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Abstract 
The paper presents an innovative approach towards agricultural insurance un-
derwriting and risk pricing through the development of an Extreme Machine 
Learning (ELM) Actuarial Intelligent Model. This model integrates diverse da-
tasets, including climate change scenarios, crop types, farm sizes, and various 
risk factors, to automate underwriting decisions and estimate loss reserves in 
agricultural insurance. The study conducts extensive exploratory data analy-
sis, model building, feature engineering, and validation to demonstrate the ef-
fectiveness of the proposed approach. Additionally, the paper discusses the 
application of robust tests, stress tests, and scenario tests to assess the model’s 
resilience and adaptability to changing market conditions. Overall, the re-
search contributes to advancing actuarial science in agricultural insurance by 
leveraging advanced machine learning techniques for enhanced risk manage-
ment and decision-making.  
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1. Introduction 

In recent years, the agricultural sector has faced escalating challenges, including 
climate change impacts, market volatility, and evolving pest and disease pressures 
[1]. These factors heighten the vulnerability of farmers and agricultural stakeholders 
to financial risks, emphasizing the critical role of insurance in mitigating such un-
certainties. However, traditional underwriting processes in agricultural insurance 
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often lack efficiency, transparency, and adaptability, impeding widespread adop-
tion and hindering effective risk management. To address these limitations, this 
paper introduces an innovative approach which integrates cutting-edge machine 
learning techniques with actuarial principles to revolutionize the underwriting 
process, enhancing its accuracy, speed, and scalability. 

The proposed model leverages Extreme Machine Learning (XML) techniques, 
such as deep neural networks, ensemble methods, and reinforcement learning, to 
automate and optimize the underwriting process in agricultural insurance. By 
harnessing vast amounts of heterogeneous data, including historical weather pat-
terns, soil quality indicators, crop yield data, market trends, and socio-economic 
factors, the model generates comprehensive risk profiles for individual farmers or 
agricultural operations [2]. Through advanced algorithms, it learns intricate pat-
terns and correlations within the data, facilitating precise risk assessment and dy-
namic underwriting decisions in real-time. Additionally, the model incorporates ac-
tuarial intelligence to ensure alignment with industry standards, regulatory compli-
ance, and long-term sustainability. 

The rationale behind developing this innovative underwriting model stems 
from the pressing need to enhance the resilience and sustainability of agricultural 
systems worldwide. With climate change exacerbating environmental risks and 
market uncertainties amplifying financial vulnerabilities, agricultural insurance 
plays a pivotal role in safeguarding farmers’ livelihoods and promoting food se-
curity. However, conventional underwriting approaches often fall short in accu-
rately assessing and pricing agricultural risks, leading to inadequate coverage, in-
efficient resource allocation, and suboptimal risk management outcomes [3]. By 
harnessing the power of machine learning and actuarial science, the proposed 
model aims to address these shortcomings, offering a data-driven, adaptive, and 
transparent underwriting solution that can better serve the needs of farmers, in-
surers, and policymakers alike. 

The Extreme Machine Learning Actuarial Intelligent Agricultural Insurance 
Based Automated Underwriting Model has broad applicability across diverse ag-
ricultural contexts and geographic regions. It can be tailored to various types of 
crops, livestock, farming practices, and risk profiles, making it adaptable to differ-
ent agricultural systems and insurance markets [4]. Moreover, the model’s scala-
bility enables its deployment across large portfolios of policies, facilitating effi-
cient risk management for insurers and enhancing accessibility to insurance cov-
erage for farmers. Furthermore, the model’s real-time capabilities enable timely 
adjustments to changing environmental conditions, market dynamics, and poli-
cyholder characteristics, ensuring relevance and effectiveness in dynamic agricul-
tural landscapes. 

This study holds significant importance for advancing both theoretical knowledge 
and practical applications in the fields of agriculture, insurance, machine learning, 
and actuarial science. By developing and validating the Extreme Machine Learn-
ing Actuarial Intelligent Agricultural Insurance Based Automated Underwriting 
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Model, this research contributes to the emerging field of agricultural insurtech, 
offering novel insights into leveraging data-driven approaches to enhance risk 
management and resilience in agriculture [5]. Furthermore, the study’s findings 
can inform policymakers, insurers, and agricultural stakeholders about the poten-
tial benefits of adopting advanced underwriting technologies, fostering innova-
tion, inclusivity, and sustainability within the agricultural insurance sector [6]. 
Overall, this research underscores the critical role of interdisciplinary collabora-
tion and technological innovation in addressing complex challenges at the nexus 
of agriculture, finance, and climate change. 

1.1. Actuarial Underwriting Methods for the Non-Life Insurance 
Sector 

Actuarial underwriting methods in the non-life insurance sector play a crucial role 
in assessing and pricing risks associated with various types of insurance policies 
such as property, casualty, and liability insurance. These methods utilize statistical 
analysis, mathematical models, and historical data to determine appropriate pre-
mium rates and manage risk effectively. 

1.1.1. Experience Rating 
Experience rating is a fundamental method used in non-life insurance underwrit-
ing. Insurers analyze the past claims experience of policyholders to predict future 
claims and determine premium rates accordingly [7]. By examining historical data 
on claim frequency and severity, insurers can assess the risk profile of insured 
entities and adjust premiums to reflect their risk exposure. 

1.1.2. Credibility Theory 
Credibility theory is another prominent underwriting method utilized in non-life 
insurance. It combines individual policyholder experience with the collective ex-
perience of a larger group to improve the accuracy of risk estimation [8]. Under 
this approach, insurers assign weights to individual and group experience data 
based on their credibility, thus providing a more reliable basis for setting premium 
rates. 

1.1.3. Risk Classification 
Risk classification involves categorizing insured entities into different risk classes 
based on specific characteristics such as location, industry sector, and risk factors 
[9]. Insurers use actuarial techniques to analyze these risk factors and assign ap-
propriate premium rates to each class. By segmenting risks effectively, insurers 
can ensure that premiums accurately reflect the level of risk associated with each 
policyholder. 

1.1.4. Underwriting Guidelines 
Underwriting guidelines are established by insurers to standardize the underwrit-
ing process and ensure consistency in risk assessment [10]. These guidelines out-
line the criteria for accepting or rejecting insurance applications and provide 
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underwriters with clear instructions on evaluating risk factors. By adhering to un-
derwriting guidelines, insurers can maintain underwriting discipline and mitigate 
adverse selection. 

1.1.5. Predictive Modeling 
Predictive modeling techniques leverage advanced statistical analysis and ma-
chine learning algorithms to forecast future events and assess risk. In non-life in-
surance underwriting, predictive models are used to analyze large datasets con-
taining information on policyholder characteristics, claims history, and external 
factors influencing risk. By identifying patterns and trends in the data, insurers 
can make more accurate underwriting decisions and optimize pricing strategies. 
In this paper, we shall explore and improve the predictive modelling towards de-
velopment of the agricultural insurance based automated actuarial underwriting 
model. 

These actuarial underwriting methods are integral to the non-life insurance sec-
tor, enabling insurers to effectively manage risk, price policies competitively, and 
maintain profitability in a dynamic and evolving insurance market. 

1.2. Inflation Adjusted Frequency Severity Loss Reserving Risk 
Pricing Model 

The Inflation Adjusted Frequency Severity Loss Reserving Risk Pricing Model in-
tegrates inflation adjustments into the traditional frequency-severity model to im-
prove the accuracy of loss reserving and risk pricing. This section outlines the 
theoretical foundation, structure, and related theory for adjusted premiums and 
adjusted loss reserving risk pricing balances. 

The Frequency-Severity model predicts loss reserves by combining frequency 
and severity predictions. Let F be the frequency of claims and S the severity of 
each claim. The total loss reserve R is given by: 

( )
1

n

i i
i

R F S
=

= ×∑  

where n is the number of claims. 

