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Abstract 
Purpose: This study describes a machine-learning approach utilizing patients' 
anatomical changes to predict parotid mean dose changes in fractionated ra-
diotherapy for head-and-neck cancer, thereby facilitating plan adaptation de-
cisions. Methods: Parotid mean dose changes during treatment sessions are 
assumed to correlate with patients’ anatomical changes, quantified by 65 geo-
metrical features in four sets. SET1 is the parotid volumetric changes; SET2 is 
the distance changes from the parotid to the PTV; SET3 is the length of beam 
path changes between the parotid and skin near the neck; SET4 is the distance 
changes from the parotid to the two bony landmarks—the dens of the C2 and 
tip of the basilar part of the occipital bone. The introduced landmarks in SET4 
are used as surrogates for the PTV in SET2 due to PTV’s unavailability at the 
simulation stage. Signed Euclidean distance is applied to quantify the distance 
and beam path length. A decision tree classifier to predict an x% increase in 
parotid mean dose is developed. In a study involving 18 patients (36 parotids) 
previously treated with adaptive radiotherapy, a leave-one-out cross-valida-
tion combined with enumerating 4 combinations of the 65 geometrical fea-
tures is used to find a feature subset maximizing classifier’s accuracy. The clas-
sifier’s accuracy, with and without SET2’s PTV features inclusion, is evaluated 
to determine the SET4’s bony landmark surrogate feasibility. Results: Under 
x = 5% (or x = 10%) parotid mean dose increase: without SET2’s PTV features 
inclusion, one beam path feature from SET3 and one bony landmark feature 
from SET4 yield maximal accuracy of 86.1%, which is a 30.5% (19.4%) im-
provement over prevalence = 55.6% (66.7%); TPR = 87.5% (75%), TNR = 85% 
(91.7%), PPV = 82.3% (81.8%) and NPV = 89.5% (88%). With SET2’s PTV 
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features inclusion, accuracy increases from 86.1% to 91.6%. Conclusion: Un-
der the current 18 enrolled patients’ data, we found that the introduced SET4’s 
bony landmarks are feasible surrogates for the SET2’s PTV features in deter-
mining the parotid’s position variations relevant to the high dose region. The 
contours of the parotid, skin near the neck, and bony landmarks in ini-
tial/adaptive images are required to predict parotid dose changes. Further 
study with a larger sample size of patients is necessary to provide a robust basis 
for generalization. 
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1. Introduction 

Clinically significant changes in patients’ anatomy during fractionated radiother-
apy, e.g., body shrinkage due to weight loss or target/organ shape and position 
variations, cause the actual dose delivered to patients to varying considerably dif-
ferent from the originally planned. Adaptive radiotherapy (ART) is a method to 
account for those changes and adjust the dose [1]-[8]. However, the process of 
ART is time-consuming and may not benefit those patients whose anatomy has 
limited variations [9]-[12]. Therefore, a quantitative method that considers ana-
tomical changes to predict target/organ dosimetric changes for initiating adaptive 
planning decisions is highly desirable. This study focuses on the patients’ anatom-
ical changes in predicting parotid dosimetric changes for head-and-neck cancer 
since xerostomia caused by radiation side effects to the parotid is a major cause of 
reduced quality of life after radiotherapy [13]-[15].  

This study hypothesizes that the following three anatomical changes during 
treatment sessions cause changes in parotid dosimetry: (1) parotid volumetric 
shrinkage, (2) distance changes from the parotid to the PTV, e.g., displacement of 
the parotid into (or away from) the high dose region, and (3) length of beam path 
changes between the parotid and skin, caused by patient’s weight loss near the 
neck. Anatomical changes in (1) is well-documented [12] [16]-[20]. For example, 
our previous study involving 185 CT scans (including a planning CT and several 
weekly follow-up CTs) of 26 patients shows that on average the parotid has a vol-
umetric reduction of ~10 cc (or ~30% in terms of the fractional volume) by the 
7th week [16] [18]. However, the anatomical changes in hypotheses (2) and (3) 
have not been studied due to a lack of geometrical features for quantifying the 
distance and beam path length. Therefore, this study has two aims: 
• To propose a set of geometrical features for quantifying patients’ anatomical 

changes relevant to hypotheses (2) and (3).  
• To use a machine-learning approach to determine a feature subset producing 

maximal predictive power to estimate parotid dosimetric changes. 
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2. Methods 
2.1. Geometrical Feature Quantification 

