate 
( 2

4SO − ), bicarbonate ( 3HCO− ), sodium (Na+), potassium (K+), magnesium (Mg2+), 
calcium (Ca2+), nitrate ( 3NO− ), and aluminum (Al3+). The methodology comprises 
two key phases designed to achieve the research objectives. Initially, the compu-
tation of the WQI was conducted using the Analytic Hierarchy Process (AHP) to 
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determine the relative weight of parameters. Subsequently, the prediction of the 
AHP-based WQI was executed, applying the twelve physicochemical parameters 
as features and the WQI as label. 

3.2. Water Quality Index Calculation 

The Water Quality Index is a popular method with straightforward mathematical 
features and a user-friendly interface. This approach uses data or indicators from 
a water body to determine a unique number. The obtained number is then classi-
fied into a category that reflects the water quality status [19]. The analytical hier-
archy process (AHP) is a multi-criteria decision analysis method (MCDM) devel-
oped by Saaty [47]. In recent years, numerous researchers have used AHP to cal-
culate the relative weight of parameters for different groundwater studies [48]-
[50]. This method has the advantage of limiting the possibility of errors and in-
correct distribution of weight to a specific parameter [50] [51]. Additionally, the 
consistency of the approach can be verified after computation, and the pair-wise 
comparison matrix generated in the calculation is a promising approach for 
providing relative weights [20]. 

3.2.1. Parameters Relative Weights Calculation 
The AHP-weighting was implemented through a four-step process. 

Step 1: The parameters are hierarchically organized considering their nature or 
function. 

Step 2: Scales of 1 to 9 (Table 1) are attributed to the parameters based on their 
significance in the overall water quality. 

 
Table 1. Saaty’s lineal scale of preferences in the pair-wise comparison process. 

Numerical rating Judgments of preferences between factor i and j 

1 factor i is equally important to factor j 

3 factor i is slightly more important than factor j 

5 factor i is clearly more important than j 

7 factor i is strongly more important than factor j 

9 factor i is extremely more important than factor j 

2, 4, 6, 8 Intermediate values 

 
Step 3: The pair-wise comparison matrix is constructed. Considering n evalu-

ation factors and the importance intensity of factor i over j. The pair-wise com-
parison matrix A gives: 
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aij = Wi/Wj ; where Wi and Wj represent the assigned scores to factors i and j, 
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respectively. This value is supposed to approximate the relative importance of i to 
j. 

The factors eigenvectors are then calculated using the average of the normalized 
column, presented as 
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1 ij
i j
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= ∑
∑

; ( , 1, 2, ,i j n=  ) (2) 

Step 4: The consistency index (CI) and the consistency ratio (CR) are calculated 
to validate the judgment of the different values assigned to parameters. 

 
CICR

RCI
=  (3) 

where 

 max

1
n

CI
n

λ −
=

−
 (4) 

With n, the pair-wise comparison matrix size, and maxλ , the principal eigen-
value of the matrix A. The consistency is observed only when matrix A is a positive 
reciprocal one and maxλ  is closer to n. 
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max 1
i
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i

n Aw
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λ
=
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 (5) 

where 1 nAw AW=


 is the product of the geometrical mean of the pair-wise com-
parison matrix rows and the normalized weight; inw  is the normalized weight of 
each variable nW . 

RCI is the average random consistency index, computed and tabulated as 
shown in the following Table 2. If CR < 0.1, the numerical judgments will be con-
sidered acceptable. 

 
Table 2. Average random consistency index values according to matrix size. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RCI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.48 1.56 1.57 1.59 

3.2.2. Calculation of Quality Rating 
The calculation is performed using the normalized rating scale (qi), which is ob-
tained by subtracting the measured value of a parameter from the acceptable level 
and then dividing it all by the permissible level. The equation is formulated as 
follows: 

 l m
i

l

A V
q

A
−

=  (6) 

where lA  is the acceptable level set by the WHO [52] for each parameter in 
drinking water and mV  is the measured value of this parameter. 

3.2.3. Determination of the Index 
For computing WQI, the sub-index SI for each parameter gives: 
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 i i iSI W q= ×  (7) 

where iW  is the normalized weight of the ith parameter. 

 Then, 
1WQI i

n
i SI
=

= ∑  (8) 

The computed WQI values are finally classified into five categories (Table 3): 
excellent, good, poor, very poor, and unfit water for drinking purposes [53]. 

 
Table 3. Water quality classification ranges. 

