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Abstract 
Effective pavement maintenance and rehabilitation decisions rely on both pave-
ment functional and structural condition data. Traditionally, state transporta-
tion agencies prioritize pavement segments based on functional conditions, of-
ten neglecting structural assessments due to the time, cost, and labor involved 
with methods like the Falling Weight Deflectometer (FWD). The objective of 
this paper to develop machine learning models—Random Forest (RF) and eX-
treme Gradient Boosting (XGBoost)—to predict pavement Surface Curvature 
Index (SCI), a key indicator of pavement structural condition, as a cost-effec-
tive alternative to frequent FWD testing. Using 3016 samples from the Long-
Term Pavement Performance (LTPP) program, the models were trained and 
tested with variables such as surface layer condition at year 0, thickness, pave-
ment age, environmental, and traffic data. XGBoost outperformed RF, achiev-
ing R2, RMSE, and MAE values of 0.90, 0.64, and 0.41, respectively, compared 
to RF’s 0.80, 0.90, and 0.51. The study highlights the importance of machine 
learning applications in predicting pavement structural conditions, offering 
precise models that can help transportation agencies optimize maintenance 
planning and resource allocation. 
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1. Introduction 

Transportation asset management systems, such as Pavement Management Systems 
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(PMS), are crucial tools for state agencies to efficiently maintain their pavement 
assets despite limited funding. In simpler terms, a pavement management system 
is the practice of managing the pavement infrastructure cost-effectively. It enables 
systematic and logical decision-making, which assists state agencies in effectively 
distributing maintenance and rehabilitation activities across road networks. Thus, 
this optimizes the utilization of available resources while planning for the pave-
ment asset’s investment decisions for the State Highway Agencies [1] [2]. 

The pavement condition is a key element in the decision-making process of 
Pavement Management Systems (PMS). Pavement data is categorized into various 
metrics such as Ride Quality, Distresses, and Structural Integrity, which compre-
hensively assess pavement condition. Specifically, Ride Quality refers to the smooth-
ness of the pavement surface as experienced by road users. Rutting and Cracking, 
significant indicators of pavement distress, quantify the extent of deformation 
along wheel paths and the occurrence of cracks in the pavement surface, respec-
tively [3]. Pavement functional condition refers to the surface characteristics of 
the pavement and how they impact the usability and safety of vehicles. It includes 
aspects like smoothness, skid resistance, and the presence of ruts or potholes. Es-
sentially, the functional condition assesses how well the pavement serves its in-
tended purpose from a user’s perspective. On the other hand, pavement structural 
condition pertains to the pavement’s ability to support traffic loading without de-
teriorating. It involves evaluating the strength and integrity of the pavement struc-
ture, including the surface, base, subbase, and subgrade layers. The structural con-
dition is crucial for determining the pavement’s need for major rehabilitation or 
reconstruction. 

Successful implementation of pavement maintenance and rehabilitation deci-
sions relies on both pavement functional and structural condition data. Without 
considering pavement structural condition data can result in the inappropriate 
selection of pavement maintenance techniques and inefficient budget allocation. 
Incorporating structural information into pavement maintenance decisions that 
do not require it causes Type 1 errors. On the other hand, without considering the 
structural condition causes Type II errors in the pavement maintenance decision-
making process. Therefore, it is important to incorporate pavement structural con-
ditions into treatment selection and fund allocation [2]. Significant researchers 
have recommended the consideration of both pavement functional and structural 
conditions for finalizing pavement maintenance decisions [4]-[9]. Baus et al. [10] 
concluded that the “addition of a separate deflection-based structural assessment 
would be valuable for identifying structurally weak sections, developing rehabili-
tation strategies based on structurally homogeneous sections, and, once a database 
has been established, for evaluating the structural performance of pavements.” 
Enhancing pavement management practices by integrating machine learning-
based predictions of structural conditions will enable more informed and strategic 
decision-making. These machine learning models will assist transportation agen-
cies in prioritizing pavement maintenance tasks and optimizing budget allocation 
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within the constraints of limited resources. The objectives of this paper are out-
lined below: 
• Develop and evaluate two ensemble machine learning models, Random Forest 

(RF) and eXtreme Gradient Boosting (XGBoost), to predict the Surface Cur-
vature Index (SCI), a key indicator of pavement structural condition, using 
various influencing factors such as surface layer condition at year 0, thickness, 
traffic data, and environmental conditions. 