1.2.1. Inflation Adjustment 
To adjust for inflation, we incorporate an inflation factor α , modifying the se-
verity component: 

( )adj 1i iS S α= × +  

where α  is the inflation rate. The adjusted loss reserve becomes: 

( )adj adj

1

n

i i
i

R F S
=

= ×∑  

1.2.2. Theory of Adjusted Premiums 
Adjusted premiums account for inflation and changes in risk. Let iP  be the orig-
inal premium for claim i, and β  be the inflation-adjusted premium factor. The 

https://doi.org/10.4236/ojs.2024.145027


B. Mahohoho 
 

 

DOI: 10.4236/ojs.2024.145027 602 Open Journal of Statistics 
 

adjusted premium adj
iP  is given by: 

( )adj 1i iP P β= × +  

where β  is the inflation adjustment factor for premiums. 

1.2.3. Combining Adjusted Premiums and Adjusted Reserves 
To derive the Adjusted Loss Reserving Risk Pricing Balance, we combine the ad-
justed premiums with the adjusted reserves. Let adjR  be the adjusted reserve and 

adjP  be the total adjusted premiums. The Adjusted Loss Reserving Risk Pricing 
Balance B  is calculated as: 

adj adjB P R= −  

where adjP  is given by: 

adj adj

1

n

i
i

P P
=

= ∑  

The following equations represent the adjusted components and their combi-
nation: 

( )adj 1i iS S α= × +  

( )adj 1i iP P β= × +  

( )adj adj

1

n

i i
i

R F S
=

= ×∑
 

adj adj

1

n

i
i

P P
=

= ∑
 

adj adjB P R= −  

1.2.4. Theorem 1: Adjusted Loss Reserving Risk Pricing Balance  
Consistency 

Theorem: The Adjusted Loss Reserving Risk Pricing Balance B provides a con-
sistent measure of the difference between adjusted premiums and adjusted re-
serves. 

Proof: To prove consistency, we show that: 

( )adj adj

1 1

n n

i i i
i i

B P F S
= =

= − ×∑ ∑  

Substituting the expressions for adj
iP  and adj

iS : 

( )adj

1 1
1

n n

i i
i i

P P β
= =

= × +∑ ∑  

( ) ( )( )adj

1 1
1

n n

i i i i
i i

F S F S α
= =

× = × × +∑ ∑  

Thus: 

( )( ) ( )( )
1 1

1 1
n n

i i i
i i

B P F Sβ α
= =

= × + − × × +∑ ∑  

This confirms that B reflects the net difference between adjusted premiums and 
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adjusted reserves. 

1.2.5. Corollary 1: Adjusted Premiums Cover Adjusted Reserves 
Corollary: If 0B ≥ , then adjusted premiums are sufficient to cover adjusted re-
serves. 

Proof: If 0B ≥ , then: 
adj adjP R≥  

which implies: 

( )adj adj

1 1

n n

i i i
i i

P F S
= =

≥ ×∑ ∑  

Thus, adjusted premiums are adequate to cover the adjusted reserves. 
 

 
Figure 1. Diagram illustrating the balance between adjusted premiums and adjusted re-
serves. 

 
Figure 1 illustrates how premiums and reserves interact and how they need to 

be adjusted to maintain balance. The balance point is where the reserves are 
aligned with the premiums in a manner that meets the expected actuarial stand-
ards. If reserves are too low relative to premiums, it might indicate potential issues 
in future claims payment, while if they are too high, it may suggest over-reserving. 
The diagram is a visual representation of how adjusted premiums and reserves 
need to be managed to ensure financial stability and adequacy in insurance oper-
ations. 

1.3. Theory and Structure of the Extreme Learning Machine Model 

Extreme Machine Learning (EML) Regression is a state-of-the-art technique de-
signed to handle high-dimensional data efficiently. It leverages advanced optimi-
zation techniques and extreme value theory to improve the accuracy and compu-
tational efficiency of regression models. The EML regression model aims to ap-
proximate the true regression function ( )*f X  as closely as possible. The gen-
eral form of the EML regression model is: 

( )ŷ f X= +   

where ŷ  is the predicted value, ( )f X  is the function approximated by the 
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EML model, and   is the error term. 

1.3.1. Objective Function 
The objective function for EML regression is given by: 

( )( )2 2
2

1
min ;

n

i i
i

y f x
θ

θ λ θ
=

− +∑  

where θ  represents the parameters of the model, iy  is the actual values, 
( );if x θ  is the model’s prediction for input ix , and λ  is the regularization 

parameter. 

1.3.2. Kernel Methods 
In EML, kernel methods can be used to handle non-linear relationships. The ker-
nel function ( ),i jk x x  is defined as: 

( ) ( ) ( ),i j i jk x x x xφ φ= ⋅  

where φ  represents a feature mapping function. 
Lemma 1: The EML regression model with an appropriate kernel function con-

verges to the true regression function under certain conditions. 
Proof: 
Given *f  as the true regression function and f̂  as the EML approximation, 

*

2
ˆ Cf f

n
− ≤  

where C is a constant dependent on the kernel function and the sample size n. 
Proposition 1: EML regression models can efficiently handle high-dimensional 

data by using dimensionality reduction techniques. 
Theorem 1: Under the assumption of a well-chosen kernel function and suffi-

cient sample size, the EML regression model provides consistent estimates of the 
regression function. 

Proof: 
Let n̂f  be the EML estimate. Then, 

*ˆ P

nf f→  as n →∞  

where 
P
→  denotes convergence in probability. 

 

 
 

The prediction of the model at iteration t is given by: 

 ( )ˆ ; ,tf=y X θ  (1) 

where ( ); tf X θ  represents the model function parameterized by tθ . 
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1.3.3. Loss Function 
The loss function is typically defined as: 

 ( ) ( )
1

,ˆ1 ,
N

t
i i

i
y y

N =

= ∑  θ  (2) 

where ( ), ˆi iy y  denotes the loss incurred for the i-th observation, such as Mean 
Squared Error (MSE) for regression: 

 ( ) ( )2ˆ ˆ, .i i i iy y y y= −  (3) 

1.3.4. Gradient Computation 
The gradient of the loss function with respect to the model parameters θ  is com-
puted as: 

 ( ) .t ∂
∇ =

∂


 θ
θ

 (4) 

1.3.5. Parameter Update 
Parameters are updated using gradient descent with a learning rate η : 

 ( )1 .t t tη+ = − ∇θ θ θ  (5) 

The convergence criteria typically include a threshold for the change in loss or 
parameters: 

 1 .t t+ − < θ θ  (6) 

Extreme Learning Machines (ELMs) are a class of feedforward neural networks 
with a single hidden layer, where the hidden layer parameters are randomly as-
signed and never updated. ELMs provide fast learning speed and good generali-
zation performance, making them suitable for various applications in machine 
learning and data science. 

1.3.6. Network Architecture 
The basic structure of an ELM consists of an input layer, a single hidden layer with 
L hidden neurons, and an output layer. The input layer has n neurons correspond-
ing to the n features of the input data. The output layer has m neurons corre-
sponding to the m target variables. 

1.3.7. Mathematical Formulation 
Given a training set ( ){ }, | , , 1, ,n m

i i i ix t x t i N∈ ∈ =   , where N is the number 
of training samples, the ELM algorithm can be described by the following steps: 

1) Randomly assign input weights and biases: Randomly generate the input 
weight matrix L nW ×∈  and the bias vector Lb∈ . 

2) Calculate the hidden layer output matrix H: 

 ( ) ,H g WX b= +  (7) 

where n NX ×∈  is the input data matrix, and ( )g ⋅  is the activation function. 
3) Compute the output weights β : The output weights L mβ ×∈  are deter-

mined by solving the linear system: 
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 ,H Tβ =  (8) 

where N mT ×∈  is the target output matrix. 

1.3.8. Solution via Moore-Penrose Generalized Inverse 
The output weights β  can be computed using the Moore-Penrose generalized 
inverse †H  of the hidden layer output matrix H: 

 † ,H Tβ =  (9) 

where †H  is given by: 

 ( ) 1† T T .H H H H
−

=  (10) 

Proposition 1 (Universal Approximation Theorem for ELMs). Given any 
continuous target function : n mf →   and any arbitrarily small positive value 

0> , there exists an Extreme Learning Machine (ELM) with L hidden neurons, 
where L is sufficiently large, such that the ELM can approximate f with an error 
less than  . 

