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Abstract 
As all natural laws, Newtonian dynamics should be governed by Einstein’s Co-
variance Principle; i.e., being covariant under all coordinate transformations, 
even time-dependent transformations. But Newton’s Second Law, as it is gen-
erally understood, is unchanged only under Galilean transformations, which 
do not include time-dependent coordinate transformations. To achieve the 
covariant formulation of Newton’s Second Law, a distinction must be made 
between frames and coordinate systems, as advanced by the Principle of Ma-
terial Frame-Indifference, and furthermore, the ordinary time derivative must 
be replaced by the rotational time derivative. Elevating Newton’s Second Law 
to covariancy has born many fruits in flight dynamics from the theoretical un-
derpinning of unsteady flight maneuvers to the practical modeling of complex 
flight engagements in tensors, followed by efficient programming with matrices. 
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1. Introduction 

Newtonian Dynamics has ruled classical dynamics over three centuries and even 
today is still the dominant theory for engineering and day-to-day applications. 
The simple f=ma equation may be the best-known relationship in classical phys-
ics. But then came Einstein, not to abolish Newton, but to expand his laws into 
realms where movements approach the speed of light and matter shapes the very 
fabric of space. 

Einstein’s special and general theories of relativity converge to Newton’s dy-
namic and gravitational laws for everyday speeds and matter. In addition, Einstein 
also introduced the universal Principle of Covariance, that holds equally well for 
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classical and relativistic dynamics, quote: “All natural laws must be covariant with 
respect to arbitrary continuous transformations of the coordinates.” [1] 

To be precise, let’s distinguish between invariant and covariant, using the fol-
lowing definitions: 

Invariant: Any physical quantity is invariant when its value remains un-
changed under coordinate transformations. Examples are physical quantities 
represented by scalars, such as temperature, pressure, etc., whose values re-
main the same. 
Covariant: The term covariant is used when the equations of physical systems 
are unchanged under coordinate transformations. These equations are rep-
resented by tensors and formulated in tensorial form. 

In high school and university [2], we are taught how to deal with Newton’s Sec-
ond Law. Its simple form f = ma is valid for all inertial coordinate systems, but 
when the coordinate system is rotating, special care has to be taken by including 
another term to compensate for the rotation. In other words, Newton’s law as 
taught is not covariant under all coordinate transformations. 

This flies in the face of Einstein’s Covariance Principle. 
In this paper, I will show how to formulate Newton’s Second Law in a covariant 

form. I will summarize in Section 2, Newton’s classical view of the world with its 
absolute space and time, and the mystifying inertial frame, which escapes rational 
pinpointing. We can state that Newton’s Second Law, in its classical formulation, 
is unchanged under Galilean transformations, which, however, does not include 
time-dependent transformations. In Section 3, I will give Einstein the floor with 
his Covariance Principle, and we will see that the Lorentz transformation of Spe-
cial Relativity converges to the Galilean transformation for everyday speeds. Then 
in Section 4, I will switch to continuum dynamics as portrayed by Walter Noll, 
whose clear distinction between frames and coordinate systems made a great im-
pression on me. His Principle of Material Frame-Indifference is closely related to 
Einstein’s Covariance Principle, though he does not make that connection, like 
others have done. Finally, in Section 5, I will retrace the steps from my dissertation 
to my latest publications, as I have developed the covariant formulation of New-
ton’s Second Law in Cartesian tensors, and its implications for flight dynamics 
and compact computer programming. 

2. Newton and His Dynamics—Absolute Space and Time 

What better way is there than to start by quoting Newton’s (1643-1727) three laws 
from his publication in 1687 Philosophiae Naturalis Principia Mathematica, as 
translated by the University of California at Berkeley [3]: 

1) Every body continues in its state of rest or of uniform motion in a straight 
line unless it is compelled to change that state by forces impressed upon it. 