• Compare the performance of the RF and XGBoost models using metrics such 
as R2, Root Mean Square Error (RMSE), and Marginal Average Error (MAE) 
to determine which model provides more accurate predictions of pavement 
structural conditions. 

• Identify the most critical factors in predicting pavement surface layer condi-
tion, such as surface layer condition at year 0, pavement age, surface thickness, 
base thickness, precipitation, and freeze thaw cycle. 

2. Literature Review 
2.1. Deflection Basin Parameters 

Deflection Basin Parameters can be calculated from the FWD collected deflection 
values, which are shown in Figure 1. Several researchers showed that the deflec-
tion basin parameters are effective tools to identify the possible distressed layer of 
the asphalt pavement. Chang et al. [11] and Horak et al. [12] developed threshold 
values for categorizing each pavement layer condition. Table 1 and Table 2 show 
the threshold values of the FWD Deflection basin parameter. For example, the 
asphalt layer is in very good condition if the SCI values are <4 mils. On the other 
hand, the range of values 4 - 6 mils, 6 - 8 mils, 8 - 10 mils, and greater than 10 mils 
indicate good, fair, poor, and very poor asphalt layer condition, respectively [11]. 
Similarly, the base layer is in very good condition if the BCI values are <2 mils. 
On the other hand, the range of values 2 - 3 mils, 3 - 4 mils, 4 - 5 mils, and greater 
than 5 mils indicate good, fair, poor, and very poor base layer condition, respec-
tively [12]. 

 

 

Figure 1. Schematic of FWD testing device [19]. 
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Table 1. FWD deflection basin parameter threshold development [11]. 

Performance 
Indicator 

Pavement Layers 
Threshold 

ranges (mils) 
Layer Condition Assessment 

Surface 
Curvature Index 

(SCI) 
Asphalt Layer 

<4 Very Good Asphalt Layer 

4 - 6 Good Asphalt Layer 

6 - 8 Fair Asphalt Layer 

8 - 10 Poor Asphalt Layer 

>10 Very Poor Asphalt Layer 

Base Curvature 
Index (BCI) 

Base Layer 

<2 Very Good Base Layer 

3 - 4 Fair Base Layer 

4 - 5 Poor Base Layer 

>5 Very Poor Base Layer 

Deflection of 
the sensor at 60 

inch offset 
(W60) 

Subgrade Layer 

<1 Very Good Subgrade Layer 

1 - 1.4 Good Subgrade Layer 

1.4 - 1.8 Fair Subgrade Layer 

1.8 - 2.2 Poor Subgrade Layer 

>2.2 Very Poor Subgrade Layer 

 
Table 2. FWD Deflection basin parameter threshold development [12]. 

Performance 
Indicator 

Pavement Layers 
Threshold ranges 

(μm) 
Layer Condition  

Assessment 

Maximum 
Deflection (D0) 

Entire Pavement 
Structure 

<625 Sound 

625 - 925 Warning 

>925 Severe 

Base Layer 
Index (BLI) 

Base Layer 

<250 Sound 

250 - 475 Warning 

>475 Severe 

Middle Layer 
Index (MLI) 

Subbase/Subgrade 
Layer 

<115 Sound 

115 - 225 Warning 

>225 Severe 

Lower Layer 
Index (LLI) 

Subbase/Subgrade 
Layer 

<65 Sound 

65 - 120 Warning 

>120 Severe 

2.2. Previous Studies Regarding Pavement Structural Condition  
Prediction Models 

Significant research works developed statistical and machine learning models for 
the predicting the pavement surface condition while few research works focused 
on the pavement structural condition prediction model. Table 3 shows the list of 
papers which developed pavement structural condition prediction models utilizing 
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Falling Weight Deflectometer (FWD) data. After conducting the literature review, 
only six relevant research papers were found in terms of predicting pavement struc-
tural condition. 

