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Abstract 
It is difficult for the existing Automated External Defibrillator (AED) on-
board microprocessors to accurately classify electrocardiographic signals 
(ECGs) mixed with Cardiopulmonary Resuscitation artifacts in real-time. In 
order to improve recognition speed and accuracy of electrocardiographic sig-
nals containing Cardiopulmonary Resuscitation artifacts, a new special copro-
cessor system-on-chip (SoC) for defibrillators was designed. In this study, a 
microprocessor was designed based on the RISC-V architecture to achieve 
hardware acceleration for ECGs classification; Besides, an Approximate En-
tropy (ApEn) and Convolutional neural networks (CNNs) integrated algo-
rithm capable of running on it was designed. The algorithm differs from tra-
ditional electrocardiographic (ECG) classification algorithms. It can be used 
to perform ECG classification while chest compressions are applied. The pro-
posed co-processor can be used to accelerate computation rate of ApEn by 34 
times compared with pure software computation. It can also be used to accel-
erate the speed of CNNs ECG recognition by 33 times. The combined algo-
rithm was used to classify ECGs with CPR artifacts. It achieved a precision of 
96%, which was significantly superior to that of simple CNNs. The coproces-
sor can be used to significantly improve the recognition efficiency and accu-
racy of ECGs containing CPR artifacts. It is suitable for automatic external 
defibrillator and other medical devices in which one-dimensional physiologi-
cal signals. 
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1. Introduction 

Cardiac arrest may result in severe or even irreversible damage. If not promptly 
rescued, the patient’s life could be put at risk [1]. Out-of-Hospital Heart Arrest 
(OHCA) is the third-most common cause of death in the industrialized world. 
OHCA kills about 700,000 people annually in the United States and Europe [2]. 
High quality Cardiopulmonary Resuscitation (CPR) and defibrillation are crucial 
for patients in cardiac arrest [3]. Reasonable electrical defibrillation is a crucial 
element in enhancing rescue rates for patients who have had cardiac arrest [4] [5]. 
Severe CPR artifacts may result from chest compressions. However, it is difficult 
for an on-board microprocessor of the current Automated External Defibrillator 
(AED) product to accurately classify the electrocardiographic signals (ECGs) con-
taminated by CPR artifacts. Thus, it is difficult to interpret ECGs while chest com-
pressions are applied.  

Recently, along with the improvement of computer performance, CPR artifact 
filtering algorithms have been developed quickly. Thanks to high performance 
computers, researchers have achieved remarkable accuracy and speed in filtering 
artifacts. This progress is attributed to deep learning methods, mathematical anal-
ysis, and filtering techniques. Deep learning methods include deep convolutional 
neural networks, K-Nearest Neighbor classification model, and transfer learning, 
among others [6] [7]. The mathematical analysis methods include analysis of in-
dependent components and elimination of coherent lines [8] [9]. The most widely 
used filters include band pass filter, Kalman filter, adaptive filter and filter com-
bination structure [10]-[12]. However, these algorithms are not suitable for the 
existing AED airborne microprocessors. Thus, the deployment of a defibrillator 
rhythm recognition algorithm is essential. It should be capable of filtering out 
CPR artifacts from the AED onboard microprocessor. 

In this project, an integrated algorithm of ApEn and CNNs was proposed to 
classify the ECGs which are contaminated by CPR artifacts. Moreover, we de-
signed a Defibrillator-Specific co-processor SoC, which can be used to speed up 
the ECGs classification algorithms. The co-processor meets the need of analyzing 
ECGs in real time on AEDs. That integrated algorithm was also deployed on the 
co-processor SoC. This co-processor is designed for the analysis of physiological 
signals. It is versatile enough for use in various medical devices for which one-
dimensional signal processing is necessary, not limited to defibrillators. 

2. Materials and Methods 
2.1. Experimental Materials 

In this project, we used XC7A100T FPGA development board. It features 63,400 
lookup tables, six phase-locked loops, and other resources. It is well equipped to 
satisfy the design requirements of our project. This development board was used 
to complete the internal logic design and test of the co-processor. Furthermore, 
STM32F103, STM32G0B1 and CY8C5888 were used to run test cases and record 
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operating times. Due to their wide usage and variety of capabilities, we used them 
for comparative testing. 