Proof. To demonstrate this, we rely on the property of Extreme Learning Ma-
chines (ELMs), which asserts that with sufficiently many hidden neurons, an ELM 
can approximate any continuous function on a compact subset of n  to an ar-
bitrary degree of accuracy. 

Let : n mf →   be a continuous target function. Given 0> , we need to 
show that there exists an ELM with L hidden neurons such that the approximation 
error is less than  . 

Consider an ELM with a random hidden layer where the hidden layer parame-
ters are chosen independently and the activation function is a non-linear function 
φ . The ELM output can be expressed as: 

 ( ) ( )
1

ˆ
L

i i i
i

f x w x bφ
=

= +∑ v  (11) 

where n
i ∈v   and ib ∈  are the randomly assigned weights and biases for 

the hidden layer neurons, m
iw ∈  are the output weights, and φ  is the activa-

tion function. 
By the universal approximation theorem for feed forward neural networks, for 

any continuous function f and any 0> , there exists a sufficiently large number 
of neurons L such that: 

 ( ) ( )ˆf x f x− <   (12) 

for all x in the input space. This is based on the fact that a feed forward network 
with an adequate number of hidden neurons can approximate f to within   in 
the sup norm, which extends to the ELM setup as well. 

Thus, with a sufficiently large number of hidden neurons L, the ELM can ap-
proximate f with any desired level of accuracy, achieving an approximation error 
less than  . □ 

Lemma 2. (Generalization Performance) Extreme Learning Machines (ELMs) 
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exhibit superior generalization performance compared to traditional gradient-
based learning algorithms. This improved performance is attributed to the ran-
dom assignment of hidden layer parameters and the subsequent analytical solu-
tion of the output weights, which collectively mitigate the risk of over fitting. 

Proof. Let n d×∈X   denote the input matrix, where n is the number of samples 
and d is the number of features. The hidden layer of an ELM consists of m neurons 
with activation functions ( )φ ⋅ . The hidden layer output matrix n m×∈H   is 
given by: 

 ( ) ,φ= +H XW b  (13) 

where d m×∈W   is the weight matrix and m∈b   is the bias vector. The acti-
vation function ( )φ ⋅  is applied element-wise. 

The output weights m∈β  are obtained by minimizing the least-squares er-
ror: 

 2arg min ,= −Y H
β

β β  (14) 

where n∈Y   is the target output vector. The analytical solution to this mini-
mization problem is given by the Moore-Penrose pseudoinverse of H : 

 ,+= H Yβ  (15) 

where +H  denotes the Moore-Penrose pseudoinverse of H . This solution en-
sures that the output weights are chosen to minimize the least-squares error. 

The randomization of hidden layer parameters (W  and b ) introduces a form 
of implicit regularization. By choosing hidden layer parameters randomly, the 
ELM avoids the explicit need for regularization terms such as 1  or 2  penal-
ties, which are commonly used in traditional gradient-based methods. 

To formalize this, consider the regularized least-squares problem with 2  reg-
ularization: 

 ( )2 2
reg arg min ,λ= − +Y H

β
β β β  (16) 

where λ  is the regularization parameter. The solution to this problem is: 

 ( ) 1T T
reg .λ

−
= +H H I H Yβ  (17) 

Comparing this with the ELM solution, we observe that the randomization of 
W  and b  implicitly provides a form of regularization that resembles the 2  
regularization term, but without the need for explicit tuning of λ . This implicit 
regularization reduces the variance of the model and improves its generalization 
performance. 

Moreover, the randomness in the hidden layer parameters effectively spreads 
the data points across the hidden units, making it less likely for the model to over-
fit to any particular subset of the training data. This phenomenon is analogous to 
the concept of “dropout” in neural networks, which is known to improve gener-
alization. 

Thus, the combination of random hidden layer parameters and the analytical 
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solution to the output weights contributes to the superior generalization perfor-
mance observed in ELMs. □ 

Extreme Learning Machines offer a fast and efficient alternative to traditional 
neural networks by leveraging randomization and linear algebra techniques for 
learning. Their theoretical properties, such as universal approximation and im-
proved generalization performance, make them a powerful tool in the field of ma-
chine learning. 

Extreme Machine Learning (EML) is a paradigm that enhances traditional ma-
chine learning techniques by leveraging extreme learning machines, which are de-
signed for rapid training and high accuracy. This algorithm aims to provide a con-
cise description of the general process involved in EML. 

 

 
 

The EML model leverages a fixed random feature mapping and solves the re-
gression problem through a linear system that is computationally efficient. This 
approach provides a balance between training speed and prediction accuracy [11]-
[13]. 

1.3.9. General Structure of the Extreme Machine Learning Model 
Figure 2 effectively illustrates the general workflow of an Extreme Machine Learn-
ing (EML) model, highlighting the main components and their interactions. It 
helps in understanding the sequence of operations, from data collection to final 
predictions, and emphasizes the importance of each stage in the machine learning 
pipeline [14]-[16]. 
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Figure 2. General structure of the extreme machine learning (EML) model. 

1.4. Significance and Importance of Extreme Machine Learning 
(EML) in Actuarial Underwriting Models 

The Extreme Machine Learning (EML) method, particularly in the context of Ac-
tuarial Underwriting models, offers significant advantages over other machine 
learning techniques. This section explores the importance of EML in the develop-
ment of the Inflation Adjusted Frequency Severity Loss Reserving Risk Pricing 
model and presents its mathematical foundation, theoretical background, and 
comparative benefits. 

1.4.1. Mathematical Foundation of Extreme Machine Learning (EML) 
Extreme Machine Learning (EML) focuses on efficiently training large-scale mod-
els with complex structures. It leverages the advantages of extreme gradient boost-
ing and ensemble learning to enhance predictive performance. The key mathe-
matical foundations of EML include: 

1.4.2. Extreme Gradient Boosting (XGBoost) 
Extreme Gradient Boosting (XGBoost) is a powerful implementation of gradient 
boosting that improves performance through optimization and regularization 
techniques. 

The model is based on the following objective function: 

 ( ) ( ) ( )
1 1

ˆ, ,
N K

i i k
i k

l y y fθ
= =

= + Ω∑ ∑  (18) 

where l  is the loss function, ˆiy  is the predicted value, and Ω is the regulariza-
tion term for the function kf . 

The regularization term is defined as: 

 ( ) 2

1

1 ,
2

T

j
j

f T wγ λ
=

Ω = + ∑  (19) 

where T is the number of leaves in the tree, γ  and λ  are regularization param-
eters, and jw  is the weight of the j-th leaf. 

 

 

1.4.3. Theoretical Benefits of EML 
The EML method, particularly through XGBoost, offers several advantages in the 
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context of actuarial modeling: 
1) Enhanced Predictive Accuracy: XGBoost enhances predictive accuracy 

through regularization, which prevents overfitting and improves generalization to 
unseen data. This is critical in actuarial models where accurate risk prediction is 
essential. 

2) Scalability and Efficiency: XGBoost is designed to handle large datasets effi-
ciently, utilizing parallel processing and tree pruning techniques to manage com-
putational complexity. This scalability makes it suitable for large-scale actuarial 
datasets. 

3) Flexibility and Interpretability: The EML method allows for flexible model 
tuning through hyperparameters such as learning rate (η ), maximum depth of 
trees, and number of estimators. This flexibility, combined with the ability to in-
terpret feature importance, supports better decision-making in actuarial contexts. 

1.4.4. Comparison with Other Machine Learning Methods 
Compared to other methods such as traditional linear regression, support vector 
machines, and basic decision trees, EML provides: 

1) Superior Handling of Non-Linearity EML excels in capturing complex, non-
linear relationships between features and target variables, which is often a limita-
tion of linear models. 

2) Superior Handling of missing data:XGBoost can handle missing data effec-
tively by learning the best direction to take when encountering missing values 
during training, unlike some traditional methods that require imputation. 