 
Table 3. Pavement structural condition prediction models using FWD data. 

Authors Response Variable Input Variables Method Data 

[13] SCI, BCI 

Asphalt Layer Thickness, 
Base Layer Thickness, 
Total Pavement Thickness, 
IRI, 
Atmospheric Temperature, 
Asphalt Pavement 
Temperature at the time of 
Testing, 
Subgrade Soil Strength 

ANN 

India 
(collected 
using FWD 
device) 

[14] D0, BLI, MLI, LLI 

IRI, 
Pavement Age, 
Traffic, 
Precipitation, 
Atmospheric Temperature, 
Pavement Temperature 

DNN 

LTPP 
(collected 
using FWD 
device) 

[15] SNeff 

Asphalt Layer Thickness, 
Base Layer Thickness, 
Total Pavement Thickness, 
IRI at year 0, 
IRI at a specific year, 
ESAL, 
Average Temperature, 
Standardized Temperature 

ANN 

LTPP 
(collected 
using FWD 
device) 

[16] BLI, MLI, LLI IRI 
ANN, 
Regression 
models 

Iran 

[17] 
Structural Condition 
Index 

ADT, 
ESAL, 
M&R Treatment year, 
IRI, 
distress data 

Decision 
Tree, 
Data Mining 
Strategies 

Texas 

[18] BDI, BCI 
Time elapsed after various 
types of pavement 
preservation applied 

ARIMA 
Alabama based 
on field test 

Note: ANN = Artificial Neural Network, ARIMA = Autoregressive integrated moving av-
erage time-series analysis, ADT = Annual Daily Traffic, BDI = Base Damage Index, BCI = 
Base Curvature Index, BLI = Base Layer Index, DNN = Deep Neural Network, D0 = Max-
imum Deflection, FWD = Falling Weight Deflectometer, MLI = Middle Layer Index, LTPP 
= Long Term Pavement Performance, LLI = Lower Layer Index, IRI = International Rough-
ness Index, ESAL = Equivalent Single Axle Load, SNeff = Effective Structural Number. 

 
From the above literature review, it was found that only 2 research papers used 

Long Term Pavement Performance (LTPP) data for pavement structural condi-
tion prediction. Haridas et al. [14] developed Deep Neural Network (DNN) to 
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predict Maximum Deflection (D0), Base Layer Index (BLI), Middle Layer Index 
(MLI), and Lower Layer Index (LLI). This research used IRI, Pavement Age, Traf-
fic, Precipitation, Atmospheric Temperature, Pavement Temperature as the pre-
dictor variables. Sollazzo et al. [15] predicted Effective Structural Number (SNeff) 
using Artificial Neural Network (ANN). This research used Asphalt Layer Thick-
ness, Base Layer Thickness, Total Pavement Thickness, IRI at year 0, IRI at a spe-
cific year, ESAL, Average Temperature, and Standardized Temperature as the pre-
dictor variables. In addition, both research works used Artificial Neural Network 
(ANN), which is subject to overfitting problem. In this case, the prediction per-
formance cannot be reliable even if it provides high accuracy. To improve the ex-
isting research in the field of pavement structural condition prediction, more 
novel methodologies are required to be applied, which are theoretically superior.  