2) The rate-of-change of linear momentum equals the impressed force and is in 
the direction in which the force acts. 
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3) To every action there is always opposed an equal reaction. 
(Newton used the word motion instead of linear momentum to define the sec-

ond law, but the meaning is the same.) 
The first law is validated by our experience. We do not notice our own linear 

momentum unless a wall stops us. The wall exerts the force that kills us (second 
law). Newton’s third law is important in mechanics, because it assures us that in-
ternal forces cancel amongst a collection of particles. Newton did not specify a 
frame in formulating his second law. Later, others attempted to affix what was 
called the luminiferous ether to his law, until Michelson and Morley in 1887 dis-
proved the concept. 

Today, in engineering and physics, the application determines the proper 
frame, which we call the inertial frame. From the First Law, we know that any 
nonaccelerating frame qualifies equally well. But does it exist? Is it the frame 
formed by the so-called fixed stars, or the ecliptic of our sun? Yet we know that 
our solar system is located in the spiral arms of the Milky Way and therefore ac-
celerating. Other theories suggest that all galaxies and their stars are fleeting with 
increasing speed. Where is this inertial frame? It probably does not exist in abso-
lute terms. The inertial frame is dictated by the application. Interplanetary travel 
requires the heliocentric frame; Earth satellites use the ecliptic frame, which most 
commonly is called the inertial frame; and Earth-bound, low-speed flights can use 
the Earth frame. Whatever the accuracy requirement is, this will determine the 
choice of the inertial frame. 

Nevertheless, Newton believed there exists absolute space and absolute time. 
But he was not the first one. Rather we have to go way back to Aristotle (384-322 
BC). He posited that the cosmos is the absolute frame. Now Newton’s reasoning 
was not shaped as much by Aristotle as by Galileo (1564-1642), who died just one 
year before Newton was born. Galileo believed in absolute space and absolute time 
and was the first one to realize experimentally that dynamical laws are precisely 
the same when referred to any uniformly moving frame. This led him to formulate 
a transformation law, which we now call the Galilean Transformation Law 

( ) , ; ,t t t const const′ ′= − ⋅ =x T x v T v  

with x position vector, T spatial constant transformation matrix, v constant linear 
velocity, and t universal time. 

Newton’s Second Law, as generally perceived, does not change under Galilean 
transformations. Let’s have a look and take the time derivative of Galileo’s trans-
formation, but pre-multiply x by the constant mass m 

( )m m t′ = − ⋅x T x v  

Taking the time derivative 

( )( ) ( )d
d

m m t m m
t

′ ′= − ⋅ → = −x T x v x T x v   

and again 
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( )( ) ( )d
d

m m m m
t

′ ′= − → =x T x v x T x     

Now Newton’s Second Law is simply 
m =x f  

and substituted 

m ′ =x Tf  

Comparing the last two equations shows that Galileo’s transformation does not 
change the inertial force, as long as T is not a function of time. Only the external 
force has to be adjusted to the new attitude. 

3. Einstein’s View of Newtonian Dynamics—Covariance 

Einstein (1879-1955), in his first major publication [4], questioned the entrenched 
Galilean postulate that all velocities are additive. His study of Maxwells electrody-
namics led him to hypothesize that the speed of light is constant. If you move the 
light source, you cannot make the photons move faster. He was led to this postulate 
by realizing that in Maxwell’s equations the permittivity ε0 and permeability μ0 are 
constant numbers in vacuum. If combined in this relationship ( )2

0 01c ε µ= , we 
get the square of the speed of light, as it was known then and now. If ε0 and μ0 are 
universal constants, so should the speed of light be. With this statement, Einstein 
revolutionized the world of dynamics. The absolute space-time of Galileo and 
Newton has become only an approximation for velocities that are a small fraction 
of the speed of light. 

Einstein realized that Galileo’s transformation had to be expanded and embed-
ded into the Minkowski (1864-1909) spacetime, with time now relegated as fourth 
dimension. His Special Relativity was born, and the new transformation was called 
the Lorentz Transformation. 