Three lead electrodes and an ECGs collection circuit were used to collect ECGs 
from a single volunteer separately. These ECGs were used in the grading tests. 
Electromagnetic interference was introduced by connecting the acquisition circuit 
to the chest compressor drive circuit, and this electromagnetic interference was 
used to simulate CPR artifact signals. Without the simulated CPR artifacts, the 
obtained ECGs QRS complex is intact. As soon as the chest compressor drive was 
turned on, the ECG showed an apparent artifact disturbance. We reviewed the 
literature [7] and compared the waveforms. In consultation with an experienced 
doctor from Shanghai’s Sixth People’s Hospital, we determined that the disturb-
ance was consistent with CPR artifacts in CPR. Thus, this portion of the data is 
used to perform tests for classification of ECG signals in the presence of interfer-
ence simulating compression artifacts. 

2.2. Design of Instruction Set and Instruction Decoding Unit  
of Coprocessor 

The RISC-V architecture has been used widely for developing microprocessors for 
its open-source nature so far. E203 core meets the design requirements of power 
consumption and performance. Therefore, we used the E203 core as the central 
processor CPU of the SOC. 

Both power consumption and processing performance are critical for AED. To 
balance these needs, we employed the NICE interface for communication between 
the main processor and co-processor. Additionally, We specially designed the co-
processor and employed the tailored cooperative computing unit. 

The co-processor includes an instruction decode unit, an execution state ma-
chine, an entropy calculation acceleration unit, a CNNs vector calculation unit, 
and a single cycle fixed-point multiplier. The design block diagram is shown in 
Figure 1. 
 

 
Figure 1. Overall design block diagram of coprocessor. 
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The co-processor designed in this study exhibits diverse functionalities with in-
tricate structures. In order to have proper control and scheduling, we control data 
transfer, data manipulation, and command execution with an execution state ma-
chine. The machine switch among 8 different states: Idle, Load Address Operands, 
Read, Write, Compute, Wait, Write MEM, and Shake Hand.  

The instruction decode unit consists of a combined logic circuit and a D trigger. 
The co-processor supports execution of instructions while prefetching an instruc-
tion. The equal comparator determines each component’s legitimacy in the in-
struction. After this judgment, an AND gate retrieves the instruction’s prefetch 
signal. Upon handshake completion. The co-processor transmits the instruction’s 
execution signal using the D trigger. This logic ensures that the co-processor 
transit to the next instruction seamlessly once the current one concludes. 

The co-processor features seven instructions, with three dedicated to the entropy 
computing accelerator: “custom_1buf_apen”, “custom_1th_apen”, and “cus-
tom_calu_apen”. When calculating the program entropy, the “custom_1buf_apen” 
instruction is called first, writing the initial address of the sequence to the entropy 
computing accelerator. Then, the entropy computation threshold is set via the 
“custom_1th_apen” command. Finally, “custom_calu_apen” is performed to re-
trieve the result of the calculation. 

The two instructions that control the vector calculation unit are “cus-
tom_1ker_cnn” and “custom_calcu_cnn”. When doing convolutional multiplica-
tion, the convolution core is loaded into cell using “custom_1ker_cnn” instruc-
tion. Then, the convolution calculation is constantly carried out through the “cus-
tom_calcu_cnn” instruction. 

The CPU core used in this project is a low-power CPU, without single-cycle 
multiplier and floating point computing unit. But the majority of signal-pro-
cessing algorithms require a significant number of multiplication operations. In 
order to prevent multiplication operations from slowing down the overall com-
putation speed of the algorithm and affecting the acceleration effect of coproces-
sor, two multiplication instructions for fixed-point and floating-point operations 
are added to the co-processor: “custom_multi”, and “custom_multi_f”. 

3. Design of Accelerated Unit for Tailorable Entropy  
Computation 

3.1. Analysis of Approximate Entropy Calculation Program 

Approximate entropy (ApEn) is an algorithm for judging regularity of data. No-
tably, ApEn enables estimation of a data series’ randomness without prior 
knowledge of the data source [13]. Owing to its simplicity and high applicability, 
ApEn algorithm has been widely used in various research fields [14]. Its applica-
tions span biology and medicine, such as seizure detection [14], quantification of 
hormone pulsatility [15], depth of analgesia during propofol-remifentanil anes-
thesia [16], and gene expression data classification [17]. 