Range Water quality 

<50 Excellent water 

50 - 100.1 Good water 

100 - 200.1 Poor water 

200 - 300.1 Very Poor water 

>300 Unfit for drinking 

3.3. Machine Learning Prediction 
3.3.1. Data Pre-Processing 
Our study experiment was conducted in the Windows 11 system, using Python 
(version 3.11.0) as the programming language for code programming. The data 
reading and preprocessing via Pandas (version 2.1.4). Machine learning models 
were built through scikit-learn (version 1.2.2), and matplotlib (version 3.8.0) was 
used to draw graphics. First, the data preprocessing consisted of filling the missing 
values with 0 using the Pandas tool. The second step focused on feature scaling, 
with the min-max normalization technique commonly applied for standardiza-
tion tasks [54]. These features range between 0 and 1, helping to improve the con-
vergence speed and performance of specific machine-learning algorithms. 

 
( )

( ) ( )
min

max min
x x

x
x x
−

=
−

′  (9) 

Here, x  is the original data, x′  represents the normalized data, ( )max x  
represents the maximum value of the original data while ( )min x  represents the 
minimum value of the original data. 

The third step encompasses data splitting into training and test sets. The train-
ing set allows ML algorithm data to learn how to generate predictions and uncover 
insights within the dataset, while the test set is used to execute the model. The 
current experiment implies time series data, where data before August 1, 2022, 
were used as the training set and those after August 1, 2022, as the test set. Based 
on the slide window projection, data features for seven consecutive days have been 
input in each model’s windows (window size = 10) to enable water quality predic-
tions after seven days. 

3.3.2. Learning Algorithms 
• Ridge Regression 
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The basic principle of ridge regression analysis introduced by Hoerl and Ken-
nard [55], established research to estimate biases with a smaller Mean squared 
error (MSE). By adding a small constant ‘k’ to the diagonal of the correlation ma-
trix of independent variables, the error variance can be considerably reduced to 
manage the overall instability of ordinary least square (OLS) estimates. The cal-
culation formula gives: 

 ( ){ }2
2

ridge 01 1 1ar mˆ gi i ij j ji j
N p

j
pd x

β
β β β λ β

= = =
= − − +∑ ∑ ∑  (10) 

With β̂  as the ridge estimator, N samples, the constant ‘k,’ the p covariates, 
and ( )T

1 2, , ,i i i ipx x x x=   the covariate vector, as well as λ  which refers to the 
shrinkage parameter indicating the larger the value of λ , the regression coeffi-
cients decline further as they approach zero. Before implementing Ridge regres-
sion, the inputs need to be standardized because the obtained solutions are not 
homogeneous when the input variables are scaled. Also, the intercept 0β  has not 
been penalized in the Ridge regression. 
• Lasso Regression 

Lasso is a linear model with regularization, initially introduced in the context 
of least squares. Tibshirani [56], presented the model as an innovative variable 
selection mechanism for regression, optimizing the residual sum of squares while 
constraining the total absolute coefficient magnitudes. Lasso is a well-known re-
gression method that regularizes the parameter β under the sparse assumption 
[57]. Like ridge regression, the model considers N sample, p covariates, and a sin-
gle outcome. Supposing iy  is the response variable, and ( )T

1 2, , ,i i i ipx x x x=   
is the covariate vector for the ith case ( )1 2, , , pβ β β β= 

, the following relation 
gives the mathematical expression: 

 ( )2

0 ,1 k k i ii k j
n K x yβ β
= =

+ −∑ ∑  (11) 

In Lasso regression, λ subject is computed to minimize the residual sum of the 
square: 

 ( )2

0 ,1 1k k i i ki j
K
k k

n kx yβ β λ β
= = =

+ − +∑ ∑ ∑  (12) 

• Gradient Boosting 
The Gradient Boosting (GB) approach is an ensemble learning technique [27] 

that integrates multiple weak models to enhance overall performance. The GB al-
gorithm consists of three key elements: the loss function, the weak learner, and 
the additive model. The loss function component must constantly be optimized 
to reduce the prediction error. Gradient Boosting is based on sequential learning 
using weak learners like the decision trees model to mitigate the losses without 
altering the existing tree. Instances mistakenly identified in one phase are assigned 
additional weight in the subsequent step. This way, each subsequent weak learner 
is designed to address and rectify the errors made by the previous models [58] 
[59]. Friedman provided the entire calculation process [60], explained as follows: 
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Considering the predictors x, the targe y, and the number of observations 
1, ,n n=  . 

• Model initialization with a constant value:  

 ( ) ( )0 1arg min ,ii
nF x L y

γ
γ

=
= ∑  (13) 

where 0F  is the initial constant value prediction and L, the loss function. 
• For 1m =  to M with M, the number of created trees and m, the index of each 

tree. 

 Residuals computation: 
( )( )

( )
( ) ( )1

,

m

i i
im

i F x F x

L y F x
r

F x
−=

 ∂
= −  

∂  
 (14) 

for 1, ,i n=   and 1mF − , previous prediction. 
• Regression tree training and terminal node reasons creation jmR  

for 1, , mj J=  ; with the features x against γ  j , the terminal or leave node 
and J, the total number of leaves. 