Signed Euclidean distance [21]-[23] between two objects (main object and voxelized, 
secondary object as shown in Figure 1) is applied to quantify the distance and 
beam path length in hypotheses (2) and (3). As illustrated in Figure 1, the shortest 
Euclidean distance d(i, j) from voxel (i, j) of the secondary object to the main ob-
ject’s surface is calculated: if voxel (i, j) is inside the main object, d(i, j) < 0; if voxel 
(i, j) is on the surface of the main object, d(i, j) = 0; if voxel (i, j) is outside the 
main object, d(i, j) > 0. The distance calculation is repeated for every secondary 
object’s voxel. Finally, a cumulative histogram v = Hist (d) relating the shortest 
Euclidean distance d and the secondary object’s absolute volume v is formed. v is 
then normalized by the absolute volume of the secondary object as the fractional 
volume in the range of [0, 100%]. Hereinafter v refers to the fractional volume. 
 

 
Figure 1. d(i, j) is the shortest Euclidean distance from the secondary object voxel (i, j) to 
the main object’s surface. v = Hist (d) is a cumulative histogram in relating distance d and 
fractional volume v; dv = Hist−1 (v) is the inverse function of v = Hist (d), representing dis-
tance d at fractional volume v.      
 

Next, we define dv = Hist−1 (v) as the inverse function of v = Hist (d), where dv 
represents distance d at fractional volume v. For example, d0, d50, and d100 repre-
sent the minimal, median and maximal distance from the secondary object to the 
main object’s surface; ( ),meand d i j N= ∑ represents the mean distance from the 
secondary object to the main object’s surface, where N is the total number of 
voxels inside the secondary object. Finally, dv and dmean are applied to quantify the 
distance and beam path length in hypotheses (2) and (3), where the parotid is the 
secondary object and the PTV and skin are the main objects. 

65 geometrical features categorized into four sets in Table 1 are defined a priori 
for quantifying patients’ anatomical changes and predicting parotid dosimetric 
changes: 
• SET1 is the parotid absolute volume in cc; hypothesis (1). 
• SET2 is the distance between the parotid and PTV; hypothesis (2). 
• SET3 is the distance between the parotid and skin near the neck; hypothesis 

(3). 
• SET4 is the distance of the parotid to the two bony landmarks in Figure 2: the 

dens of C2 (Cervical Vertebra; Bone1) and tip of the basilar part of the occipital 
bone (Bone2). 
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In Table 1, distance features dmean and dv are calculated from dv = Hist−1 (v) 
(inverse function of v = Hist(d) defined in Figure 1), where the parotid is the 
secondary object, where PTV, skin and bony landmarks are the main objects. 
 

Table 1. Proposed 65 geometrical features (4 sets) quantifying patients’ anatomical changes. 

SET1: parotid volume 
SET2: distance between the 

parotid and PTV (cm) 
SET3: distance between the parotid 

and skin (cm) 
SET4: distance between the parotid 

and two bony landmarks* (cm) 

volume in cc dmean and {dv}# dmean and {dv}# dmean and {dv}# 

Feature No.: 1 Feature No.: 2 - 17 Feature No.: 18 - 33 Feature No.: 34 - 65 

#v as the fractional volume in %: 0, 0.5, 1.0, 2.5, 5, 20, 35, 50, 65, 80, 95, 97.5, 99, 99.5 and 100. *: surrogates for the PTV in SET2; Bone1 
landmark: the dens of C2; Bone2 landmark: the tip of the basilar part of the occipital bone. See Figure 2 for the details. 
 