In this paper, a computing library of ApEn algorithm was developed to evaluate 
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the complexity and to optimize it. The computation library includes five key func-
tions: initialization, data structure reconstruction, vector distance computation in 
M and M + 1, log mean calculation, and subtraction. Using this library, we evalu-
ated the ApEn algorithm on a 500-point sequence.  

We used this library to calculate the approximate entropy of a 500-point se-
quence on a laptop with an AMD R7-4800U CPU, and we find that the calculation 
of the vector distances occupies most of the computation time. Vector distance 
computation takes up most of the computing time due to two nested loops. This 
leads to an exponential increase in computation with the increase of data points. 

The best range of sequence points for calculating approximate entropy is often 
between 100 and 5000 points. Considering human heartbeat frequency and com-
mon device sampling rates, an ideal ECGs sequence length for effective analysis 
ranges between 200 and 1000 points. Such a range is not ideal for emergency 
equipment seeking low power consumption. Hence, the design of hardware accel-
erator should focus on providing optimization for calculating the distance of each 
vector. 

3.2. Design Architecture of Tailorable Entropy Calculation  
Acceleration Unit 

The entropy computing acceleration unit comprises vector distance calculation 
unit array, parallel calculation controller, vector reconstruction unit, register 
group, and read-write controller. The function of the vector reconstruction unit 
is to reconstruct the original data sequence into two-dimensional or three-dimen-
sional vector groups. Based on the control register’s calculation number, this unit 
supplies corresponding data to the vector distance calculation unit. The parallel 
calculation controller and vector reconstruction unit are used to connect. The reg-
ister group and the vector distance calculation unit. The architecture of the en-
tropy calculation acceleration unit is shown in Figure 2. 
 

 
Figure 2. The architecture of entropy computing accelerator. 
 

Control of the acceleration unit of entropy computation is done by reading and 
writing registers. The accelerator inner register group is addressed from 0 to 
(APEN_DATA_LEN+1). You can change the APEN_DATA_LEN parameter to 
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trim the entropy computing accelerator. 
The address range of the data register group is 0-(APEN_DATA_LEN-1). This 

register group is used to store the original data sequence to be calculated. The data 
is not written by CPU in turn, but rather by DMA, in order to guarantee the effi-
ciency of operation. 

The control register and the status register share the same address 
APEN_DATA_LEN+1. The external circuit controls the acceleration unit by 
writing control signals to this address. The acceleration unit will also write the 
internal working state to this address for the external circuit to know. 

3.3. Design of Vector Distance Calculation Unit 

In the approximate entropy algorithm, the definition of vector distance is shown 
in Formula (1): 

[ ] [ ] ( ) ( )( )
0~ 1

, max ,
k m

d X i X j x i k x j k
= −

  = + +             (1) 

where X is the reconstructed m-dimensional vector group, x is the original se-
quence, and d is the distance between vectors. The distance is the largest absolute 
value of the difference between the corresponding elements in the vectors x[i] and 
x[j]. 

The vector distance calculation unit consists of a two-level pipeline. The pri-
mary stage is a data selector, tasked with selecting data for subsequent output. The 
secondary pipeline is a calculation circuit responsible for calculating the vector 
distance of the data provided by the primary pipeline. Sizing of Graphics. 

4. Design of Tailorable One-Dimensional CNNs Vector  
Computing Unit 

4.1. Analysis of Convolutional Neural Network Calculation  
Program 

Convolutional Neural Networks (CNNs) are a class of feed-forward neural net-
works that contain convolutional computation and have deep structure. A CNN 
includes convolutional layers, pooling layers, and fully connected layers [18]. 
CNNs have the characteristics of local connections, shared weights, pooling, and 
the use of many layers [19]. CNNs can automatically extract effective features 
from data [20]. These benefits of CNNs have led to their widespread application 
in many different industries. There are successful application cases in computer-
aided detection of thoraco-abdominal lymph node and classification of interstitial 
lung disease [21], classification of image and chart types [22], classification of 
COVID-19 [23], ECG analysis and other fields [24] [25]. Therefore, in this paper, 
we use CNNs to classify ECG signals and perform targeted optimization. 