 Computation of ( )( )1arg min ,
i jmjm i m ix R L y F x

γ
γ γ

∈ −= +∑  (15) 

for 1, , mj J=   

 Model update: ( ) ( ) ( )1 1 1mJ
m m jm jmjF x F x v x Rγ− =

= + ∈∑  (16) 

3.4. Prediction Performance Assessment 

Verifying the accuracy of the constructed models is an essential phase in predic-
tions; otherwise, the predictive model would lack scientific significance [61]. The 
performance assessment indicators for our study’s prediction include the mean 
square error (MSE), the root mean square error (RMSE), the Pearson, the Spear-
man, and the Kendall correlations. The Pearson, Spearman, and Kendall correla-
tion coefficients represent the consistency evaluation metrics. These indicators are 
calculated as follows: 

 ( )2
1

1MSE i
n

ii x y
n =

= −∑  (17) 

 ( )2
1

1RMSE i
n

ii x y
n =

= −∑  (18) 

where, ix  is the ith observed value, iy  is the corresponding predicted value, and 
n the number of observations. 

MSE and RMSE values approaching 0 imply higher prediction accuracy, 
whereas values approaching 1 reflect lower prediction performance [62]. 

The correlation coefficients indicate the degree of linear association between 
two variables, with 1 indicating a positive relationship, -1 indicating a negative 
relationship, and 0 indicating no linear association [63] [64]. For variables a and 
b with n data sets (each data set can be labeled ai and bi, where 1, 2, ,i n=  ), the 
coefficient is used to estimate the correlation r between a and b. 
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 Pearson: 
( )( )

( ) ( )
1

22

1 1

n
i ii

p
n n

i ii i

a a b b
r

a a b b

=

= =

− −
=

− −

∑

∑ ∑
 (19) 

 Spearman: 
( )

2

2

6
1

1
i

s
d

r
n n

∑
= −

−
 (20) 

 Kendall: 
( )1  1

2

c dn n

n n
τ

−
=

−
 (21) 

where a  and b  are the means of a and b, respectively, ( ) ( )i i id R a R b= −  is 
the difference between the two ranks of each variable and cn  is the number of 
concordance and dn  the number of discordances. 

4. Results and Discussion 
4.1. Physico-Chemical Parameters Evolution 

Table 4 presents the descriptive statistics of all the analytical data of the ground-
water samples collected from the study area, majorly during the long rainy season. 
Most parameters were found within permissible limits of the WHO [52], except 
for K+ and Al3+, which exceeded the permissible thresholds in 4.76% and 3.4% of 
samples, respectively. In the CT aquifer, water is particularly acidic, with pH val-
ues between 4 and 5.9. The primary factor predicting this pH is the acidity of the 
leached ferrallitic soil of the southern coastal plateau landscapes, which is 3.9 ac-
cording to the soil record of the Côte d’Ivoire sedimentary basin [65]. Acidic rain-
water recharge also influences the pH of the resource [66]. The observed EC varies 
from 4.1 to 469.0 µS/cm, indicating a low conductivity due to groundwater mix-
ing, as the CT is an unconfined aquifer. After surface recharge enters the aquifer, 
a significant dilution occurs due to less mineralization and more acidic water [43]. 
The relatively high values correspond to areas that lack a functional sanitation 
infrastructure [67]. The observed TDS varies from 0.0629 mg/L to 214.315 mg/L, 
which ascertains the low salinity of the resource and the groundwater mixture. 

The anions order in the overall samples is 3HCO−  > Cl− > 3NO−  > 2
4SO − . The 

recorded 3HCO−  level varies between 0 and 240.5 mg/L. In some samples, higher 
concentrations of HCO3 can be justified by the weathering of silicates [68], occur-
ring when they react with CO2 gas from root respiration and aqueous CO2 from 
the water, leading to a potential release of Ca, Mg, and HCO3 into the groundwater 
[69]. The measured concentration of Cl− varies from 1.68 mg/L to 16.908 mg/L, 
while the nitrate ranges from 0 to 48.73 mg/L. The values of 3NO−  close to per-
missible limits are symptomatic of sewage effluent drainage and decomposition 
of organic material with precipitation in the unconfined CT groundwater. The 
sulfate content ranges from 0 to 18.4 mg/L as the origins of 2

4SO −  in groundwater 
are mainly from the dissolution or oxidation of sulfate minerals and acidic rain-
water recharge [70]. 

The cationic order in the CT groundwater samples is Ca2+ > Na+ > Mg2+ > K+ >  

https://doi.org/10.4236/ica.2024.154010


D. G. E. Kressy 
 

 

DOI: 10.4236/ica.2024.154010 226 Intelligent Control and Automation 
 

Table 4. Statistics of groundwater physicochemical parameters for each site. 