Let’s have a look at the Lorentz transformation. To keep it simple, I use only 
the x-direction 

( )
1

2

2 2, , 1v x vx x v t t t
c c

γ γ γ
−

 ⋅ ′ ′  = − ⋅ = − = −      
 

The new γ variable affects now position and time. It is a function of the inertial 
velocity v and the constant speed of light c. 

Buried in the Lorentz transformation is still the Galilean transformation of our 
daily experience: 

for : 1,v c t tγ ′≈ ≈ → ( ) ,x x v t t t′ ′= − ⋅ =  

However, Einstein was not done yet. He wanted to include even time-depend-
ent transformations. Thus, he formulated the Covariance Principle in his famous 
paper on General Relativity [1]: “All natural laws must be covariant with respect 
to arbitrary continuous transformations of the coordinates.” Much later, he also 
penned an account for Dover Publications [5] to make his theories of relativity 
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accessible to a broader audience, while reiterating the same Covariance Principle. 
His reasoning may have been that coordinate systems are solely a mathematical 

artifice to conduct numerical computations and have nothing to do with physical 
phenomena. So why should the formulation of the physical phenomena be depend-
ent on the time-dependency of the coordinate transformation? Such Gedankenex-
perimente may have led him to formulate the Covariant Principle, though no such 
reference could be found. 

If the Covariance Principle applies to all natural laws, then it must also apply to 
Newton’s Second Law. In other words, Newton’s Second Law must be covariant 
under any coordinate transformations, even time-dependent transformations. 
The ramification of this statement has major implications for classical dynamics, 
as we shall see in Section 5. 

4. Noll’s View of Newtonian Dynamics—Principle of Material  
Frame-Indifference 

Now we switch to continuum dynamics, another branch of classical dynamics, 
which was shaped in the 1950-1970 foremost by Noll and Truesdell [6]. Like all 
classical dynamics, continuum dynamics is also based on Newton’s and the asso-
ciated Euler’s laws, which are called here the constitutive laws. 

Walter Noll, a student of Cliff Truesdell at Carnegie Mellon University, pro-
moted in many of his publications the principle of material indifference, which he 
later renamed the Principle of Material Frame-Indifference: The constitutive laws 
governing the internal interactions between the parts of the system should not 
depend on whatever external reference coordinates are used to describe them. 
Here is a quote from Walter Noll [7]: 

Although the ideas of my thesis were entirely mine, Clifford Truesdell helped 
me very much with putting them into clear English. He also taught me re-
spect for good writing, something that is sadly lacking among too many 
mathematicians. At first he was uncomfortable with my coordinate-free, con-
ceptual way of mathematical reasoning (my emphasis), and he persuaded me 
to include versions with coordinates of all equations in my thesis. (A few 
years later, he himself wrote papers in which no coordinates were used.) 

The constitutive laws consist of the three Balance Laws [8] 
0divρ ρ= =x    

divTρ ρ− =x b   

div T grad rρ ε ρ+ − =q x    

consisting of mass, linear momentum, and energy equations, with density ρ, force b, 
Cauchy stress T, heat flux q and internal energy ε, and the Navier-Stokes Equation [9] 

2grad pgrad grad
t

ν
ρ

∂
+ ⋅ = − +

∂
u u u u  

with u velocity, p pressure, ρ density, v viscosity. 
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They are valid independently of coordinate systems and are unchanged under 
the Galilean transformation. However, Lumley states in the Journal of Applied 
Mechanics [10]: “The principle may not be used in turbulence modelling.” This 
statement may refer to the partial time derivative t∂ ∂u  of the Navier-Stokes 
equation. 

At first glance, the Covariance Principle and the Principle of Material Frame-
Indifference seem to express the same physical reality, as Kempers [11] writes in 
the paper’s summary: 

It is shown that the principle of material frame indifference follows from the 
covariance principle in the non-relativistic limit when inertia is considered 
to be absent. As a result, the principle of material frame indifference has re-
ceived further justification, but it cannot retain its status of a fundamental 
principle. 