3. Methodology 
3.1. Structural Condition Data Collection Using Falling Weight  

Deflectometer (FWD) 

There are several methods for pavement structural condition data collection. Out 
of these, the three most popular devices for structural data collection are the Fall-
ing Weight Deflectometer (FWD), Traffic Speed Deflectometer (TSD), and Roll-
ing Weight Deflectometer (RWD). Non-destructive tests (NDTs) are essential for 
evaluating the pavement structural condition evaluation. The advantages of non-
destructive testing (NDT) compared to destructive testing methods include quicker 
test completion times, simpler operation, lower costs of operation, a smaller re-
quired workforce, less disruptive procedures, and the ability to conduct tests at a 
greater number of locations. The technology used in this field has progressed from 
older devices such as the Benkelman Beam, Dynaflect, and Road Rater to the mod-
ern impulse loading system known as the Falling Weight Deflectometer (FWD). 
The Falling Weight Deflectometer (FWD) is the most popular and commonly used 
non-destructive testing (NDT) device. The FWD applies dynamic loads to a pave-
ment surface, simulating the magnitude and duration of a single heavy-moving 
wheel load. The FWD loading system delivers a transient impulse load to the pave-
ment surface. The pavement response (vertical deformation or deflection) at var-
ious distances from the loading plate is measured by a series of geophone sensors 
(usually seven). The geophones/sensors are located at 0, 8, 12, 18, 24, 36, 48, 60, 
and 72-in. spacing from the center of the load plate to measure the deflections. 
The geophones are capable of measuring with an accuracy of up to ±0.01 mils, 
while the minimum resolution for measuring deflection is ±0.04 mils. Many State 
Departments of Transportation (DOTs) integrated the assessment obtained from 
the FWD device into the broader network-level maintenance activities. The ad-
vantage of using the FWD in pavement assessment lies in its precision and the 
depth of information it provides. By accurately simulating real-world loading con-
ditions and measuring the pavement’s response, it offers an accurate estimation 
of the pavement’s structural condition. This allows for more targeted and effective 
maintenance strategies [11]. Figure 1 shows the diagram of the FWD testing 
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device. After obtaining the deflection measurements from the FWD device, struc-
tural condition indicator parameters can be calculated using these measurement 
values. Table 4 shows the equation of the FWD deflection parameters. Here, D0 
is the maximum deflection value, which the sensor collects at the point of load 
application. D300/D12 is the deflection value collected by the sensor located at 
300 mm/12-inch inches from the load application point. The unit of deflections is 
expressed in mils. 

 
Table 4. FWD Parameters and Full Meaning. 

Abbr. Full Meaning Equation 

D0 Maximum Deflection  

SCI/BLI Surface Curvature Index/Base Layer Index D0 - D300/D12 

BDI/MLI Base Damage Index/Middel Layer Index D300/D12 - D600/D24 

BCI/LLI Base Curvature Index/Lower Layer Index D600/D24 - D900/D36 

 
Huynh et al. [4] surveyed the transportation agencies of the USA regarding the 

integration of pavement structural condition into the pavement management sys-
tem decision making process. Twenty-five agencies responded to this survey. Out 
of the 25 responses, it was found that 15 agencies depend on the Falling Weight 
Deflectometer (FWD) device for pavement structural condition evaluation. Five 
agencies use both FWD and Traffic Speed Deflectometer (TSD) to collect pave-
ment structural condition data. Another question was asked to the agencies whether 
they are interested in incorporating the pavement structural condition into the 
pavement management system decision making process. Among the responses, 
13% of the agencies out of 25 responses agreed to incorporate pavement structural 
conditions into their pavement management system decisions. On the other hand, 
approximately 48% of the agencies out of 25 respondents are interested in inte-
grating pavement structural conditions into the pavement management system 
decision-making.  