  EC pH Cl− 3NO−  2
4SO −  3HCO−  Na+ K+ Mg2+ Ca2+ Al3+ TDS 

AK 

Min 19.56 4.5 1.82 2.02 0.025 0.01 1.066 0.01 0.002 0.5 0.013 7.773 

Max 46.54 4.96 3.83 5.72 2.86 2.46 2.173 0.99 1.42 0.993 4.209 15.186 

Mean 32.297 4.651 2.629 3.934 1.291 1.070 1.854 0.272 0.588 0.713 0.164 10.911 

SD 7.913 0.112 0.532 0.978 0.766 0.664 0.168 0.188 0.376 0.145 0.482 1.539 

NN 

Min 4.1 4.3 3.61 4.5 1 0.1 1.6 0 0 0 0.003 13.988 

Max 51.55 5.19 4.89 7.3 2.7 0.402 2.73 2.12 1.999 0.99 0.086 20.534 

Mean 20.904 4.841 4.260 5.985 1.827 0.249 2.167 0.864 0.918 0.776 0.041 16.748 

SD 15.132 0.175 0.357 0.795 0.498 0.092 0.301 0.613 0.589 0.215 0.028 1.313 

DJI 

Min 5.77 4.3 2.8 4.8 0.7 0 2.5 0.2 0.4 0.4 0.001 11.353 

Max 55 5.5 5.001 13.2 2.401 9.4 4.9 1.8 1.9 1.2 0.13 25.615 

Mean 20.722 4.901 3.858 7.807 1.556 3.574 3.620 0.720 0.944 0.779 0.060 17.557 

SD 12.918 0.373 0.647 2.432 0.463 2.679 0.726 0.319 0.338 0.229 0.039 3.225 

NR 

Min 21.07 4 3.7 4.9 0.071 0 1.056 0.1 0.5 0.33 0.001 9.069 

Max 109.7 4.99 8.6 27.4 4.9 11.7 9.9 3.8 1.602 4.2 3.088 25.2 

Mean 74.483 4.456 6.059 12.109 2.223 4.257 5.100 2.102 0.935 2.303 0.153 16.593 

SD 18.437 0.283 1.287 5.430 1.256 3.373 2.297 0.974 0.301 1.120 0.362 3.517 

RC 

Min 83.6 4.07 2.5 0 0.4 29.3 5.13 0.32 1.011 2.401 0.001 0.063 

Max 151.8 5.73 6.97 8.2 1.9 67.32 11.76 3.99 3.593 11.7 0.017 71.227 

Mean 107.99 5.022 4.608 3.464 1.216 50.792 8.343 2.185 2.328 7.252 0.009 33.223 

SD 22.289 0.349 1.109 2.610 0.456 11.239 1.954 1.070 0.597 2.653 0.005 25.117 

ZO 

Min 41.7 4.3 4.44 0 0 0 3.11 0.506 0.12 0.4 0.001 4.115 

Max 159.4 5 16.908 48.73 14.57 78.1 12.55 33.61 4.9 19.3 0.48 103.70 

Mean 83.2 4.623 10.066 10.331 5.362 18.139 8.254 11.013 3.045 9.515 0.048 48.564 

SD 30.215 0.197 3.643 13.752 4.324 21.621 2.770 11.008 1.207 5.534 0.109 25.261 

ZE 

Min 174.96 4.17 2.21 0 0.053 56.92 9.2 0.1 2.3 5.5 0.002 0.420 

Max 236.3 5.84 15.3 27.3 4.55 135.2 18.7 1.29 5.81 39.9 0.103 129.91 

Mean 201.30 4.846 7.413 9.069 2.028 96.021 13.943 0.605 4.085 14.565 0.012 62.489 

SD 18.107 0.349 3.274 9.336 1.236 25.202 2.846 0.344 0.942 8.826 0.022 43.873 

ZN 

Min 57.2 4.8 1.9 0 0.6 122.54 12 0.4 5.2 18.1 0.001 118.63 

Max 289.33 5.5 4.93 20.48 8.8 175.6 21.48 9.81 17.07 35.06 0.052 182.68 

Mean 205.28 5.191 3.603 4.432 3.576 148.131 17.105 4.946 9.112 26.271 0.014 143.12 

SD 82.370 0.211 0.775 6.963 2.804 16.114 2.416 2.824 2.923 4.756 0.015 13.119 

AN 

Min 298 4.5 1.68 0 0 169.98 6.8 0.2 10.4 38.1 0.001 154.89 

Max 469 5.9 7.32 2.2 18.4 240.5 22.41 4.3 15.4 51.3 0.008 214.32 

Mean 385.89 5.161 4.220 0.893 4.981 205.446 15.646 2.252 12.88 44.071 0.004 187.67 

SD 52.575 0.256 1.604 0.618 5.970 18.453 4.002 1.240 1.587 3.975 0.002 12.603 
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Al3+. The Ca2+ value indicates variations from 0 to 51.3 mg/L. The primary factors 
influencing the presence of Ca2+ in groundwater are the calcium-rich silicate 
weathering and the process of ion exchange [71]. The Na+ concentration fluctu-
ates between 1.056 mg/L and 22.4 mg/L, while the Mg2+ fluctuates between 0 and 
17.07 mg/L. The recorded K+ varies between 0 and 33.61 mg/L. High levels of K+ 
observed in a few samples are due to alteration products such as kaolin in clay 
formations [72], of the aquifer. For the Al3+ content, the measured concentration 
ranges between 0.001 mg/L and 4.209 mg/L and the highest Al3+ values potentially 
come from the geological formation of the CT aquifer [73]. 