The difference lies in the physical perspective. The Covariance Principle is an 
absolute statement of physical reality, while the Principle of Material Frame-In-
difference refers to the coordinate system of an observer. To quote I-Shih Liu [12]: 
“The response of a material is the same for all observers”. 

Noll also reiterated his opinion on Newton’s absolute reference frames in a 1995 
research report [13]: 

Newton’s law is valid only in certain preferred frames, which we will call in-
ertial frames. It seems that Newton dealt with this issue by postulating a par-
ticular preferred frame, which he called “absolute space”… However, I be-
lieve that Newton’s absolute space is a chimera. 

Though Newton’s laws require the concept of an inertial frame, this frame is 
not an absolute frame. 

5. My View of Newtonian Dynamics—Covariance 

As an aerospace engineer, Newtonian dynamics is the foundation of my theoreti-
cal and practical endeavors. While wrestling with my PhD thesis [14], I came 
across some of Walter Noll’s publications. Just as he was attempting to formulate 
his findings in a “coordinate-free, conceptual way of mathematical reasoning” in 
continuum mechanics (see above [7]), so was I trying to express the flight dynam-
ics of Magnus Rotors in an invariant, coordinate free formulation. To do this, I 
had to start with the basics, namely Newton’s Second Law. 

We have seen that Newton’s Second Law holds only true in an inertial frame, 
though we were not able to pinpoint its physical character, except to say that if 
there is an inertial frame, any other co-moving frame with constant velocity is 
also an inertial frame. What piqued my interest was the distinction Noll made 
between frames and coordinate systems, though I was used to consider them as 
synonyms, as taught in my flight dynamics class. What if they are completely 
different entities? 
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In 1995, Noll stated [13]: 

Some people confuse the concept of a frame [of reference] with that of a co-
ordinate system. It makes no sense to talk about a coordinate system unless 
a frame-space (or at least some kind of manifold) is given first. One can con-
sider many different coordinate systems on one and the same frame-space. 
Using coordinate systems in conceptual considerations is an impediment to 
insight; they have a legitimate place only in the context of very specific situ-
ations. (My brackets [ ]). 

In my dissertation [14], I wrote: 

A frame is an unbounded continuous set of elements over the Euclidean 
three-space, whose distances are time-invariant, and which possesses, as a 
subset, at least three non-collinear points. 
A coordinate system is an abstract entity embedded in Euclidean three-space 
that establishes a one-to-one correspondence between the elements of a 
frame and the ordered triple of algebraic numbers. 

To fashion an invariant formulation of Newton’s Second Law, it was clear to 
me that frames and coordinate systems had to be treated as different entities and 
not as synonyms, though there was and still is much confusion. I knew how to 
handle Newton’s Law in coordinate systems. But how do I express it in a covariant 
form with an inertial frame? 

This was the same struggle Einstein faced when formulating his General Theory 
of Relativity, as Earman and Glymour stated in their paper [15] entitled: Lost in 
the Tensors: Einstein’s Struggles with Covariance Principles. It was Einstein’s 
neighbor Marcel Grossmann who introduced and taught him how to apply the 
recently published tensor calculus of Ricci, G., Levi-Civita [16] for a covariant for-
mulation of the General Theory of Relativity. 

Now my realm is classical dynamics, but as Einstein stated [3]: “All natural laws 
must be covariant with respect to arbitrary continuous transformations of the co-
ordinates”. That certainly includes Newton’s Second Law. 

Since tensors are defined by their transformations, I had to make a choice, 
whether to express them in their indexed form k ki iv t v′ = , kl ki ij jlV t V t′ = , or sym-
bolic form, ′ =v Tv , 1−′ =V TVT . There are two ways to interpret them. In the 
indexed form, a tensor is the aggregate of its expression in all admissible coordi-
nate systems, while in the symbolic form, all the coordinate systems are hidden in 
the abstract boldface fonts, which take on an absolute meaning. It seemed to me that 
the symbolic form is better suited to express Newton’s Law in a covariant form. 