 
Figure 2. Two bony landmarks (Bone1 and Bone2; coronal view) as surrogates of the PTV 
in SET 2 for quantifying the position of the parotid relevant to the high dose region.      

 
As discussed in Section 2.2, the two introduced bony landmarks in SET4 are 

used as surrogates for the PTV in SET2 to determine the parotid’s position with 
respect to the high-dose region. Figure 3 provides a simplified geometrical illus-
tration of the four geometric sets. 

2.2. Study Design 

Eighteen patients with head-and-neck cancer previously treated with ART are ret-
rospectively enrolled. Each patient has two CTs: initial planning CT (initialCT) 
and adaptive planning CT (adaptiveCT), which are acquired in the middle of the 
treatment. Physicians contour respective targets and organs in both CTs. Each 
patient has two VMAT plans: Plan1 is the initial plan based on initialCT with its 
associated contours; Plan2 is the forward-dose calculation plan, applying Plan1’s 
beam configuration on the adaptiveCT with its associated contours. In plan eval-
uation, our institution uses the mean dose to the parotid as the primary dosimetric 
metric. Therefore, this study focuses on predicting parotid mean dose changes. 
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Figure 3. Simplified illustration of the 4-SET geometrical features in predicting parotid 
dosimetric changes. SET 1: the parotid absolute volume in cc; SET 2: the distance of the 
parotid to the PTV; SET 3: the distance of the parotid to the skin near the neck area; SET 
4: the distance of the parotid to the two bony landmarks (Bone1 and Bone2) shown in 
Figure 2. Bone1: the dens of C2; Bone2: the tip of the basilar part of the occipital bone.   
 

The two bony landmarks introduced in SET4 of Table 1 are used as surrogates 
of the PTV in SET2 for the following reason: in this retrospective study, the PTV 
contours in adaptiveCT (or Plan2) are available since all enrolled patients have 
been treated using ART. However, in clinical application, the PTV contours in 
adaptiveCT may not be available since target contouring is time-consuming and 
not always completed until a decision to use ART is made [11]. Since the two bony 
landmarks in SET4 are rigid, both provide localization reference shared by ini-
tialCT and adaptiveCT. Additionally, they are easily contoured as only two slices 
are needed in the transverse plane. Thus, the introduced bony landmarks allow us 
to investigate whether the parotid is being pushed into (or away from) the high 
dose region without using PTV contours in initialCT and adaptiveCT. 

For each enrolled patient, corresponding DICOM RT-dose, RT-structure and 
CTs of Plan1 and Plan2 are extracted from the treatment planning system. An in-
house developed Matlab (The MathWorks, Inc., Natick, MA, US) program is used 
to calculate Table 1’s described features from the DICOM data. Below, we define 
the anatomical feature changes between the initialCT (Plan1) and adaptiveCT 
(Plan2) as: 

Anatomical ratio <feature> = (Plan1 <feature> − Plan2 <feature>)/|Plan1 <feature>|  (1) 

where “| |” is the absolute magnitude. A positive ratio means Plan2’s feature (vol-
ume or distance) is smaller than Plan1. Next, we define the parotid mean dose 
changes as the ratio of the relative parotid mean dose of Plan1 to Plan2: 

Dose ratio = (Plan1’s relative mean dose in %)/(Plan2’s relative mean dose in %)  (2) 
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where “%” is the organ’s absolute mean dose normalized by the target prescrip-
tion. Dose ratio < 1.0 means that the Plan2’s relative mean dose in % is larger than 
Plan1. The introduced relative mean dose in % allows us to compare the parotid 
dose from the plans with the different target prescriptions. 