3.2. Data Preparation 

The data preparation process for this study followed a rigorous and systematic 
approach to ensure both the quality and relevance of the data used in the machine 
learning models. The primary data source was the Long-Term Pavement Perfor-
mance (LTPP) dataset, which is a highly comprehensive collection of pavement 
performance data gathered from across the United States, covering a time span 
from 1989 to 2018. This extensive dataset provided a rich source of information 
for pavement condition analysis and predictive modeling. Figure 2 shows a de-
tailed framework for the Pavement Structural Condition Prediction Model Devel-
opment. Each step in the flow chart is contained within a rectangular box, and the 
steps are connected with arrows indicating the sequential flow of the process. The 
essential steps of the framework are FWD Data collection, LTPP FWD Data Pro-
cessing, Important Variables Selection, Data Preparation, Model Development, 
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and Evaluation, respectively. Data Collection is the initial step to gather data for 
the model. LTPP FWD Data Processing step involves taking the FWD deflection 
values and preparing them for further model development use. After processing 
the data, important variables that will be included in the model are selected from 
the literature review. The data preparation step includes integrating the FWD data 
with the pavement rehabilitation, traffic, climate, and structural information data 
based on the LTPP segment number and FWD data collection year for each state. 
A Python script was developed to automate the data preparation task. With the 
data prepared, the next phase was to develop the model, which involved selecting 
an appropriate modeling technique, training the model on the data, and tuning 
the model parameters. After the model was developed, it was evaluated to deter-
mine its performance, which will involve assessing how well the model predicts or 
fits new data and making any necessary adjustments. After evaluation, the model 
will be finalized, which will consider any refinements needed from the evaluation 
phase. 
 

 

Figure 2. Framework for the development of pave-
ment structural condition prediction model. 
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The target variable selected for prediction in this study was the Surface Curva-
ture Index (SCI). The SCI is calculated by subtracting the deflection value rec-
orded by the sensor located at a 12-inch distance from the load application point 
from the maximum deflection value. Previous research [1] [5] has demonstrated 
that the Surface Curvature Index (SCI) serves as a highly effective parameter for 
assessing pavement structural conditions. Motivated by this finding, this research 
adopted SCI as the target variable for predicting pavement structural condition, 
building on the foundation of earlier studies that recognized its significance in 
pavement structural performance evaluation. To predict the target variable (SCI), 
several predictor variables were chosen. These variables represent a balanced com-
bination of traffic loading, structural properties, and climatic factors. Specifically, 
the predictors included the surface curvature index at year 0, pavement age, sur-
face thickness, base thickness, KESAL (equivalent single axle loads in thousands), 
annual precipitation, and freeze index. Each of these variables plays a crucial role 
in influencing pavement behavior and deterioration. The data for these variables 
were meticulously extracted from multiple tables within the LTPP database, en-
suring consistency and precision in the data collection process. To enable effective 
model development and validation, the dataset was strategically split into training 
(80%) and testing (20%) sets. This division allowed for robust model training and 
unbiased performance evaluation. As part of the data preparation, comprehensive 
descriptive statistics were computed for each variable.  

Table 5 presents descriptive statistics for the variables used in machine learning 
model development, highlighting key features such as the Surface Curvature In-
dex (SCI), Pavement Age, Annual ESAL, and environmental factors like Precipi-
tation and Freeze Index. These statistics provide insights into the distribution of 
the variables, with minimum, 25th percentile, median, mean, 75th percentile, and 
maximum values reported. The data suggest significant variability across the var-
iables, which are critical for developing predictive models for pavement perfor-
mance. 

 
Table 5. Descriptive statistics of the variables used for the machine learning model development. 

Variables Name Min 25th Percentile Median Mean 75th Percentile Max 

Surface Curvature Index (SCI) 
(mils) 

0.1 0.83 1.62 2.30 3.16 14.39 

Surface Curvature Index at year 0 
(mils) 

0.08 0.83 1.60 2.23 2.85 12.92 

Pavement Age 
(Years) 

0 4 9 10.87 16 12.92 

Annual ESAL 0 4.28e+04 1.17e+05 2.04e+05 3.02e+05 2.66e+06 

Precipitation 
(mm) 

34.73 579.32 969.71 926.44 1283.87 2027.13 

Surface Layer Thickness (in) 0.9 4 5.25 5.98 7.3 23.2 

Freeze Index 0 3 102 248.48 307 2243 

Base Layer Thickness (in) 0 7.9 12 14 18.8 61 
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Figure 3 shows the relationships between various factors related to pavement 
conditions. Key observations include a strong positive correlation between Sur-
face Curvature Index and Surface Curvature Index at year 0 (0.80), indicating that 
initial structural conditions highly influence current conditions. Surface layer 
thickness has a moderate negative correlation with Surface Curvature Index (−0.39) 
suggesting thicker surface layers may be associated with reduced structural con-
dition scores. 