In symbolic tensor form, Newton’ Second Law is written m =a f . Expressed 
in inertial coordinates [ ] [ ]I Im a f= , where I am using my matrix notation of 
brackets with superscript to indicate that the tensors are evaluated in one partic-
ular coordinate system, namely here in an inertial coordinate system I. The tensor 
relationship has become a matrix equation, and the covariant tensor law has found 
a special coordinated realization. 
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As we saw in Section 2, Newton’s Second Law is unchanged under Galilean 
transformations. But what happens if the coordinate transformation T is time-
dependent? This is often the case in flight dynamics, just think of the transfor-
mation between the aircraft coordinates and inertial coordinates. How can the 
covariance of Newton’s Second Law be maintained even under time-dependent 
transformations? 

In flight dynamics, the linear momentum p  is used in Newton’s law 
d
d I

p f
t

=




, with p mv=
   and v  the velocity in inertial coordinates, while the 

time derivative is taken relative to the inertial coordinates I. Now if the time de-
rivative of the linear momentum is taken relative to non-inertial coordinates, say 
the time-dependent aircraft coordinates B, then as everybody knows, we have to 

adjust Newton’s law accordingly: d
d B

p p f
t

ω+ × =




  , with ω  the angular veloc-

ity of the airframe coordinates relative to the inertial coordinates. However, the 
covariance of the formulation has been broken by the additional term pω×  ! 

The ordinary time derivative is incapable of maintaining the tensor form if we 
change to a non-inertial coordinate system. That led me to search for a time op-
erator that did not destroy the covariance of Newton’s Second Law. 

I found the relevant starting point in a paper by Wundheiler [17]. In the intro-
duction, he says: “In some type of investigations the inclusion of a time-dependent 
coordinate system is indicated, and even mandatory because of the nature of the 
problem, just as it is the case with the inclusion of curvilinear coordinates” (my 
translation from German). 

The total differential form ivδ  of vector iv  for a rheonomic (time-depend-
ent) space is according to Wundheiler 

d d di i i j k i j
jk jv v v x v tδ = + Γ + Λ  

where di j k
jk v xΓ  is the spatial transplantation contribution, with i

jkΓ  the con-

nection matrix; and di j
jv tΛ  the term that Wundheiler added to account for the 

time dependency, where i
jΛ  is called the rotation matrix and is of the form 

2i h
i
j h j

x x
x x t
∂ ∂

Λ =
∂ ∂ ∂

. 

Now we switch from Riemannian space to Euclidean space. Because of its flat-
ness, the connection matrix vanishes, but not the rotation matrix 

d di i i j
jv v v tδ = + Λ  

Introducing new nomenclature for the transformations 

;
i h

i h
h jh j

x xt t
x x
∂ ∂

= =
∂ ∂

 

the rotation matrix becomes 

d
d

h h
j ji i i

j h h

t t
t t

t t
∂

Λ = =
∂
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where the partial derivative of time has become the total time derivative, because 
of the flatness of Euclidean space. The rheonomic transformation is now, after 
dividing by dt 

dd
d d

hi i
ji j

h

tv v t v
t t t

δ
δ

= +  

For Newtonian applications, we can further simplify the transformation by us-
ing the Cartesian space, in which case the transformation iht  is orthogonal and 
its inverse equals its transpose 

dd
d d

jhi i
ih j

tv v
t v

t t t
δ
δ

= +  

On the left, we have the total time differential iv tδ δ  of vector iv , on the 
right, the time derivative d div t  related to the particular coordinate system; and, 
if the coordinate transformation is time-dependent, there appears the additional 
term ( )d dih jh jt t t v . The total time differential iv tδ δ  I called the rotational 
time derivative. 