2.3. A Machine-Learning Approach 

A decision tree classifier for predicting x% parotid mean dose increase over Plan1 
is built from the data of the 36 parotids of the 18 enrolled patients. The predictors 
are the 65 anatomical ratios calculated from Equation (1) using the features in 
Table 1. The response is the binarized dose ratio calculated from Equation (2): if 
the parotid’s relative mean dose in % from Plan2 is x% larger than its value in 
Plan1, the response is “1”; otherwise, it is “0”. x is set at 0%, 5%, 10%, 15% and 
20% to generate the corresponding binary response. Since only the data of the 36 
parotids are available, leave-one-out cross-validation is applied in model training 
and verification. Additionally, in the feature selection, enumerating k-combina-
tion (k = 1, 2, 3 and 4) of the 65 predictors combined with the leave-one-out cross-
validation is used to find a feature subset maximizing the classifier’s accuracy un-
der various x% parotid mean dose increase. Gini-diversity index and maximal 
number of decision splits = 10 are used in the decision tree algorithm. Note that 
in this retrospective study, SET2’s PTV features from adaptiveCT (Plan2) are 
available, while in clinical application, those PTV features would not. Therefore, 
SET4 with the two bony landmarks are introduced as surrogates for the SET2’s 
PTV features. Accordingly, the classifier’s accuracy with/without SET2’s PTV fea-
tures is evaluated to determine the feasibility of the surrogates. 

3. Results 

Figure 4 shows the found feature subset yielding maximal predicting accuracy 
with/without SET2 (e.g., PTV features from the 2nd to 17th in Table 1) under var-
ious x% parotid mean dose increases. The results show that when SET2’s PTV 
features are excluded from feature selection, the accuracy drops by ~5.5% to 86.1% 
in x = 0%, 5% and 10% cases. In x = 15% case, SET2’s PTV features inclusion does 
not improve accuracy. In x = 20% case, SET2’s PTV features inclusion improves 
accuracy by ~2.7% to 97.2%. In addition, Figure 4 shows that the parotid volu-
metric change (SET1) is an irrelevant feature in x = 5%, 10%, 15% and 20% cases. 

Table 2 illustrates the confusion matrix and predicting accuracy for various x% 
when SET2’s PTV features are excluded. The last column shows the improvement 
of the accuracy over prevalence (maximal prior probability of true class of the 32 
parotids in this study). 

Figure 5 shows an example of the decision boundary of a classifier for predict-
ing x = 10% parotid mean dose increase, excluding SET2’s PTV features in the 
feature selection: feature 28th (d80) in SET3 and feature 57th (d35) in SET4 yield a 
maximal accuracy of 86.1% with 19.4% improvement over prevalence = 66.7%; 
confusion matrix parameters are: TP = 9, FP = 3, FN = 3, TN = 22, TPR = 75%, 
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TNR = 91.7%, PPV = 81.8% and NPV = 88%. The definitions of confusion matrix 
and TP, FP, FN, TPR, TNR, PPV and NPV are discussed in Wikipedia [24]. 
 

 
Figure 4. The found feature subset yielding maximal predicting accuracy under various x% 
parotid mean dose increases. “Red circle”: feature selection excluding SET 2 (PTV features) 
of Table 1; “Blue diamond”: feature selection including all SETs. 

 
Table 2. Classifier performance evaluation excluding SET2’s PTV features in feature selection: confusion matrix, predicting accuracy 
and prevalence. 

x%: dose increase True class 
Predicted class 

Predicting accuracy 
Prevalence: maximal prior 

probability of true class 
Improvement # 

“0” “1” 

“1”: >x = 0%& 
“0” 11 (73.3%) 4 (26.6%) 

86.1% 
True class “1”: 

(20 + 1)/36 = 58.3% 
27.8% 

“1” 1 (4.7%) 20 (95.23%) 

“1”: >x = 5% 
“0” 17 (85%) 3 (15%) 