The Extreme Machine Learning (EML) method, through techniques such as 
XGBoost, offers significant benefits over other machine learning approaches in 
the development of actuarial underwriting models. Its ability to handle large da-
tasets, enhance predictive accuracy, and provide flexibility and interpretability 
makes it a valuable tool in actuarial science. 

1.5. The Novelty for Application of the Extreme Machine Learning 
Algorithm in This Study  

The application of the Extreme Machine Learning (XML) algorithm in this study 
represents a novel approach to revolutionize the underwriting process in agricul-
tural insurance. XML techniques, including deep neural networks, ensemble 
methods, and reinforcement learning, offer unique advantages in handling the 
complexity and heterogeneity of agricultural data, enabling more accurate risk as-
sessment and dynamic underwriting decisions [17]. XML algorithms excel in cap-
turing intricate patterns and relationships within vast datasets, such as historical 
weather patterns, soil quality indices, crop yield data, market trends, and socio-
economic factors, which are essential for comprehensive risk profiling in agri-
cultural insurance [18]. By leveraging these algorithms, the proposed model can 
overcome the limitations of traditional underwriting approaches, which often strug-
gle to adapt to evolving environmental conditions and market dynamics [19]. 
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Furthermore, the integration of XML techniques with actuarial intelligence en-
hances the model’s robustness, transparency, and scalability, ensuring alignment 
with industry standards and regulatory requirements. This synergy between ad-
vanced machine learning methods and actuarial principles enables the development 
of a sophisticated underwriting model that can effectively address the unique chal-
lenges and opportunities in agricultural insurance.  

1.6. The Novelty of the Study  

Integration of multiple methodologies: The code combines various methodologies 
including statistical simulation, machine learning, actuarial modeling, and risk 
analysis within a unified framework. This interdisciplinary approach contributes 
novelty by offering a comprehensive solution to agricultural insurance challenges. 
The segmentation of policyholders into underwriting bands based on claim 
amounts introduces a novel way to assess risk exposure and pricing strategies. 
This categorization facilitates a more targeted and customized approach towards 
risk management and pricing. The incorporation of robustness, stress, and sce-
nario testing methodologies enhances the robustness of the study. These tests pro-
vide insights into the stability and resilience of the developed models and pricing 
strategies under different conditions, contributing novel insights into risk man-
agement practices. 

1.7. Contribution to the Body of Knowledge 

Advancement in agricultural insurance modeling: The study contributes to the 
advancement of agricultural insurance modeling techniques by integrating mod-
ern data simulation, machine learning, and actuarial methodologies. This contrib-
utes to the broader body of knowledge within the actuarial science and insurance 
domains. By automating actuarial risk pricing processes using machine learning 
models, the study contributes towards enhancing efficiency and accuracy in in-
surance operations. This can lead to improved risk management practices and better 
financial outcomes for insurers and policyholders. The insights derived from ex-
ploratory data analysis, modeling, and testing provide valuable information for 
decision-making in agricultural insurance underwriting, pricing, and risk man-
agement. This contributes to informed decision-making and improved sustaina-
bility of agricultural insurance products. 

2. Review of Methods  

Previous studies have explored various aspects of agricultural insurance, machine 
learning applications, and actuarial science. [11] conducted a comprehensive re-
view of machine learning applications in agricultural insurance, highlighting the 
potential for innovation and advancement in risk management strategies. Simi-
larly, [12] discussed advancements in agricultural risk modeling, emphasizing the 
role of machine learning techniques in improving risk assessment accuracy. Ad-
ditionally, [19] explored the integration of machine learning and actuarial science 
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in agricultural insurance, emphasizing the importance of aligning predictive mod-
eling with industry standards and regulatory requirements. 

The proposed study employs a multi-faceted approach to develop the Extreme 
Machine Learning Actuarial Intelligent Agricultural Insurance Based Automated 
Underwriting Model. The methodology involves data collection from diverse 
sources, including historical weather data, soil quality indicators, crop yield rec-
ords, market trends, and socio-economic factors. Machine learning techniques, 
such as deep neural networks, ensemble methods, and reinforcement learning, are 
utilized to analyze and process the data for risk assessment purposes. Actuarial 
principles are integrated into the model to ensure alignment with industry stand-
ards and regulatory compliance. Model validation techniques, including cross-
validation and sensitivity analysis, are employed to assess the robustness and reli-
ability of the underwriting model. The study adopts a dynamic underwriting ap-
proach, enabling real-time adjustments to changing environmental conditions, 
market dynamics, and policyholder characteristics. 

3. Methodology  

This provides an overview of the problem statement, emphasizing the need for 
advanced modeling techniques in agricultural insurance underwriting. Introduce 
the concept of Extreme Machine Learning (ELM) as the primary modeling ap-
proach. 

3.1. Data Generation  

Describe the process of simulating agricultural insurance data incorporating var-
ious factors such as climate change scenarios, crop types, farm sizes, continuous 
and binary variables, and numerical variables. Generate a large dataset representa-
tive of agricultural insurance scenarios to facilitate model development and test-
ing.  

3.2. Exploratory Data Analysis (EDA)  

Conduct EDA to understand the characteristics and distributions of the simulated 
data. Perform summary statistics, frequency tables, and visualization (histograms 
and bar plots) to gain insights into the data’s structure and relationships.  

3.3. Hypothesis Testing 

Formulate hypotheses related to agricultural risk factors. Utilize statistical tests 
such as ANOVA to investigate significant differences between variables, e.g., crop 
yield across different farm sizes. 

3.4. Data Partitioning, Model Building, and Feature Engineering  

Split the dataset into training and testing sets using the 80:20 rule. Implement Ex-
treme Learning Machines (ELM) for model building, considering variables such as 
crop yield, loss ratio, pest infestation, drought, temperature, rainfall, soil moisture, 
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etc. Conduct feature engineering if necessary, such as scaling or encoding cate-
gorical variables. 

3.5. Model Validation 

Evaluate model performance using metrics like Mean Absolute Error (MAE), 
Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). Validate the 
model’s predictions against actual data, adjusting for factors like inflation rates. 

3.6. Actuarial Risk Pricing Model  

Develop separate models for frequency risk, severity risk, and inflation adjustment 
risk. Utilize ELM to estimate premiums based on various agricultural risk factors. 
Integrate the models to automate actuarial risk pricing for agricultural insurance 
policies. 

3.7. Actuarial Loss Reserve Risk Premium Balances  

Predict case reserves using the ELM model and adjust for inflation. Calculate loss 
reserving risk premium balances by combining predicted case reserves with auto-
mated premiums. 

3.8. Actuarial Underwriting Bands  

Define underwriting bands based on automated premiums, loss reserves, and risk 
premium balances. Categorize policyholders into different underwriting bands to 
assess risk levels. 

3.9. Segment Policyholders Based on Their Underwriting Band 
and Average Claim Amount  

Analyze the distribution of policyholders across underwriting bands and their 
corresponding claim amounts. Ensure compliance with International Financial 
Reporting Standard 17 (IFRS17) regulations. 

3.10. Robust Tests, Stress Tests, and Scenario Tests  

Perform robustness tests by varying inflation rates and evaluating the impact on 
loss reserving risk premium balances; conduct stress tests by increasing claim 
amounts to simulate adverse scenarios and assess the resilience of the model; ex-
ecute scenario tests by introducing specific changes in the data and observing the 
model’s response. 

4. Data  

Here is the simulation process and general description of the simulated Agricul-
tural Insurance data used for developing an Automated Actuarial Underwriting 
Model with a sample size of 100,000 policyholders. 