 

 

Figure 3. Correlation Matrix among the variables. 

3.3. Random Forest 

Random Forest algorithm is a powerful ensemble machine learning technique re-
nowned for its prediction accuracy and ability to handle complex datasets. It op-
erates by constructing multiple decision trees, each constructed from a random 
subset of the training data. This subset is chosen using a method known as boot-
strapping, which allows for the same data point to be used in multiple trees, lead-
ing to a reduction in variance and an increase in the model’s robustness [5]. These 
predictions are then combined to form the final output of the Random Forest 
model. Random Forest (RF) can be used for both classification and regression prob-
lem. For a classification problem, the result is achieved through majority voting, 
where the prediction that most trees agree on is chosen as the final decision. For 
regression tasks, the model averages the numerical predictions from each tree to 
determine the final model result. Following this approach, Random Forest (RF) 
model enhances the predictive accuracy by mitigating the errors of individual 
trees but also helps in preventing overfitting, which is a common problem of the 
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machine learning model particularly Artificial Neural Network (ANN). In brief, 
the Random Forest algorithm provides a robust predictive performance [20].  

3.4. eXtreme Gradient Boosting (XGBoost) 

XGBoost is an ensemble technique based on decision trees. It combines multiple 
weak tree models into a strong learner by sequential training, optimizing an ob-
jective function at each step. The XGBoost model develops a prediction model by 
combining multiple weak learners. Each model learns from the previous model 
and builds a strong model by adjusting weights in a sequential manner. XGBoost 
has the capability to automatically handle missing data, which can be useful for 
infrastructure condition monitoring when there are significant missing values 
[21]. XGBoost is more robust to outliers and easier to tune hyperparameters than 
Artificial Neural Networks (ANNs) or Support Vector Machine (SVMs). XGBoost 
can be used for both regression and classification problems. The eXtreme Gradi-
ent Boosting (XGBoost) method is an improvement of the Gradient Boosting al-
gorithm. The theoretical foundation of XGBoost can be expressed mathematically 
as follows [5]: 

 ( )
1

ˆ
t

i k i
k

y f x
=

= ∑   (1) 

where t is the set of regression trees, and fk is a regression tree in the set. The main 
idea of the XGBoost algorithm is that each update is based on the prediction re-
sults of the previous model. By adding a new tree fk to fit the residual error between 
the predicted value of the previous tree and the actual value, a new model is 
formed, and the new model is used as the basis for the next model learning. Math-
ematically, this process can be stated as follows: 

 ( ) ( )1ˆ ˆ t
i i t iy y f x−= +   (2) 

where ( )1ˆ t
iy −  is the predicted value at time t − 1, and ( )t if x  is the residual fitting 

value by the newly added regression tree, with xi being the input data. To obtain a 
prediction as close as possible to the true value of yi, the following objective func-
tion is minimized by the XGBoost algorithm: 

 ( ) ( )( ) 2

1

1ˆ,
2

T
t t

i t j
j

obj l y y wλΤ

=

= + ϒ + ∑    (3) 