Inference SDK for CNNs was designed in this project for MCU. The highest 
processing resources are used by convolutional computing, followed by full con-
nection, and pooling, and the least amount of resources are used for activation 
functions. According to tests, the accelerator should focus on the calculation of 
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convolution layer and fully connected layer. 
The definition of sum convolution of one-dimensional sequence is shown in 

Formula (2): 

( ) ( ) ( )0i
ny n x i h n i
=

= ⋅ −∑                      (2) 

In this project, the convolution design is based on Formula (3), which is com-
patible with the existing CNNs library. The calculation formula of the fully con-
nected layer is shown in Formula (4): 

( ) ( ) ( )0
n
iy n x i h i
=

= ⋅∑                        (3) 

( ) ( ) ( )
( ) ( ) ( )

1 1

2 2

y i x i h i

y i x i h i

= ⋅

= ⋅



                        (4) 

where represents the network sequence with length n of the previous layer, and 
represents the parameter sequence with length of n in this layer. 

The convolution sequence and the fully connected layer both rely on vector 
multiplication. To enhance acceleration, a vector multiplication calculation unit 
was integrated into the coprocessor. 

4.2. Architecture Design of One-Dimensional CNN Vector  
Computing Unit 

The E203’s ICB bus has a bandwidth restriction, hence parallel computing approach 
is not effective in improving computational efficiency. Therefore, we abandon the 
multi-unit parallel computing on the vector computing unit and adopt the long 
pipeline computing method. The unit is composed of an external interface, a data 
splitter, a parallel multiplier, a data selector, and an accumulator pipeline. 

The structure of the vector computing unit is shown in Figure 3. 
 

 
Figure 3. The architecture of vector computing unit. 
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The external interface is responsible for external communication and data ex-
change. The data splitter is responsible for splitting the serial data. Parallel multi-
plier, data selector, and accumulator work together to complete CNNs vector cal-
culation. 

The unit’s external interface extracts data one at a time. The data selector filters 
valid data and feeds it into the accumulation pipeline after each parallel multiplier 
operation. 

5. Experiments and Results 
5.1. ECG Signal Classification Acceleration 

A project was written and synthesized on FPGA development board. We also 
wrote a Convolution Neural Network ECG Test Case and an ApEn Computation 
Test Case. Test cases come in both software and hardware acceleration versions. 
The software version and the hardware-accelerated version have exactly the same 
algorithm, and the only difference is whether hardware acceleration is used or not. 
The results of the test are given in Table 1. 
 
Table 1. Test results of CNNs ECG classification algorithm and ApEn algorithm. 

Algorithm Instruction count Calculate number of cycles 

CNNs ECG classification 

Software-only 2,473,601 3,747,196 

Hardware-accelerated 58,439 114,799 

ApEn calculation 

Software-only 39,065,597 50,474,100 

Hardware-accelerated 1,042,651 1,486,142 

 
The CNNs designed in this project is a two-layered network. The raw data are 

1000 samples of ECG, sampled at 200 Hz. The first layer of CNNs consists of a 
convolutional layer, which consists of a convolutional layer with a length of 9. The 
second level is fully connected, with a parameter sequence of 992. Experimental 
results indicate that the CNNs test procedure can be accelerated by 33 times with 
hardware acceleration. 

A 250-point sequence is used for the ApEn calculation program. The results 
show that hardware acceleration can speed up the ApEn test program by about 34 
times. At a clock frequency of 16 MHz, the co-processor optimizes the calculation 
time of 250-point ApEn data from several seconds to several tens of milliseconds. 

Additionally, a slightly more intricate routine was designed in this study. Using 
a common embedded development platform for comparative testing, the compu-
tational cycles consumed by each chip model are shown in Table 2 below. 

The results show that the common embedded platform is able to run CNNs and  
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Table 2. Test results of different embedded platforms. 

Hardware platform 
Crystal  

frequency 
Number of cycles of 

CNNs routines 
Number of cycles of 

ApEn routines 

E203 co-processor 16 MHz 216,379 1,516,046 

E203 16 MHz 3,795,869 51,604,344 

STM32F103 72 MHz 1,979,998 44,639,964 

STM32G0B1 64 MHz 2,566,400 48,239,961 

CY8C5888 24 MHz 1,526,398 120,960,000 

STM32F411 25 MHz 2,122,500 65,750,000 

 
ApEn computation, and can also deploy the ECG signal recognition algorithm. 
But it can not meet the real time demand of synchronous filtering and real time 
analysis. In this study, the co-processor can speed up the algorithm by accelerating 
the hardware, and can meet the requirement of real time computation. 