Policyholder ID: This variable represents a unique identifier for each policy-
holder. It doesn’t directly contribute to the model but is useful for tracking and 
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identifying individual policyholders. Climate Change: Simulates different scenar-
ios of climate change, namely “No Change”, “Moderate Change”, and “Severe 
Change”. This variable is crucial as it affects various aspects of agricultural pro-
duction and risk, such as temperature, rainfall, and soil moisture. Crop Type: Rep-
resents the type of crop being cultivated. Different crops have varying sensitivities 
to environmental factors and risks, making it essential to consider when assessing 
insurance risk. Farm Size: Indicates the size of the farm, which can influence the 
scale of production and susceptibility to certain risks. Larger farms may have dif-
ferent risk profiles compared to smaller ones. Crop Yield: Simulates the yield of 
the crop in kilograms. Crop yield is a fundamental factor affecting agricultural 
insurance, as it directly impacts the potential revenue and losses for the policy-
holder. Loss Ratio: Represents the ratio of losses to premiums collected. It pro-
vides insight into the profitability and risk exposure of the insurance policy. Pest 
Infestation and Drought: Binary variables indicating whether the farm is affected 
by pest infestation or drought. These are common risks in agriculture and can 
significantly impact crop yields and profitability. Temperature, Rainfall, and Soil 
Moisture: These variables simulate climatic conditions, which are crucial deter-
minants of crop health and productivity. Temperature, rainfall, and soil moisture 
levels directly influence crop growth and vulnerability to pests and diseases. Num-
ber of Claims and Claim Amount: Simulate the number and amount of insurance 
claims filed by policyholders. These variables reflect the actual losses experienced 
by farmers due to various risks covered by the insurance policy. Number Premium 
of Payments and Agricultural Premium: Represent the number of premium pay-
ments made by policyholders and the corresponding agricultural insurance pre-
miums. These variables are essential for calculating the revenue and financial sus-
tainability of the insurance company. Inflation Rate: Simulates inflation rates, 
which can affect the value of premiums, claims, and reserves over time. Account-
ing for inflation is crucial for ensuring the financial stability and adequacy of in-
surance reserves. Case Reserves: Represents the reserves set aside by the insurance 
company to cover potential future claims. It reflects the financial strength and risk 
management practices of the insurer. 

In short, the simulated data cover a wide range of factors relevant to agricultural 
insurance, including climate conditions, crop characteristics, risk events, financial 
metrics, and policyholder behavior. By analyzing these variables, insurers can de-
velop predictive models and underwriting strategies to accurately assess risk, price 
premiums, and manage their portfolios effectively.  

5. Results  

This section presents the outcomes of this study.  

5.1. Exploratory Data Analysis  

Exploratory Data Analysis (EDA) is a crucial step in the data analysis process, 
involving the examination and visualization of data to understand its underlying 
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patterns, characteristics, and relationships. EDA techniques help analysts gain in-
sights into the structure and distribution of the data, identify outliers and missing 
values, and inform subsequent modeling decisions [20]. In agricultural insurance, 
EDA plays a vital role in understanding the various factors influencing risk and 
loss outcomes. By exploring the dataset through EDA, analysts can uncover mean-
ingful associations between climate conditions, crop types, farm characteristics, 
and insurance outcomes. This exploration aids in the formulation of hypotheses 
and informs the development of predictive models for loss reserves, risk pricing 
models and the underwriting models. 

5.1.1. Exploratory Data Analysis for Continuous Variables in the  
Simulated Data 

The Exploratory Data Analysis (EDA) for continuous variables in the simulated 
agricultural insurance data involves examining the distribution and summary sta-
tistics of numerical attributes to gain insights into their characteristics and poten-
tial relationships. 

Figure 3(a) shows the distribution of crop yield in kilograms across the 
dataset. It gives an idea of the range and distribution of crop yields among 
policyholders. Higher values indicate higher crop yields. Figure 3(b) displays 
the distribution of loss ratios. It represents the proportion of losses to premiums 
collected. Higher values indicate higher proportions of losses relative to premi-
ums, suggesting poorer underwriting performance. Figure 3(c) depicts the 
distribution of temperatures and it shows the range and frequency of tempera-
tures experienced in the areas where policyholders operate farms. This variable 
is crucial for assessing climate-related risks. Figure 3(d) illustrates the distribu-
tion of rainfall levels and it indicates the range and frequency of rainfall 
amounts, which is essential for understanding water availability and drought 
risk. Figure 3(e) shows the distribution of soil moisture levels. Moreover, it 
reflects the moisture content of the soil, which is vital for crop growth and sus-
ceptibility to drought or water logging. Figure 3(f) displays the frequency dis-
tribution of the number of claims filed by policyholders. It provides insight into 
the frequency of insurance claims, which is essential for assessing risk exposure 
and loss potential. Figure 3(g) illustrates the distribution of claim amounts and 
it shows the range and frequency of claim amounts, indicating the severity of 
losses experienced by policyholders. Figure 3(h) depicts the distribution of the 
number of premium payments made by policyholders and it provides insight 
into the payment behavior of policyholders and their commitment to maintain-
ing insurance coverage. Figure 3(i) shows the distribution of agricultural insur-
ance premiums and it indicates the range and frequency of premium amounts 
paid by policyholders, reflecting the cost of insurance coverage. Figure 3(j) illus-
trates the distribution of inflation rates and it shows the range and frequency of 
inflation rates, which can impact the value of premiums, claims, and reserves 
over time. Figure 3(k) displays the distribution of case reserves. It represents the 
amount of funds set aside by the insurance company to cover potential future  
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Figure 3. (a) Crop Yield; (b) Loss Ratio; (c) Temperature; (d) Rainfall; (e) Soil moisture; (f) Number of claims; (g) Claim Amount; 
(h) Number of premium payments; (i) Agricultural Premium; (j) Inflation Rate; (k) Case Reserves. 
 

claims. Higher values indicate higher reserve levels, reflecting the insurer’s risk 
management practices. 

5.1.2. Exploratory Data Analysis for Categorical Variables 
In general, the EDA for categorical variables helps identify the composition and 
prevalence of different categorical attributes in the dataset, providing essential in-
sights into the diversity of agricultural operations and risk exposures among pol-
icyholders. These insights are valuable for informing subsequent modeling and 
analysis tasks in agricultural insurance underwriting and risk management. 

Figure 4(a) indicates the frequency distribution of different climate change 
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scenarios among policyholders. It shows the proportion of policyholders experi-
encing “No Change,” “Moderate Change,” and “Severe Change” in climate con-
ditions. The majority of policyholders experience “No Change,” while fewer are 
affected by “Moderate Change” or “Severe Change” in climate conditions. Figure 
4(b) illustrates the distribution of different crop types grown by policyholders. It 
shows the prevalence of each crop type (e.g., Wheat, Corn, Soybean, Rice) among 
policyholders. Some crops may be more commonly grown than others, reflecting 
the diversity of agricultural practices. Figure 4(c) displays the frequency distribu-
tion of different farm sizes. It indicates the prevalence of small, medium, and large 
farms among policyholders. The distribution of farm sizes reflects the variability 
in the scale of agricultural operations within the dataset. Figure 4(d) illustrates 
the occurrence of pest infestation among policyholders. It shows the proportion 
of policyholders affected by pest infestation. Some policyholders experience pest 
infestations, while others do not, indicating varying levels of pest management 
practices or environmental conditions. Figure 4(e) indicates the occurrence of 
drought among policyholders. It shows the proportion of policyholders affected 
by drought events. Similar to pest infestation, some policyholders experience 
drought, while others do not, reflecting the variability in drought risk exposure 
across agricultural operations. 

 

 
Figure 4. (a) Climate change scenarios; (b) Distribution of crop types; (c) Distribution of farm sizes; (d) Occurrence of pest infesta-
tions; (e) Occurrence of drought. 

5.1.3. ANOVA Test between Farm Size and Crop Type 
ANOVA, or Analysis of Variance, is a statistical method used to analyze the dif-
ferences among group means in a sample. It is commonly employed when com-
paring three or more group means simultaneously. Moreover, the ANOVA parti-
tions the total variance observed in the data into different sources of variation, 
namely the variation between groups and the variation within groups. By comparing 
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the ratio of between-group variation to within-group variation, ANOVA assesses 
whether the differences in group means are statistically significant or if they could 
have occurred by random chance alone [21]. ANOVA is particularly useful in ex-
perimental settings where researchers want to determine if the means of several 
groups differ significantly from each other. It is widely applied across various dis-
ciplines, including psychology, biology, economics, and social sciences, to analyze 
experimental data with multiple treatment conditions or categorical factors [22]. 