I only sketched an abbreviated derivation of Wundheiler’s rheonomic transfor-
mation from Riemannian space to Euclidean and then to Cartesian space. The 
detailed derivation is given in the Annex D of my textbook Modeling and Simu-
lation of Aerospace Vehicle Dynamics [18]. 

In flight dynamics, where coordinate transformations abound, identifying co-
ordinate systems by over bars or other symbols is cumbersome. The matrix nota-
tion is preferred, with the coordinate system indicated by a capital superscripted 
letter; e.g., for two coordinate systems A and B, the transformation of B with re-
spect to A is [ ]BAT ; and the transformation of tensor v of rank one is 

[ ] [ ] [ ]B BA Av T v=  

Applying this nomenclature to the rotational time derivative, and replacing the 
total time differential iv tδ δ  with the expression 

BAD v    provides the opera-
tional form 

[ ] [ ]d d
d d

BAB
B BA BA v TD v T v

t t
     ≡ +        

 

The indexed form of the transformation matrix iht  has become [ ]BAT . The i 
coordinate system (now B) of Wundheiler’s reduced equation d di i i j

jv v v tδ = + Λ  
is the new coordinate system, which is time-variant relative to the original coor-
dinate system j (now A). Coordinates ]A are embedded in frame A. The rotational 
time derivative 

BAD v    determines how the vector v, originally expressed in A 
coordinates, is changing in time when subject to the time-dependent coordinate 
transformation. Here we see the paramount importance of distinguishing between 
frames and coordinate systems. The superscript A of D refers to the original frame 
A, while the superscript B of ]B refers to the new coordinate system B. 

Let’s apply the rotational time derivative to Newton’s Second Law and show 
that it can be formulated in a covariant tensor form valid for all time-dependent 
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Cartesian coordinate transformations. The reference frame of Newton’s law is al-
ways the inertial Frame I. So, Newton’s law is written in tensor form 

ID =p f  

If expressed in inertial coordinates ]I, [ ]I IID p f  =  , where the left side is 

[ ] [ ]d d d
d d d

III I
I II II p T pD p T v

t t t
       ≡ + =            

, because [ ]d 0
d

II
T
t

  =  
 

Thus, Newton’s law expressed in inertial coordinates, using the rotational time 

derivative, is what you expect [ ] [ ]d d I Ip t f= . Now let’s use a non-inertial coor-

dinate system ]B, whose coordinate transformation [ ]BIT  is time-dependent: 

[ ]B BID p f  =   

[ ] [ ]d d
d d

BIB
B BI BI p TD p T f

t t
     ≡ + =        

 

But notice in each case we had the same form using the rotational time deriva-

tive [ ]I IID p f  =   and [ ]B BID p f  =   with no extra term as we encountered 

earlier using the ordinary time derivative d
d I

p f
t

=




 and d
d B

p p f
t

ω+ × =




   (The 

extra term is hidden in 
BID p   ). Without the extra term, we find that the rota-

tional time derivative maintains the covariance of Newton’s Second Law and 
therefore can be expressed in the tensor form ID =p f  valid in all Cartesian 
coordinate systems even those related by time-variant transformations. 

What I demonstrated here is not a proof, but in Annex D, Section 3 [18], I pro-
vide the rigorous proof that the rotational time derivative maintains the covariant 
tensor form of first-order and second-order tensors for all Cartesian transfor-
mations, even those with time-dependent elements. 

It has been 54 years since I introduced the covariant treatment of Newton’s 
Second Law [14]. Its benefits were especially important for flight dynamics. In 
flight dynamics a myriad of coordinate systems is used to model the dynamics of 
aircraft, drones, spacecraft, missiles, and rockets. Particularly in engagements 
where multiple vehicles interact with each other, it is better to first model the 
physical engagement with tensors, and only after the scenario has been properly 
shaped, coordinate systems are introduced, and the tensors have become matrices, 
suitable for computer programming; therefore, my motto: From tensor modeling 
to matrix coding. 