4.2. Water Quality Index 

Applying the AHP methodology, the structure was organized into three hierar-
chies given major ions percentage in samples (Figure 2): (1) physical parameters 
such as pH, EC, and TDS, (2) chemical parameters like Cl−, 2

4SO − , 3HCO− , Na+, 
K+, Mg2+, and Ca2+, and (3) health-threatening chemical parameters such as 3NO−  
and Al3+. Scores of 5 and 9 were respectively given to the first and third structures. 
The physical variables are undoubtedly essential; however, the health-threatening 
parameters are paramount in groundwater. Additionally, structure (2) was di-
vided into two subgroups, (a) and (b), with respective rates of 6 and 4 based on 
anions and cations orders in the samples. The consistency ratio calculation gives 
CR = 0.024 < 0.1 (Table 5), validating the generated pair-wise matrix. This result 
of CR enables the application of normalized weights as relative weights for WQI 
determination. 

 

 
Figure 2. Hierarchical structure of the selected parameters. 
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Table 5. Physico-chemical parameters pair-wise comparison matrix. 
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The obtained index values fluctuate on average between 83.40 and 90.79, with 
a standard deviation between 0.867 and 14.639 (Table 6). The classification of 
these indices based on the categories for human consumption indicates good 
groundwater quality for most samples, corresponding to 98.98%. Moreover, 
0.68% of the samples are under the excellent water quality category (<50), while 
0.34% of the samples are under the poor water quality category (100 - 200.1) (Ta-
ble 7). Considering that Al3+ and K+ exceed the permissible thresholds for 4.76% 
and 3.4% of the samples, respectively. The WQI results and the CT groundwater 
quality are deemed protected with a minor degree of threat or impairment. The 
resource conditions represent areas with suitable groundwater for various uses. 
The Abidjan quaternary groundwater quality assessment presented similar results 
supporting our study’s outcome [74]. The GWQI also shows that the resource is 
generally suitable for drinking purposes. In dry season, 70.49% of the samples fall 
into the category of excellent water quality, 16.39% fall into good water quality 
class. 55.73% of the samples are classified as excellent in rainy seasons, while 
31.13% are good. Since the Quaternary layer is located above the CT layer, the 
modified classification of some samples can be attributed to the effects of precip-
itation on the chemical process of water, as observed in CT groundwater. 

 
Table 6. Statistics of the computed WQI for each site. 

 AK NN DJI NR RC ZO ZE ZN AN 

min 14.430 87.248 83.404 3.781 88.359 58.864 79.705 76.128 82.218 

max 172.587 93.536 93.856 103.707 93.553 91.957 92.007 88.668 85.905 

mean 89.123 90.649 89.123 83.606 90.788 84.991 87.935 84.062 83.821 

SD 14.639 1.852 2.621 13.341 1.049 7.754 2.832 2.481 0.867 

 
Table 7. CT groundwater quality evaluation summary. 

Model 
Total  

monitoring sites 
Water quality status 

AHP  
weight-based 

WQI 
9 

Excellent 
0.68% of 
samples 

Good 
98.98% of 
samples 

Poor 
0.34% of 
samples 

Very poor 
0% of 

sample 

Unfit 
0% of 

sample 

4.3. Prediction Results and Performances 

This section provides the outcomes of real-time prediction of CT groundwater 
quality using Ridge, Lasso, and GB regression models. The twelve physicochemi-
cal parameters (pH, EC, TDS, Cl−, 2

4SO − , 3HCO− , Na+, K+, Mg2+, Ca2+, 3NO−  and 
Al3+) represent the features, and the AHP-based WQI are the label. The limited 
data enables a prediction of resource quality seven days ahead. However, all the 
models were successfully executed. The algorithm accuracy indicators present 
performances varying from one model to another. For the interpretation, we only 
considered the testing set. 
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4.3.1. Ridge Regression 
The real and predicted WQI plots (Figure 3) indicate that the predicted values 
oscillate within a similar range to the measured values for locations AK, RC, ZO, 
ZE, and AN. Conversely, the differences between the actual and predicted values 
are apparent in the remaining sites. In contrast to previous observations, the per-
formance metrics delineated in Table 8 indicate that at these sites (AK, RC, ZO, 
ZE, and AN), the model has a suboptimal performance (MSE and RMSE close to 
1), while the other sites yield good performance (MSE and RMSE close to 0). Ad-
ditionally, the correlation metrics imply a lack of consistency in the model’s exe-
cution across most monitored sites with r, rs, and τ < 0.5. 
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Figure 3. Actual vs predicted WQI plots for Ridge model at each site (a) Site 1 AK, (b) Site 
2 NN, and (c) Site 3 DJI, (d) Site 4 NR, (e) Site 5 RC, (f) Site 6 ZO, (g) Site 7 ZE, (h) Site 8 
ZN, (i) Site 9 AN. 