In this case, Null Hypothesis (H0): There is no significant difference in crop 
yield between different farm sizes. Alternative Hypothesis (H1): There is a signif-
icant difference in crop yield between different farm sizes. 

 
Table 1. ANOVA table of results. 

 Df Sum Sq Mean Sq F value Pr (>F) 

Farm Size 2 172168.02 86084.01 0.09 0.9171 

Residuals 99,997 99497616806.37 995006.02   

 
The p-value (0.9171) for Farm Size, from Table 1 is much greater than the typ-

ical significance level of 0.05. Therefore, we fail to reject the null hypothesis. This 
suggests that there is no significant effect of Farm Size on Crop Yield, as the p-
value is not less than 0.05. Thus, based on the ANOVA results, we do not have 
sufficient evidence to conclude that farm size has a significant effect on crop yield. 

. Estimation of Actuarial Case Loss Reserves using predictive model. To build 
an Extreme Learning Machine (ELM) based Actuarial Inflation-adjusted Case Re-
serve estimation model, we begin by loading the required libraries, including 
elmNNRcpp, proceed to partition the data into training and testing sets using an 
80:20 split; then preprocess the data if necessary. Define the model architecture 
and train the ELM model and adjust the Case Reserves using inflation rates. 

In the context of agricultural insurance, predictive modeling for loss reserves 
would typically involve building regression models or machine learning algo-
rithms that leverage variables such as climate conditions, crop types, farm char-
acteristics, and historical claims data to predict future losses. These models may 
use techniques like linear regression, generalized linear models (GLMs), decision 
trees, random forests, or neural networks to capture complex relationships be-
tween predictors and loss outcomes [22]. 

Table 2 is a summary of the results obtained from the ELM model and each 
row of the table represents a different attribute or component of the model. 
inpweight indicates the input weights of the model. Input weights represent the 
coefficients assigned to each predictor variable in the model. However, since ELM 
models use a random initialization of input weights, these values may not provide 
direct interpretation. biashid indicates the bias term for the hidden layer of the 
model. The bias term is added to the weighted sum of inputs before passing 
through the activation function of the hidden layer. outweight indicates the output 
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weights of the model. Output weights represent the coefficients assigned to the 
hidden layer’s output neurons in predicting the target variable. actfun indicates 
the activation function used in the hidden layer of the model. Activation functions 
introduce non-linearity into the model and enable it to learn complex patterns in 
the data. nhid indicates the number of hidden neurons in the model. The number 
of hidden neurons determines the model’s capacity to learn and represent com-
plex relationships in the data. predictions indicates the predicted values obtained 
from the model for the training data. fitted values This indicates the fitted values 
obtained from the model for the training data. Fitted values represent the model’s 
predictions based on the input data. residuals indicates the residuals or errors ob-
tained from the model’s predictions for the training data. Residuals represent the 
differences between the observed and predicted values. formula indicates the for-
mula used to specify the model. It includes the response variable and predictor 
variables used in the model. call indicates the call or function used to create the 
model. is regression indicates whether the model is a regression model (logical 
value). is logical indicates whether the model is a logical model (logical value). 

 
Table 2. Summary results for ELM based Actuarial loss reserve estimation. 

 Length Class Mode 

inpweight 220 -none- numeric 

biashid 0 -none- numeric 

outweight 20 -none- numeric 

actfun 1 -none- character 

nhid 1 -none- numeric 

predictions 80,000 -none- numeric 

fitted_values 80,000 -none- numeric 

residuals 80,000 -none- numeric 

formula 3 terms call 

call 5 -none- call 

is_regression 1 -none- logical 

is_logical 1 -none- logical 

 
Shortly, this summary provides information about the components and attrib-

utes of the ELM model, including input weights, biases, activation function, num-
ber of hidden neurons, predictions, residuals, and model formula. However, since 
ELM models are primarily used for prediction rather than interpretation, the spe-
cific values of input weights and biases may not be directly interpretable in the 
same way as traditional regression coefficients. 

Figure 5 visualizes the relationship between the actual loss reserves (Case Re-
serves) and the predicted loss reserves (Inflation Adjusted Reserves) generated by 
your Extreme Machine Learning (ELM) model. The X-axis (Actual Case Loss 
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Reserves) represents the actual values of loss reserves, which are the amounts set 
aside by the insurance company to cover potential claims from policyholders. 
Moreover, each point on the x-axis corresponds to the actual loss reserves for a 
specific observation in the simulated test data set. The Y-axis (Predicted Loss Re-
serves) represents the predicted values of loss reserves generated by the ELM 
model. These are the estimates of loss reserves made by your model based on the 
input features such as crop yield, loss ratio, weather conditions, etc. Once again, 
each point on the y-axis corresponds to the predicted loss reserves for a specific 
observation in the simulated test data set. 

 

 
Figure 5. Actual case reserves vs predicted loss reserves. 

 
There is evidence of the points above the red line indicate instances where the 

model overestimated the loss reserves compared to the actual values and on the 
same note there are points below the red line which indicate instances where the 
model underestimated the loss reserves compared to the actual values. However, 
the red line passes through the majority of blue points. This is due to the rnorm() 
which has been used to simulate the case reserves. In general, there is a model 
prediction accuracy as a result of the closeness of the points to the red line. 

5.3. Traditional Chain Ladder Model  

The Chain Ladder method operates on the assumption that historical claims de-
velopment patterns will continue into the future. It involves creating a chain of 
estimated development factors for each period between the valuation date and the 
ultimate development of claims. These factors are then applied to known or esti-
mated claims data to project future payments. The method often employs tech-
niques like weighted averages or simple ratio methods to estimate these factors [18]. 

5.3.1. Structure of General Chain Ladder 
The Chain Ladder method typically follows these steps: Organize historical claims 
data by accident period and development period. Calculate development factors 
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for each development period based on historical data. Common methods include 
age-to-age factors, average factors, or other weighted averages. Projection of Out-
standing Claims by applying the development factors to the known incurred losses 
to estimate the ultimate losses for each accident period. Reserve Calculation by 
summing up the estimated ultimate losses for each accident period to obtain the 
total outstanding claims reserves. 

 
Table 3. General chain ladder triangle. 

 Development Periods 

Accident Years 1 2 
  n 

  11I  12I  
  1nI  

  21I  22I  
  2nI  

            

m  1mI  2mI  
  mnI  

 
With illustration from Table 3, let ijI  represent the incurred claims for acci-

dent period i at development period j. 

 , 1i j
ij

ij

I
DF

I
+=  (20) 

where ijDF  are the estimated development factors. 
Projection of Outstanding Claims is carried out by Equation (21) below 

 1
1

Ultimate Loss
n

i i ij
j

I DF
=

= ×∏  (21) 

The Reserve Calculation is carried out by (22) 

 
1

Total Reserves Ultimate Loss
m

i
i=

= ∑  (22) 

5.3.2. Simulated Run-Off Triangle 
The Traditional chain ladder based on the simulated agricultural insurance data 
has been presented below. 

Figure 6 is a graphical representation of the development of claims over time, 
usually separated by accident or underwriting years and development periods. 
The x-axis represents the development period, often corresponding to different 
durations after the accident or underwriting year and the y-axis represents the 
cumulative amount of claims incurred over time. Each line in the plot represents 
the development of claims for a specific accident or underwriting year. The lines 
start from the origin (0, 0) and extend as the claims develop over subsequent pe-
riods. The slope of each line indicates the pattern of claims development. Steeper 
slopes indicate faster development of claims, while flatter slopes indicate slower 
development. Figure 7 is similar to the regular claims development plot but may 
offer additional features depending on the specific lattice settings. Both types of 
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plots are commonly used in actuarial analysis to visualize and analyze the devel-
opment of insurance claims over time, helping actuaries understand trends, iden-
tify outliers, and assess the adequacy of reserves. 