5.2. Classification Accuracy of ECG Signal 

Three-lead ECG collection line is attached to the body of the volunteer to collect 
ECGs. Simulated CPR artifacts are created in the same frequency range by means 
of coupled electromagnetic interference. The electrocardiogram collected is shown 
in Figure 4. 
 

 
Figure 4. Volunteer ECG signals. 
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In this study, 54 normal ECG signals of a volunteer were collected inde-
pendently. Additionally, under conditions simulating CPR artifacts using coupled 
electromagnetic interference, 50 ECG signals from the same volunteer were col-
lected. These 50 signals are considered as normal ECG data with CPR artifacts. 
The results are shown in Table 3: where N stands for normal, A stands for atrial 
premature beats, V stands for ventricular premature beats, L stands for left bundle 
branch block, R stands for right bundle branch block, and F stands for ventricular 
fibrillation. The accuracy represents the classification accuracy of normal ECG 
signal n. 

The test results indicate that the classification accuracy of normal ECGs under 
simulated CPR artifacts can be significantly improved by the integrated algorithm. 
Additionally, the co-processor designed in this study can be used to effectively 
accelerate the ApEn algorithm and one-dimensional CNNs algorithm. The algo-
rithm can be applied to the analysis of various physiological signals. 
 
Table 3. Test results of ECGs classification for the algorithm designed in this study. 

Algorithm N A V L R F Accuracy 

ECG classification results without interference from analog artifacts 

CNN  
classification 

algorithm 
53 0 0 0 1 0 98.1% 

Methodology 
for the design 
of this study 

53 0 0 0 1 0 98.1% 

ECG classification results with simulated artifact interference 

CNN  
classification 

algorithm 
10 1 0 0 0 40 20% 

Methodology 
for the design 
of this study 

48 1 0 0 0 2 96% 

N: normal heartbeat A: atrial premature beats; V: ventricular premature beats; L: left bun-
dle branch block; R: right bundle branch block; F: ventricular fibrillation; Accuracy: the 
classification accuracy of normal ECG signal n. 

6. Discussion and Conclusion 
6.1. Discussion 

An organ’s pathology will invariably result in an increase in signal entropy value, 
which is a crucial performance metric for the human body as an ordered system. 
Therefore, ApEn is a very important basis in the current physiological signal anal-
ysis. In recent years, the neural network algorithm has become one of the im-
portant algorithms for analyzing physiological signals. Using neural network al-
gorithm and ApEn algorithm can effectively analyze various physiological lesions. 
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High-performance ECG signal classification algorithm should be highly effi-
cient and accurate in eliminating CPR artifacts in CPR. However, the integration 
of such high performance algorithms into the AED microprocessors is a challenge. 
Common microprocessors like STM32G0B1 and CY8C5888 can not meet the re-
quirement of AEDs’ real time signal classification. In order to solve this problem, 
a co-processor SOC has been developed, which can be used to accelerate the inte-
gration algorithm of ApEn and CNNs. To validate the test, we collected and tested 
ECG signals from volunteer. 

In actual testing, we observed that the running speed of common microproces-
sors for the ApEn algorithm and CNNs algorithm is positively correlated with 
clock frequency of the chip itself. The running speed of the E203, without hard-
ware acceleration, is slower than that of the STM32F103—which has a higher 
main frequency—for both algorithms. However, the E203 co-processor, equipped 
with hardware acceleration, significantly outpaces the other chips. 

There are still shortcomings in this design, and future research work includes: 
1) Broadening the utility of the calculation unit by enhancing both the approx-

imation entropy calculation library and the associated co-processor circuit. 
2) Improving the CNNs inference library to make the SDK more flexible and 

user-friendly. 

6.2. Conclusion 

In this study, we presented an AI analysis SoC specifically designed for physiolog-
ical signal analysis. This SoC incorporates a co-processor to analyze physiological 
signals via the NICE interface. We developed and optimized an ApEn and CNNs 
integrated algorithm, leading to a reduction in computational overhead. Subse-
quent tests validate the design results. Through the integrated software and hard-
ware approach detailed in this study, we achieve a notable acceleration in the 
speed of ECG classifications. This approach also improves the accuracy of ECG 
classifications under simulated CPR artifacts. This advancement fulfills the re-
quirements of AEDs for real-time electrocardiogram signal analysis in practical 
applications. 
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