 
Table 8. Groundwater quality prediction performance indicators for Ridge regression for 
each site. 

Sites MSE RMSE Pearson r Kendall rs Spearman τ 

AK 0.704 0.839 0.538 0.314 0.406 

NN 0.192 0.438 0.703 0.193 0.298 

DJI 0.255 0.505 0.546 0.116 0.093 

NR 0.303 0.551 0.420 0.010 0.012 

RC 1.792 1.339 0.426 0.363 0.332 

ZO 1.001 1.000 0.457 0.159 0.234 

ZE 1.318 1.148 0.456 0.152 0.093 

ZN 0.160 0.401 0.264 0.166 0.298 

AN 2.659 1.631 0.340 0.606 0.783 

mean 0.924 0.834 0.427 0.204 0.252 

std 0.774 0.418 0.136 0.167 0.216 

4.3.2. Lasso Regression 
The obtained plots (Figure 4) suggested that the predicted WQI values vary 
within the same range as the measured values for locations AK, NN, NR, RC, ZO,  
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Figure 4. Actual vs predicted WQI plots for Lasso model at each site (a) Site 1 AK, (b) Site 
2 NN, and (c) Site 3 DJI, (d) Site 4 NR, (e) Site 5 RC, (f) Site 6 ZO, (g) Site 7 ZE, (h) Site 8 
ZN, (i) Site 9 AN. 

 

and ZN. Meanwhile other sites, DJI, ZE, and ZE, discrepancies are identified be-
tween the actual and predicted values at the same time. However, the performance 
metrics outlined in Table 9 indicate that the model has low performance (MSE 
and RMSE close to 1) at these sites, while the remaining sites showcase good per-
formance (MSE and RMSE close to 0). Moreover, the indicators exhibit incon-
sistent model execution for most monitored sites like Ridge regression, with r, rs, 
and τ close to 0. 

 
Table 9. Groundwater quality prediction performance indicators for Lasso regression for 
each site. 

Sites MSE RMSE Pearson r Kendall rs Spearman τ 

AK 7.954 2.820 0.357 0.190 0.161 

NN 1.032 1.016 0.629 0.109 0.107 

DJI 0.217 0.466 0.004 0.001 0.002 

NR 141.417 11.892 0.630 0.002 0.002 

RC 763.142 27.625 0.419 0.030 0.058 

ZO 1.377 1.173 0.513 0.094 0.093 

ZE 0.245 0.495 0.359 0.022 0.021 

ZN 16.626 4.077 0.641 0.042 0.059 

AN 0.235 0.485 0.078 0.099 0.092 

mean 148.921 6.828 0.397 0.079 0.082 

std 246.561 8.653 0.213 0.063 0.059 

4.3.3. Gradient Boosting Regression 
Table 10 presents the results of the gradient-boosting regression performance 
evaluation for the CT groundwater quality prediction. The computed metrics at 
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each site display satisfactory performance and consistency in the prediction. This 
is translated by the low error levels (close to 0) and high correlations (close to 1), 
with values ranging from 0.097 to 0.112 and 0.311 to 0.334 for MSE and RMSE, 
respectively. Also, r ranges from 0.439 to 0.966, rs from 0.632 to 0.904, and τ from 
0.836 to 0.945. The real and predicted WQI plots (Figure 5) variations corroborate  

 
Table 10. Groundwater quality prediction performance indicators for GB regression for 
each site. 

Sites MSE RMSE Pearson r Kendall rs Spearman τ 

AK 0.097 0.311 0.880 0.904 0.945 

NN 0.106 0.325 0.966 0.853 0.836 

DJI 0.097 0.311 0.880 0.904 0.945 

NR 0.104 0.323 0.879 0.858 0.890 

RC 0.112 0.334 0.439 0.632 0.836 

ZO 0.106 0.325 0.966 0.853 0.836 

ZE 0.106 0.325 0.966 0.853 0.836 

ZN 0.112 0.334 0.439 0.632 0.836 

AN 0.106 0.325 0.966 0.853 0.836 

mean 0.097 0.300 0.766 0.757 0.804 

std 0.023 0.069 0.257 0.198 0.189 
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Figure 5. Actual vs predicted WQI plots for GB model at each site (a) Site 1 AK, (b) Site 2 
NN, and (c) Site 3 DJI, (d) Site 4 NR, (e) Site 5 RC, (f) Site 6 ZO, (g) Site 7 ZE, (h) Site 8 
ZN, (i) Site 9 AN. 