4. Machine Learning Hyperparameter Tuning 

Hyperparameter tuning was conducted for the Machine Learning model develop-
ment. A grid search technique was applied to fine-tune the model, testing various 
combinations of the number of trees (n_estimators: 50, 100, 200, 300, 400, 500), 
the maximum depth of the trees (max_depth: 10, 20, 30, 40, 50), and the minimum 
number of samples required to split a node (min_samples_split: 2, 3, 4, 5, 6). After 
evaluating all combinations, the best-performing model was identified with 500 
trees, a maximum depth of 20, and minimum samples split of 2. This configuration 
provided the most accurate predictions, effectively capturing the relationships in the 
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dataset for reliable pavement structural condition prediction. For the XGBoost 
model, a hyperparameter tuning process was conducted to enhance the model’s 
predictive performance by using a grid search approach. The grid search was applied 
to explore various combinations of parameters including the number of estimators 
(n_estimators: 100, 200, 300, 400, 500), the maximum tree depth (max_depth: 2, 
3, 4, 5), and the learning rate (learning_rate: 0.05, 0.1, 0.2, 0.3). Additionally, the 
minimum child weight (min_child_weight: 2, 3), subsample ratio (subsample: 0.8, 
0.9, 1.0), and column sample by tree (colsample_bytree: 0.8, 0.9, 1.0) were also 
adjusted. After evaluating the different hyperparameter combinations, the best 
XGBoost model was found with 500 estimators, a maximum depth of 5, a learning 
rate of 0.1, a minimum child weight of 2, a subsample ratio of 0.8, and a colsam-
ple_bytree value of 1. This configuration provided the optimal balance between 
model complexity and prediction accuracy, making it the most suitable for pre-
dicting pavement performance. Table 6 shows the hyperparameter tuning param-
eters and their optimal value for the RF and XGBoost model. 
 
Table 6. Machine learning model hyperparameter tuning. 

Model Parameters Optimal Value 

RF 

max_depth 20 

min_samples_spli 2 

n_estimators 500 

XGBoost 

colsample_bytree 1 

max_depth 5 

learning_rate 0.1 

min_child_weight 2 

subsample 0.8 

n_estimators 500 

5. Result and Discussion 

To evaluate the performance of the XGBoost and Random Forest model, three 
commonly used metrics were used: R-squared (R2), Root Mean Square Error 
(RMSE), and Mean Absolute Error (MAE). These metrics were utilized by a sig-
nificant number of researchers for the performance assessment of the machine 
learning models. Equations (4)-(6) show the equations of R2, RMSE, and MAE, 
respectively. Table 7 presents the results of the Pavement Structural Condition 
Models developed using RF and XGBoost model. 
 
Table 7. Pavement structural condition prediction models using RF and XGBoost. 

Metrics Random Forest (RF) eXtreme Gradient Boosting (XGBoost) 

R2 0.80 0.90 

RMSE 0.90 0.64 

MAE 0.59 0.41 
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The performance comparison between Random Forest and eXtreme Gradient 
Boosting (XGBoost) models for predicting the Surface Curvature Index (SCI) re-
veals that XGBoost outperformed Random Forest across all evaluation metrics. 
Specifically, the R2 score for XGBoost was 0.90, indicating a higher proportion of 
variance explained by the model, compared to 0.80 for Random Forest. Addition-
ally, the Root Mean Squared Error (RMSE) for XGBoost was 0.64, which is lower 
than the RMSE of 0.90 for Random Forest, suggesting that XGBoost made more 
accurate predictions than the RF. Furthermore, the Mean Absolute Error (MAE) 
for XGBoost was 0.41, better than Random Forest’s MAE of 0.59, demonstrating 
that XGBoost yielded predictions closer to the actual values overall. These results 
suggest that XGBoost is the more effective model, offering greater predictive ac-
curacy and lower error rates compared to Random Forest. The superior perfor-
mance of XGBoost over RF in predicting pavement structural conditions can be 
attributed to XGBoost’s advanced gradient boosting technique. Unlike RF, which 
aggregates predictions from individual decision trees with equal weights, XGBoost 
enhances each subsequent tree by focusing on errors from prior predictions. This 
sequential learning method allows XGBoost to better capture complex non-linear 
relationships within the data, especially in datasets with significant variability in 
predictors, such as pavement age, layer thickness, and climate conditions. Addi-
tionally, XGBoost’s flexibility in handling missing values and outliers contributes 
to its robustness, making it more adept at generalizing patterns within pavement 
condition datasets. By leveraging these attributes, XGBoost achieved a higher R2 
and lower RMSE and MAE than RF, suggesting that its predictions align more 
closely with the observed values. This insight enhances the practical value of the 
study, as it underscores the importance of using an algorithm like XGBoost for 
accurate and reliable pavement structural performance predictions. Figure 4 and 
Figure 5 show the feature importance score of the eXtreme Gradient Boosting 
(XGBoost) and Random Forest (RF) models, respectively. From both model re-
sult, it can be obtained that Surface Curvature Index at the year 0 and Age are two 
most important variables for predicting the pavement structural condition. This 
can be attributed to the fact that Initial Structural Condition reflects the pave-
ment’s inherent strength, while Age accounts for the natural wear and degradation 
over time, making them essential indicators for assessing the pavement’s current 
and future performance. Figure 6 and Figure 7 illustrate the relationship between 
the actual and predicted values for the XGBoost model and RF model, respec-
tively. 
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Figure 4. Feature importance score (XGBoost). 
 