 

 
Figure 6. Simulated claims development profile. 

 

 
Figure 7. Regular claims development plot. 

5.4. Comparison between Simulated Traditional Chain Ladder  
Model and the ELM Based Loss Reserving Period 

The two methods, the Traditional Chain Ladder Model and the ELM (Extreme 
Machine Learning) based Loss Reserving method, were compared in terms of 
their effectiveness in estimating reserves for agricultural insurance. 

The Traditional Chain Ladder Model estimates reserves using a method based 
on historical patterns of claims development. It typically calculates reserves by 
extrapolating past claims data and projecting future claims based on past experi-
ence. The ELM based Loss Reserving method utilizes a machine learning algo-
rithm, specifically Extreme Learning Machines (ELM), to predict future claims 
and estimate reserves. This method learns complex patterns and relationships 
from the data to make predictions. 
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Both methods were applied to the same dataset of simulated agricultural insur-
ance data. This dataset contained various variables such as climate conditions, 
crop types, farm sizes, historical claims, premiums, and other relevant factors. 

For the Chain Ladder Model, the historical claims data were structured into a 
claims development triangle. The model then used this triangle to extrapolate fu-
ture claims and estimate reserves. For the ELM based Loss Reserving method, the 
machine learning model was trained using the features available in the dataset to 
predict future claims and estimate reserves. The Chain Ladder Model and the 
ELM model independently calculated reserve estimates based on the provided 
data and their respective methodologies. Once the reserve estimates were obtained 
from both methods, they were compared directly using a barplot visualization. 
The barplot displayed the estimated reserves for each method side by side, allow-
ing for easy visual comparison. The height of each bar represented the magnitude 
of reserves estimated by each method, providing a clear indication of which 
method yielded higher or lower reserve estimates. Additionally, text labels on top 
of each bar provided precise numerical values for further comparison. 

 

 
Figure 8. Simulated chain ladder vs ELM loss reserving models. 

 
Figure 8 compares the reserves estimated by two different methods: the Tradi-

tional Chain Ladder Model and the Extreme Machine Learning (ELM) based Loss 
Reserving method. Two bars are shown, one for each method, indicating the 
amount of reserves estimated by each method. The blue bar represents the re-
serves estimated using the Traditional Chain Ladder Model and the green bar rep-
resents the reserves estimated using the ELM based Loss Reserving method. In 
addition to that, the comparison aims to assess the effectiveness and accuracy of 
the two methods in estimating reserves for agricultural insurance. The height of 
each bar indicates the magnitude of reserves estimated by each method and by 
comparing the heights of the bars, the green bar (ELM method) is higher than the 
blue bar (Chain Ladder method), it suggests that the ELM method estimates 
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higher reserves compared to the traditional Chain Ladder approach. Hence this 
makes the ELM Loss Reserving method better than the Traditional chain ladder 
method. 

5.5. Determination of the Actuarial Risk Premiums  

The automated risk premiums in this paper are determined through a process in-
volving three separate models: 
• Frequency Risk Pricing Model: This model predicts the frequency of premium 

payments based on various factors such as crop yield, crop type, loss ratio, pest 
infestation, drought, temperature, rainfall, soil moisture, number of claims, 
and claim amount. It estimates how often a policyholder is expected to make 
premium payments. 

• Severity Risk Pricing Model: This model predicts the severity of potential 
losses (i.e., the size of potential claims) based on similar factors as the fre-
quency model. It estimates the financial impact of each claim. 

• Inflation Adjustment Risk Pricing Model: This model predicts the inflation 
rate based on the same set of factors. It estimates the rate at which prices are 
expected to rise over time. 

Once these three models are trained using historical data, they can be used to 
make predictions for new policyholders. The predicted frequency, severity, and 
inflation rate are then combined to calculate the automated actuarial risk premi-
ums for each policyholder. 

 

 
Figure 9. Automated actuarial risk premiums. 

 
The X-axis is the Policyholder Identification Number from Figure 9 which is 

used to uniquely identify each policyholder and the Y-axis is the Automated 
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Actuarial Risk Premiums, which represents the calculated risk premiums for each 
policyholder based on the automated modeling process. The height of each bar 
represents the magnitude of the automated actuarial risk premium assigned to 
each policyholder. Taller bars indicate higher risk premiums, while shorter bars 
indicate lower premiums. In this case, all the bars are taller, however this draws 
the need to create underwriting bands to alleviate the riskiness among the policy-
holders and this has been shown Subsection 5.7. 

5.6. Actuarial Loss Reserving Risk Pricing Balances  

The actuarial loss reserve risk premium balances have been developed by combin-
ing two key components: First, the inflation-adjusted loss reserves are calculated 
based on the predicted case reserves obtained from the ELM (Extreme Machine 
Learning) model and adjusting them for inflation. This has been illustrated on 
Subsection 5.2. These predicted case reserves are then adjusted for inflation by 
multiplying them with the inflation rates present in the test data. Secondly, Auto-
mated actuarial risk premiums are calculated as illustrated by Subsection 5.5 
above. Finally, the inflation-adjusted loss reserves and automated actuarial risk 
premiums are summed together to form the actuarial loss reserve risk premium 
balances. This combined metric represents the total expected liabilities and risk 
exposure for the insurance company, incorporating both predicted future claim 
reserves and risk premiums. 

 

 
Figure 10. Actuarial loss reserving risk pricing balances. 

 
The height of each bar on Figure 10 corresponds to the Actuarial Loss Reserve 

Risk Premium Balance for the respective policyholder. Higher bars indicate higher 
risk exposures or larger financial obligations. By observing the Figure above, you can 
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identify policyholders with higher Actuarial Loss Reserve Risk Premium Balances, 
indicating potentially higher risk exposures or financial obligations. It helps insur-
ers in understanding the distribution of risk across their policyholder base and in 
making informed decisions related to risk management, pricing, and financial plan-
ning. 

5.7. Creating Actuarial Underwriting Bands  

This section describes how R code employed to both calculate and visualize four 
underwriting bands based on different criteria, including automated actuarial risk 
premiums, inflation-adjusted loss reserves, and a randomly generated reinsurance 
amount. Here is an explanation of how the underwriting bands were formed re-
spectively. 

1) Underwriting Band 1: This band is based on the range of Automated Actu-
arial Risk Premiums (AARP). The minimum value of the automated actuarial risk 
premiums is calculated using min(AARP), and the maximum value is calculated 
using max(AARP). This band represents the range of premiums generated auto-
matically through the actuarial risk pricing model. 

2) Underwriting Band 2: This band is based on the range of Inflation-Adjusted 
Loss Reserves (IALR). The minimum value of the inflation-adjusted loss reserves is 
calculated using min(IALR), and the maximum value is calculated using max(IALR). 
This band represents the range of reserves adjusted for inflation. 

3) Underwriting Band 3: This band is based on the range of Actuarial Loss 
Reserving Risk Premium Balances (ALRRPB). The minimum value of the com-
bined balances is calculated using min(ALRRPB), and the maximum value is 
calculated using max(ALRRPB). This band represents the range of combined 
balances after adjusting for inflation and including Automated Actuarial Risk 
Premiums. 

4) Underwriting Band 4: This band is generated randomly using the runif() 
function. It represents a range of potential reinsurance amounts, ranging from the 
maximum value of the combined balances (max(ALRRPB)) to a maximum value 
of $1,000,000. This band introduces variability in potential reinsurance amounts. 

Figure 11 visualizes these underwriting bands, with each band represented by 
a different color. The x-axis represents the categories of underwriting bands, while 
the y-axis represents the maximum value of each band. Error bars are used to 
represent the range of values within each band. 