 

the performance metrics results, showing fluctuation of predicted values in line 
with the trend of actual values in all sites. This confirms the accuracy of the Gra-
dient-boosting model. 

4.4. Discussion 

In the last decade, WQI models have been widely used to assess water quality for 
various contexts. Nonetheless, a major challenge faced while using WQIs is the 
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uncertainties from incorrect weight assignment in the methodology [20]. Our 
study agrees that the AHP weight-based WQI model represents the ideal ap-
proach, highlighting its advantages over alternative models like weighted arith-
metic WQI or entropy weight-based WQI. The AHP model allows for a systematic 
and structured approach to decision-making, ensuring that the most critical pa-
rameters are emphasized in the evaluation process [75]. This model focuses on the 
uncertainty in the data as well as considers the contextual significance of certain 
parameters that are better evaluated through expert input [20] [76]. Additionally, 
the AHP model’s flexibility allows for incorporating local knowledge and specific 
health impacts associated with groundwater quality parameters, making it more 
suitable for targeted assessments in diverse environments [77]. 

Regarding the prediction phase, the three regression models (Ridge, Lasso, and 
Gradient Boosting) were executed. Choosing these models over others like ran-
dom forest, artificial neural network, or deep learning can be attributed to differ-
ent factors. First, the interpretability of ridge and lasso regression is significantly 
higher. For instance, Deep learning might give accurate predictions, however, 
hardly show how predictions are made, leading to its identification as “black 
boxes” [78], posing limitations as researchers and stakeholders need to trust or 
understand the results. The ability to interpret prediction outcomes is essential for 
effective management and policymaking [29]. Next, these complex models typi-
cally require large datasets to train accurately and avoid overfitting. In the current 
framework, the available datasets do not effectively support such models. In con-
trast, traditional regression models can perform well even with smaller datasets, 
making them more practical for our scenario. Then, simpler models, such as ridge, 
lasso, and gradient boosting, not only require less computational power, but, they 
also allow for quicker deployment in real-time monitoring systems [38]. 

 
Table 11. Average values of the model performance metrics. 

Models MSE RMSE Pearson r Kendall rs Spearman τ 

Ridge 0.924 0.834 0.427 0.204 0.252 

Lasso 148.921 6.828 0.397 0.079 0.082 

GB 0.097 0.300 0.766 0.757 0.804 

 
To interpret the forecast results, the mean values of the performance metrics 

for each model were calculated (Table 11). This enabled their comparison and the 
identification of the best model. The performance metrics lie in their ability to 
quantitatively assess prediction model accuracy and inform stakeholders about 
prediction reliability. In groundwater quality scenarios, a model with low error 
rates (MSE) and high correlations is reliable, providing a clear view of resource 
quality variation over time [79]. This is essential for understanding the strengths 
and limitations of different models, allowing their recalibration, the integration of 
multiple approaches, or additional monitoring to improve overall prediction ro-
bustness. These error metrics extend beyond academic interest as RMSE values 
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can be used to establish confidence intervals around predictions [80], while cor-
relation coefficients serve as the measure of the strength and direction of the 
model. The correlations also capture real-world relationships in the groundwater 
quality parameters [79]. In practical decision-making, performance metrics are 
crucial indicators for resource allocation, pollution prevention, and the establish-
ment of informed remediation strategies to inform plans for future water de-
mands [81]. Ultimately, they develop evidence-based policies to justify invest-
ments and create sustainable decision-support systems. 

Our findings indicate that the GB regression has the lowest values for MSE and 
RMSE (MSE = 0.097; RMSE = 0.300). Conversely, both Lasso and Ridge regression 
display significant errors, with Lasso regression recording the highest MSE and 
RMSE figures (148.921; 6.828). These metric outcomes suggest that GB potentially 
outperforms Lasso and Ridge regarding predictive accuracy. Nonetheless, obtain-
ing smaller RMSE and MSE does not necessarily indicate excellent models due to 
their exclusive representation of the mean of squared variances between the fore-
cast and observation failing to reveal the inherent logical bias [28]. The computa-
tion of Pearson, Spearman, and Kendall correlation coefficients was performed to 
identify the variance in model performance and ascertain their consistency [64]. 
In agreement with the performance metrics, the correlation coefficients reveal that 
GB demonstrates the most significant level of uniformity while Lasso indicates the 
lowest, highlighting the differences in predicted and actual WQI values between 
Lasso and Ridge compared to GB. This outcome was supported by Chen and 
Guestrin [82], who stated that GB encapsulates complex patterns in a way that 
other models are unable to. Discrepancies between the performance rates and the 
calculated correlations were also observed. For instance, in Lasso regression pre-
diction, the metrics suggested an excellent performance in the ZE site (MSE = 
0.245 and RMSE = 0.485), while the consistency evaluation presented weak con-
sistency for the same site (r = 0.359; rs = 0.022; τ = 0.021). Thus, the Lasso and 
Ridge prediction potentially involves systematic biases. 