 

Figure 5. Feature importance score (Random Forest). 
 

 

Figure 6. Scatter plot of actual vs predicted value for 
the XGBoost model. 
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Figure 7. Scatter plot of actual vs predicted value for 
the RF model. 

6. Conclusion 

This research demonstrates the effectiveness of machine learning models, partic-
ularly Random Forest (RF) and eXtreme Gradient Boosting (XGBoost), in pre-
dicting pavement structural conditions. Using data from the Long-Term Pave-
ment Performance (LTPP) program, the models successfully predicted the Surface 
Curvature Index (SCI), a key indicator of pavement structural health. Among the 
models, XGBoost outperformed RF, achieving higher predictive accuracy and 
lower error rates across various metrics. Traditional pavement deterioration mod-
els often rely on predefined relationships between pavement functional and struc-
tural parameters. However, these models lack adaptability to the unique complex-
ities of pavement conditions and may not capture nonlinear interactions effec-
tively, potentially leading to limitations in accuracy. Our findings show that the 
XGBoost model demonstrates substantial predictive accuracy improvements over 
Random Forest with an R2 of 0.90 and lower RMSE and MAE values. This en-
hanced performance highlights XGBoost’s capability to handle complex datasets 
with heterogeneous variables involving climate factors, traffic loads, and varying 
pavement conditions. Additionally, XGBoost’s robustness against missing data 
and outliers offers practical advantages over empirical equations, which typically 
require a completer and more homogenous dataset for reliable predictions. Ma-
chine learning models’ enhanced accuracy and adaptability suggest they could im-
prove decision-making by providing more reliable forecasts of pavement struc-
tural conditions. The results highlight the potential for transportation agencies to 
adopt these models as cost-effective tools for optimizing pavement maintenance 
decisions. By integrating structural condition predictions into pavement manage-
ment systems, agencies can prioritize pavement maintenance decisions more ef-
fectively, extending pavement life and improving resource allocation. Future re-
search should focus on further refining these models and incorporating additional 
variables to enhance their predictive capabilities and applicability across different 
pavement types and conditions. This research developed machine learning mod-
els using LTPP data; however, applying these models to state-level datasets with 
diverse pavement structures and climatic conditions is recommended. Such an 
approach would help validate the models’ adaptability, enhancing their practical 
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application across different regional contexts and ultimately strengthening their 
generalizability for broader use by transportation agencies. Based on recommen-
dations from previous studies, this research selected the Surface Curvature Index 
(SCI) as the primary predictor variable for pavement structural condition. How-
ever, future research could also consider incorporating the Base Damage Index 
(BDI) and Base Curvature Index (BCI) as additional variables for pavement struc-
tural condition prediction. 
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