86.1% 
True class “0”: 

(17 + 3)/36 = 55.6% 
30.5% 

“1” 2 (12.5%) 14 (87.5%) 

“1”: >x = 10% 
“0” 22 (91.7%) 2 (8.3%) 

86.1% 
True class “0”: 

(22 + 2)/36 = 66.7% 
19.4% 

“1” 3 (25%) 9 (75%) 

“1”: >x = 15% 
“0” 31 (100%) 0 (0%) 

91.7% 
True class “0”: 

(31 + 0)/36 = 86.1% 
5.5% 

“1” 3 (60%) 2 (40%) 

“1”: >x = 20% 
“0” 32 (100%) 0 (0%) 

94.4% 
True class “0”: 

(32 + 0)/36 = 88.9% 
5.5% 

“1” 2 (50%) 2 (50%) 

&Class “1”: parotid mean dose increase > x%; #: difference between accuracy and prevalence. Prevalence: maximal prior probability 
of true class of the 32 parotids in this study. 
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Figure 5. The decision boundary of a classifier in predicting x = 10% parotid mean dose increase, excluding 
SET2’s PTV features in the feature selection. Feature 57th in SET4 from the bony landmarks and feature 28th 
in SET3 from the skin features are found to yield maximal accuracy of 86.1%. “1”: means parotid mean dose 
increase is larger than 10%. 

4. Discussion  

This study proposes three hypotheses related to anatomical changes in predicting 
parotid mean dose increase in head-and-neck fractioned radiotherapy. Surpris-
ingly, Hypothesis 1, parotid volumetric changes (Feature 1 in Table 1), is found 
not to be among the top three features in predicting parotid mean dose increase, 
as shown in Figure 4. Both Hypotheses 2 (the distance changes from the parotid 
to the PTV) and 3 (the length of beam path changes between the parotid and skin 
near the neck) are found to be strong predictors.  

Before discussing the findings in detail, we identified the following limits: 1) 
We also applied two other machine learning methods, Support Vector Machine 
and Ensemble Methods, for predicting parotid dose changes. However, those 
methods generate inferior results to the proposed decision tree method, and it is 
not worth discussing. We do not apply Neural Network approach since there is 
not enough patient data for training and testing. 2) The clinical decisions for adap-
tive planning of the 18 enrolled patients in this study vary (e.g., mask unfitting 
due to weight loss, or tumor size variations observed from on-board imaging): 
none of the adaptive planning decisions are triggered due to parotid dose con-
cerns. 3) The 4-SET geometrical features, as shown in Table 1, are pre-defined, 
which could limit the searching space of the feature selection and performance of 
the classifier. 4) The goal of the study is to find a subset of the proposed geometric 
features in predicting parotid dose changes. How to clinically incorporate those 
findings in adaptive planning decisions is beyond the study.  

However, the confusion matrix in Table 2 gives some hints in implementing 
the findings in clinics:  

https://doi.org/10.4236/ijmpcero.2024.134005


B. B. Wu et al. 
 

 

DOI: 10.4236/ijmpcero.2024.134005 61 Int. J. Medical Physics, Clinical Engineering and Radiation Oncology 

 

• Although the predicting accuracy in the cases of x = 15% and x = 20% parotid 
mean dose increase is high at 91.7% and 94.4% respectively, the classifiers do 
not help in adaptive planning decisions since the prevalence (maximal prior 
probability of the true class in our data) is also high—86.1% for x = 15% and 
88.9% for x = 20%. The accuracy improvement over prevalence is marginal at 
5.5% for both x = 15% and x = 20% cases.  

• Although the accuracy improvement over prevalence in the case of x = 0% is 
27.8%, it is not clinically useful. The output “1” in the case of x = 0% merely 
implies that the estimated parotid mean dose in Plan2 is larger than that of the 
initial plan (Plan1), providing no quantitative information for parotid mean 
dose increase.  