Besides the practical benefit of untangling physics from computation, the co-
variancy of Newton’s Second Law also led to some theoretical advances in flight 
dynamics. In an AIAA paper [19], I presented the general perturbation equations 
of unsteady reference flight, which was credited at the 2012 AIAA Atmospheric 
Flight Conference, as the most influential paper on flight dynamics of the 1970s. 
Here are the equations in tensor form: 
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( )Bp I BpBr BrI BpBr I BI BpBr I BpBr
B B Br a t grm D m mε ε ε ε ε+ + = + + −v R R v R v f f E R fΩ Ω  

Bp Bp BI BpBr BrI BpBr Bp BI BI BpBr Br BrI
Bp Bp Br a tD ε ε ε ε ε+ + = +I R R I R I m mΩ Ωω ω ω  

Some explanations: the first equation determines the perturbation of the veloc-
ity of the center of mass B of the aircraft relative to an inertial frame I, I

Bε v ; and 
the second equation is the perturbation of angular velocity of the airframe B rela-
tive to the inertial frame I, BIεω . The unsteady effects are caused by the term 

BI BpBr Br BrI
Brε R IΩ ω . It models the perturbations of an aircraft in maneuvering 

flight, given by BrIω , which is the angular velocity of pitch-up or pitch-down, as 
well as turning flight. For more details go to my textbook [18], Chapter 6. 

By introducing the rotational time derivative and distinguishing carefully be-
tween frames and coordinate systems, I was able to formulate Newtons Second 
Law in a covariant tensor formulation, valid for all Cartesian coordinate systems. 
Since all my theoretical and practical applications are based on Newton’s Second 
Law, I took advantage of the new paradigm in my technical publications, starting 
with my textbook Modeling and Simulation of Aerospace Vehicle Dynamics [18], 
a product of my 30 years of graduate teaching at the University of Florida. For 
undergraduate instructions, I wrote Introduction to Tensor Flight Dynamics [20], 
which can be taught in a one semester course, requiring only minimum prerequi-
sites. 

With modeling and simulation becoming such an important part of aerospace 
engineering, the approach of modeling the physics with tensors and programming 
in matrices has streamlined the simulation task for greater effectiveness. Accom-
panying my textbook are the three CD Roms [21]-[23] of my graduate courses, 
published by AIAA, which teach how to model the dynamics of missiles, aircraft, 
and hypersonic vehicles in tensors, followed by programming their trajectories in 
C++. For the introductory course, I have provided over 40 problems that chal-
lenge the student using MATLAB® or PYTHON to obtain numerical solutions for 
aerospace applications that have been formulated by tensors. 

More recently, I have distilled my short courses, which I have given to industry 
and academia, in five workbooks [24]-[28]. They summarize my experience 
gained over five decades with modeling in tensors and programming with matri-
ces, foremost in C++. All these workbooks are also the basis of my seven online 
courses at UDEMY. 

6. Conclusions 

More than five decades have passed since I introduced a covariant formulation of 
Newton’s Second Law. But the foundations had been laid much earlier by Ein-
stein’s postulate that all natural laws must be covariant with respect to arbitrary 
continuous transformations of the coordinates, and later Noll’s Principle of Material 
Frame-Indifference with its clear distinction between frames and coordinate systems. 
Wundheiler’s paper provided the theoretical underpinning for deriving the rota-
tional time derivative. Without replacing the ordinary time derivative with the 
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rotational time derivative, the covariant tensor formulation of Newton’s law 
would not have been possible. 

My dissertation has borne much fruit particularly in flight dynamics, which 
deals with many coordinate systems. The two-phased approach, which involves 
formulating the physics in tensors and then converting them to matrices by intro-
ducing coordinate systems for coding, is now called Tensor Flight Dynamics. It 
has enabled me and others to model complex flight engagements and develop so-
phisticated simulations, as documented in my AIAA publications, AMAZON 
workbooks, and UDEMY online courses. 
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