Other researchers have argued that components such as model fitting can lead 
to systematic instability and bias [28]. An effective data-splitting approach should 
support the models in grasping the statistical patterns of the input and prevent the 
introduction of excessive bias. Our study divided sample data into training and 
testing subsets rather than training, testing, and validation subsets due to the lim-
ited sample size (4 months) and the significance of avoiding underestimation of 
the observed groundwater quality. As a result, the conventional training and test-
ing window selection technique was employed for data splitting [83]. Therefore, 
three-quarters of the sample size was selected as the training set (data before Au-
gust 1, 2022) and the rest as the testing set (data after August 1, 2022). The test set 
included daily sampling data for over one month, representing a short period that 
can hinder the ability of the model to capture the overall dynamic trend. However, 
identifying changes in groundwater quality over four months of observation un-
der the same seasonal conditions was a complex challenge. Hence, both Lasso and 
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Ridge regression experienced limitations due to the small sample size and the ab-
sence of diversity in the data categories, which used solely physicochemical pa-
rameters. Furthermore, Lasso and Ridge models exhibit limited capabilities in 
forecasting nonlinear occurrences compared to GB regression [28]. This outcome 
implores the hydrogeochemical process, which embodies nonlinear relationships 
and a diverse array of interactions within the subsurface environment [84] [85]. 
By iteratively fitting new models to the errors of the previous models, GB can learn 
complex patterns and interactions between variables [58] [59], implying the 
model’s suitability for our study. 

5. Conclusions 

This research was designed to evaluate the quality of the CT groundwater in Abid-
jan using the water quality index (WQI) based on the analytical hierarchy process 
(AHP) and multi-criteria decision analysis methodology (MCDM). Additionally, 
this study aimed to improve its proposed frameworks for continuous resource 
quality monitoring by applying machine learning predictions. The efficacy of the 
models was assessed through a comprehensive analysis using a range of statistical 
approaches comprising of prediction performance metrics (RMSE, MSE) and 
model consistency (Pearson, Spearman, and Kendall correlation). First, the results 
of the research reveal that most of the groundwater quality parameters across the 
sampling sites are within the World Health Organization (WHO) guideline values 
except for the aluminum (Al3+) and potassium (K+) that exceeded the permissible 
thresholds of 4.76% and 3.4% of samples, respectively. Next, the AHP-based WQI 
model classified the CT groundwater quality averagely into “good” category, with 
0.68% in “excellent” and 0.34% in “poor” categories. The groundwater quality is 
deemed protected with a minor degree of threat or impairment with conditions 
comparable to areas with suitable groundwater for various uses. Then, the perfor-
mance evaluation indicated that the gradient boosting (GB) regression model op-
timally predicted the CT groundwater quality. The GB outperformed the other 
models by providing the highest accuracy with MSE = 0.097 and RMSE = 0.300, 
in addition to a remarkable consistency with Pearson, Spearman, and Kendall cor-
relations respectively stated as, r = 0.766, rs = 0.757, and τ = 0.804. Conversely, the 
lowest prediction accuracy was recorded for the Lasso model with an MSE and 
RMSE of 148.921 and 6.828 respectively, and consistency parameters of r = 0.397, 
rs = 0.079, and τ = 0.082 respectively. Both Lasso and Ridge regression faced lim-
itations due to the small sample size and the lack of data diversity. Our study con-
sidered a single rainy season dataset and major ions, however, multiple-season 
data and parameters may have provided greater insight into the groundwater 
quality of this study. Also, these models struggle with forecasting nonlinear events 
compared to GB regression, considering that the hydrogeochemical process em-
bodies nonlinear relationships and diverse interactions within the subsurface en-
vironment. Through weak learners, GB can learn intricate patterns and interac-
tions between variables by iteratively fitting new models to errors of previous 
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models. With continuous data updates and the application of ensemble models 
like GB, a groundwater quality prediction monitoring system may be established 
for efficient water resource management in Abidjan. 

In summary, this exploratory study not only provided the assessment and pre-
diction of groundwater quality but also provided novel actionable insights for the 
effective management of water resources. The implications for groundwater man-
agement policy in Abidjan and the whole country are as follows; the integration 
of real-time monitoring systems, enhanced pollution risk assessment frameworks, 
regulatory frameworks for groundwater protection, data-driven decision-making, 
investment in infrastructure, long-term planning and sustainability, collaboration 
across sectors, and continuous improvement. 
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