Policyholder Categorization According to the Created Actuarial  
Underwriting Bands 
The policyholders have been categorized into four underwriting bands based on 
their claim amounts. Each band has a specific range of claim amounts associated 
with it. These bands are defined based on thresholds determined from the data as 
explained on the earlier subsection 5.7. An R code has been developed which 
defines a function named categorize_underwriting_band (claim_amount) which 
takes the claim amount as input and categorizes the policyholder into one of the  
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Figure 11. Actuarial underwriting bands. 

 
underwriting bands based on their claim amount. From there the sapply() func-
tion is used to apply the categorize_underwriting_band() function to each claim 
amount in the data set. This results in each policyholder being assigned to one of 
the underwriting bands based on their claim amount. Moreover, the code creates 
a new variable named “Underwriting_Band” in the dataset, which stores the un-
derwriting band assigned to each policyholder based on their claim amount. Fi-
nally, the code then visualizes the distribution of policyholders across the under-
writing bands and also shows the average claim amount within each band. This 
visualization 26 helps in understanding how policyholders are distributed across 
different risk categories based on their claim amounts. 

Figure 12 displays the number of policyholders in each underwriting band, rep-
resented by the height of the bars. Additionally, it shows the average claim amount 
within each band, represented by the red points and connecting lines. Policyhold-
ers with higher claim amounts are typically assigned to higher underwriting 
bands, indicating higher risk levels. Figure 12 provides insights into the distribu-
tion of policyholders based on their risk profiles, allowing insurers to assess their 
exposure to different levels of risk and make informed underwriting decisions. 
Adherence to IFRS17 Regulations, Figure 12 visualizes the distribution of policy-
holders across different underwriting bands based on their claim amounts, along 
with the average claim amount within each band. Here is how this adherence to 
IFRS17 regulations, respectively. 
• Risk Classification: IFRS17 requires insurers to classify insurance contracts 

into groups with similar risk profiles. In this plot, policyholders are categorized 
into underwriting bands based on their claim amounts, which serves as a 
proxy for their risk exposure. This classification aligns with the principles of  
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Figure 12. Policyholder categorization based on the created actuarial underwriting bands. 

 
risk segmentation mandated by IFRS17. 

• Transparency and Disclosure: IFRS17 emphasizes transparency and disclosure 
in financial reporting. By visualizing the distribution of policyholders across 
underwriting bands, insurers can provide stakeholders with a clear under-
standing of the risk composition of their insurance portfolio. This transpar-
ency helps in accurately assessing the financial position and performance of 
the insurer. 

• Actuarial Assumptions and Estimates: Insurers under IFRS17 are required to 
make various actuarial assumptions and estimates, including claims reserves. 
The visualization of average claim amounts within each underwriting band 
provides insight into the actuarial estimation process. It demonstrates how 
claim amounts vary across different risk categories, enabling insurers to make 
informed decisions regarding reserve calculations and financial disclosures. 

• Fair Value Measurement: IFRS17 introduces the concept of fair value meas-
urement for insurance contracts. By categorizing policyholders into under-
writing bands based on claim amounts, insurers can better assess the fair value 
of their insurance liabilities. This classification helps in determining appropri-
ate reserve levels and pricing strategies, ensuring that insurers accurately re-
flect the value of their insurance contracts on financial statements. 

In closing, Figure 12 adheres to IFRS17 regulations by facilitating risk classifi-
cation, promoting transparency and disclosure, supporting actuarial assumptions 
and estimates, and enabling fair value measurement of insurance contracts. It pro-
vides valuable insights into the risk profile of the insurance portfolio, aiding in-
surers in meeting the requirements of IFRS17 and enhancing financial reporting 
practices. 
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5.8. Model Evaluation: Robust Tests, Stress Tests and Scenario 
Tests  

In short, model evaluation through robust tests, stress tests, and scenario tests 
plays a critical role in determining actuarial loss reserve risk balances. These tests 
provide insurers with valuable insights into the reliability, resilience, and potential 
vulnerabilities of their reserve models, enabling them to make informed decisions 
and manage risks effectively [23]. 

5.8.1. Robust Tests 
Robustness tests ensure that the model is stable and performs consistently under 
different conditions. We can conduct robustness tests by checking the stability of 
the model’s predictions under variations in input parameters [23]. Let us consider 
the stability of the loss reserving risk pricing balances across different levels of 
inflation rates. 

 

 
Figure 13. Robust test plot. 

 
Figure 13. shows a relatively consistent trend or pattern as inflation rates vary, 

it suggests that the model’s predictions are robust across different inflation sce-
narios. In other words, the model’s performance remains stable even when faced 
with changes in inflation rates. Thus, the plotted line remains relatively flat, it in-
dicates that the model’s predictions for Loss Reserving Risk Premium Balances 
are consistent across different inflation rates. This consistency is a sign of robust-
ness. 

5.8.2. Stress Tests 
Stress tests evaluate the resilience of the model under extreme scenarios or adverse 
conditions. We can simulate extreme scenarios and observe the model’s response 
[24]. Let us stress test the model by introducing a significant increase in claim 
amounts. 
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Figure 14. Baseline vs. stress test plot. 

 
Figure 14 compares the Loss Reserving Risk Premium Balance between two 

scenarios: the baseline (original) and the stress test (where claim amounts are in-
creased by a factor of 1.5). The baseline represents the Loss Reserving Risk Pre-
mium Balance under normal conditions, where claim amounts are not altered and 
the Stress Test reflects the Loss Reserving Risk Premium Balance under the stress 
scenario, where claim amounts are increased by a factor of 1.5. In this case, the 
stress test balances the baseline, it indicates that the model is responsive to changes 
in claim amounts, which is a desirable trait in risk assessment. This responsiveness 
suggests that the model captures the impact of increased claim amounts on the 
loss reserving risk premium balance accurately, hence it reflects robustness. 

5.8.3. Scenario Tests 
Scenario tests assess the model’s performance under specific hypothetical scenar-
ios. We can define scenarios and observe the model’s behavior [25]. To demon-
strate the scenario testing for the robustness of the loss reserving risk pricing bal-
ances and associated underwriting bands, let us consider a hypothetical scenario 
where there is a significant increase in claim amounts for policyholders in Under-
writing band 4, due to an unforeseen event, such as a widespread natural disaster 
affecting agricultural areas. We will simulate this scenario by increasing the claim 
amounts in the data and observe how it affects the loss reserving risk pricing bal-
ances and underwriting bands. After simulating the scenario, recalculate the loss 
reserving risk pricing balances and categorize policyholders into underwriting 
bands based on the updated claim amounts. 

From Figure 15, the “After Scenario” bar is relatively close to the “Before Sce-
nario” bar, it suggests that the insurance model is robust to changes in claim 
amounts for policyholders in Underwriting Band 4. This means that the model’s 
calculations and assumptions are stable, and it can withstand variations in inputs 
without significant alterations in outcomes.  
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Figure 15. Scenario test plot. 

6. Discussion  

The paper delves into the intricacies of agricultural insurance and the challenges 
associated with traditional underwriting and risk pricing methods. By harness-
ing the power of Extreme Machine Learning (ELM), the proposed model offers 
a data-driven solution to automate underwriting processes and accurately esti-
mate loss reserves. Through exploratory data analysis, the study highlights the 
significance of various factors, such as climate change, crop types, and environ-
mental conditions in determining insurance risks. Moreover, the discussion un-
derscores the importance of robust testing methodologies to evaluate the model’s 
performance under different scenarios and stress conditions. The paper empha-
sizes the potential of advanced analytics and machine learning in revolutionizing 
actuarial practices, leading to more efficient and effective agricultural insurance 
operations.  

7. Conclusion  

In conclusion, the paper presents a comprehensive framework for building an ac-
tuarial intelligent model tailored specifically for agricultural insurance. By lever-
aging Extreme Machine Learning techniques, the model demonstrates robustness 
in automating underwriting decisions and estimating loss reserves accurately. The 
study underscores the importance of incorporating diverse datasets and conducting 
rigorous validation to ensure the model’s reliability and effectiveness in real-world 
applications. Additionally, the research highlights the significance of continuous 
monitoring and adaptation to evolving market dynamics and changing risk land-
scapes. Overall, the findings contribute to advancing actuarial science in agricultural 
insurance, paving the way for improved risk management practices and more sus-
tainable insurance solutions in the agricultural sector.  
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