• The classifiers under x = 5% and x = 10% produce 30.5% and 19.4% accuracy 
improvement over prevalence. Both are clinically meaningful if x = 5% (or x = 
10%) parotid mean dose increase over the initial plan would be the clinical 
endpoint for adaptive planning decisions. 

To our knowledge, the findings in Hypothesis 2 are the first to use the bony 
landmarks shown in Figure 2 as surrogates for the PTV in quantifying the motion 
of the parotid relative to the high dose region. Several studies show that the pa-
rotid tends to shift medially towards the PTV areas during treatment, potentially 
jeopardizing parotid sparing [12] [16]-[20]. Since target and organ contours in 
both initial and adaptive CTs are available in this study, the classifier performance 
using PTV features (or SET2 in Table 1) is evaluated as a benchmark. We find 
that without PTV feature inclusion, the classifier’s accuracy at x = 5% and x = 10% 
decreases by only 5.6% from the 91.7% benchmark, demonstrating that the pro-
posed bony landmarks are feasible surrogates for the PTV. In addition, Figure 5 
shows that 9 out of 11 parotids predicting as “1”, e.g., parotid’s mean dose in-
creased by 10%, have the reduced distance (e.g., Feature 57’s anatomic ratio in 
Equation (1) being positive) from the parotid to the bony landmarks. Since the 
bony landmarks are the rigid localization reference between initial and adaptive 
CTs, our findings indicate that parotids being shifted closer to the bony landmarks 
(e.g., reduced distance as mentioned above) would receive higher dose during 
treatment sessions, which is in line with the reports using PTV [12] [16]-[20]. 

The benefits of not having to include the PTV contours in predicting parotid 
mean dose increase are obvious: in clinical application, target contouring is time-
consuming and generally not performed for the adaptive CT (or Plan2) unless the 
decisions to adapt planning have been made. However, the bony landmark surro-
gates introduced here only require 2-slice contours in the transverse plane, which 
can be easily segmented by therapists/dosimetrists/physicists. How to incorporate 
those segmented bony landmarks as surrogates of PTV in adaptive planning de-
cisions is our future research.  

Another factor influencing the parotid’s mean dose is weight loss during treat-
ment sessions. De Bari et al. found that external body contour changes could serve 
as a flag to trigger adaptive planning [25]-[27]. Our study focuses on the skin 
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contour near the neck. Figure 5 shows that Feature 28 quantifying the beam path 
length between the skin and parotid (SET3 in Table 1) is a key feature in predict-
ing parotid mean dose increase: 9 out of 11 parotids predicted as “1”, e.g., parotid’s 
mean dose increased by 10%, have an enlarged distance (e.g., Feature 28’s ana-
tomic ratio in Equation (1) being negative) from the skin to the parotid. At pre-
sent, we are not able to explain the above observed correlation between enlarged 
distance and parotid mean dose increase. Future research is necessary to investi-
gate the issue.  

The findings in Hypothesis 1 do not fully align with the published literature 
[12] [16]-[20]: we do not find parotid shrinkage (or volumetric changes in gen-
eral) to be a key factor in correlating with parotid dose increase. Indeed, our study 
finds that parotid medially shift towards the PTV areas (or the proposed bony 
landmarks as PTV surrogates) is a key factor in predicting parotid dose increase 
during treatment sessions. Further study is necessary in this direction.  

5. Conclusion 

We have presented a machine-learning approach that utilizes a decision-tree clas-
sifier to predict parotid mean dose changes caused by patients’ anatomical 
changes in fractionated radiotherapy for head-and-neck cancer. In the current 18 
enrolled patients, we found that if parotid mean dose increase is a major concern, 
the contours of the parotid, skin near the neck area and proposed bony landmarks 
in initial and adaptive CTs are sufficient predictors. Further study with a larger 
sample size of patients is necessary to provide a robust basis for generalization. 
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